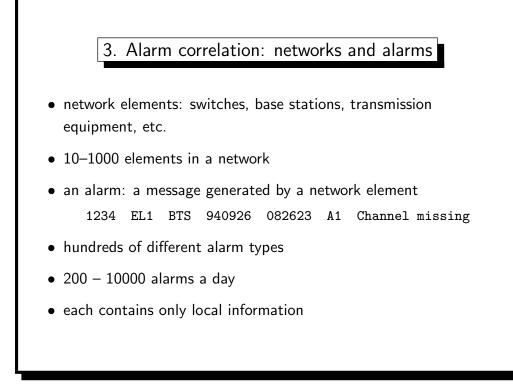
Chapter 3: Alarm correlation

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Alarm correlation

Part II. Episodes in sequences

- Chapter 3: Alarm correlation
- Chapter 4: Frequent episodes
- Chapter 5: Minimal occurrences of episodes
- Chapter 6: Episode discovery process



Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Alarm correlation

3

Characteristics of the alarm flow

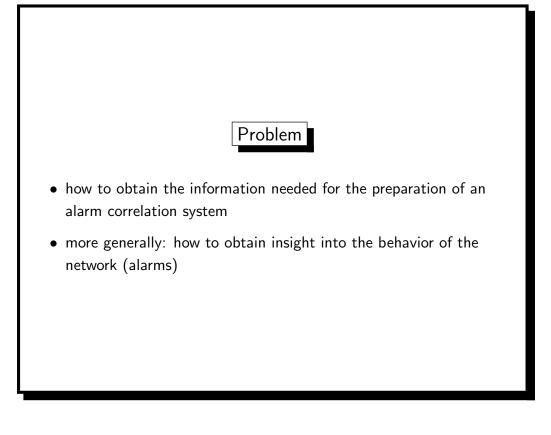
- a variety of situations
- bursts of alarms
- hardware and software change fast

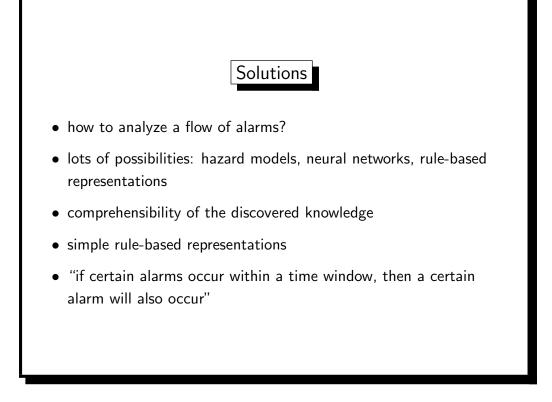
Alarm correlation

"correlating" alarms: combining the fragmented information contained in the alarm sequence and interpreting the whole flow of alarms

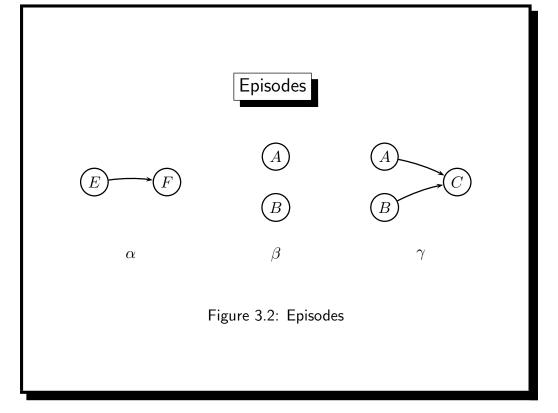
- removing redundant alarms
- filtering out low-priority alarms
- replacing alarms by something else
- systems exist
 - knowledge base (correlation rules) constructed manually
 - $-\,$ look at the alarms occurring in a given time window
 - apply actions given in the matching correlation rules

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Alarm correlation

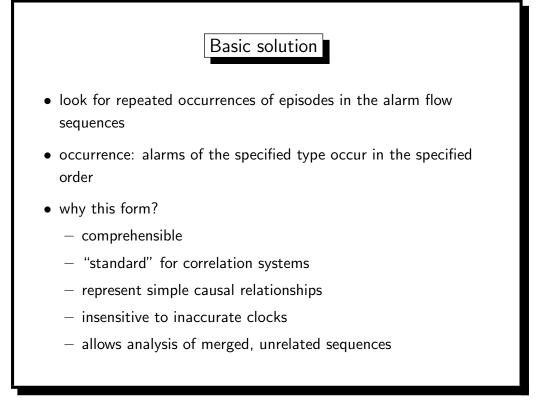




Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Alarm correlation

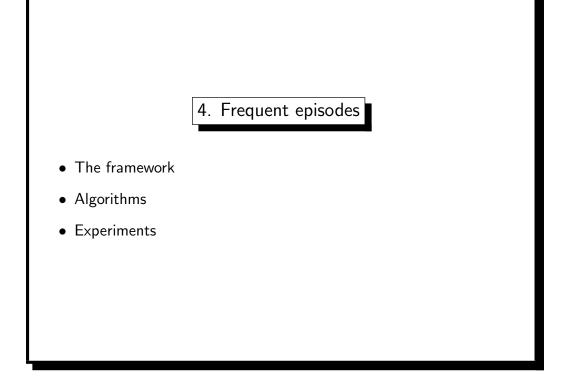


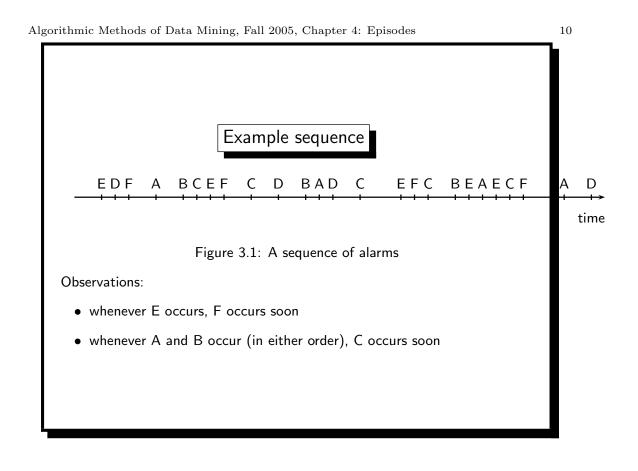
 $\overline{7}$

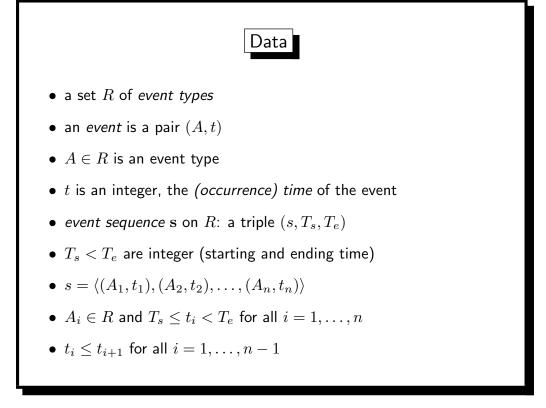


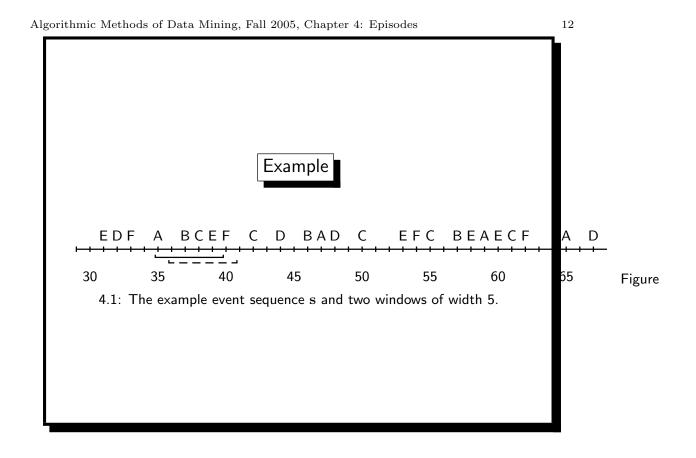
Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 2

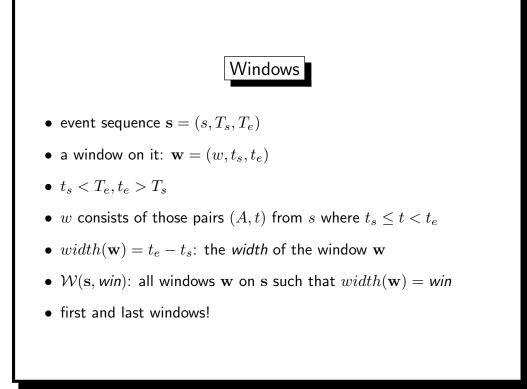
Chapter 4: Episodes



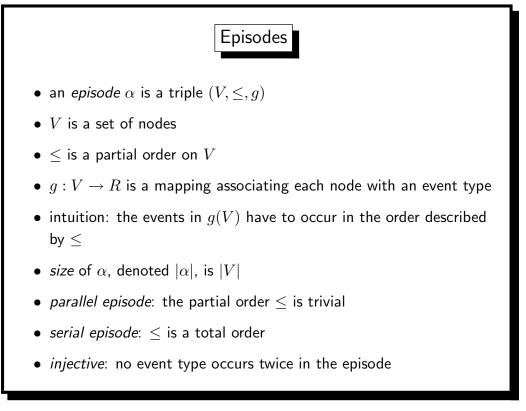


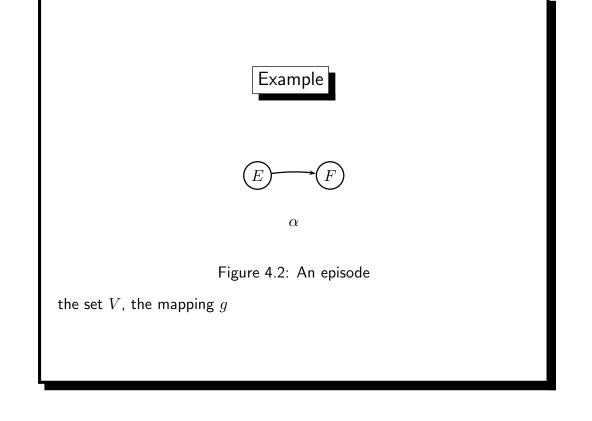




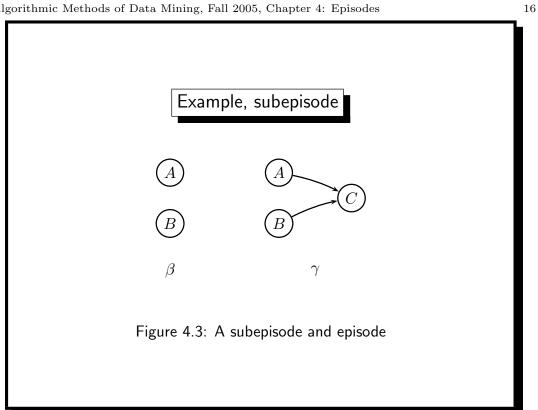


Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes





Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes





 $\beta = (V', \leq', g') \text{ is a subepisode of } \alpha = (V, \leq, g), \ \beta \preceq \alpha, \text{ if:}$ there exists an injective mapping $f: V' \to V$ such that

• g'(v) = g(f(v)) for all $v \in V'$

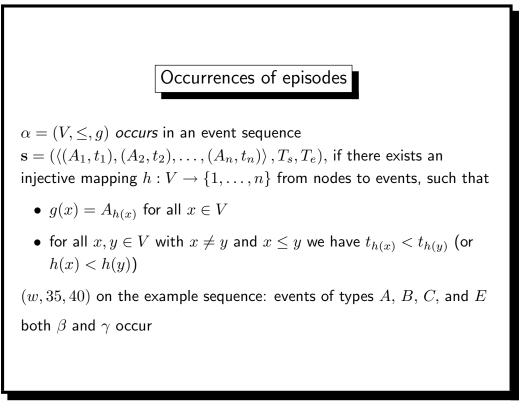
• for all $v, w \in V'$ with $v \leq w$ also $f(v) \leq f(w)$

An episode α is a superepisode of β if and only if $\beta \preceq \alpha$

 $\beta \prec \alpha \text{ if } \beta \preceq \alpha \text{ and } \alpha \not\preceq \beta$

In the example: $\beta \preceq \gamma$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes



Frequency of occurrence

• the *frequency* of an episode α in s is

$$fr(\alpha, \mathbf{s}, win) = \frac{|\{\mathbf{w} \in \mathcal{W}(\mathbf{s}, win) \mid \alpha \text{ occurs in } \mathbf{w}\}|}{|\mathcal{W}(\mathbf{s}, win)|},$$

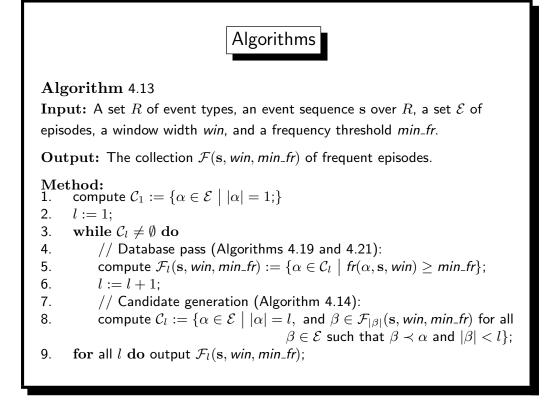
- i.e., the fraction of windows on ${\bf s}$ in which α occurs.
- a frequency threshold min_fr
- α is frequent if $fr(\alpha, \mathbf{s}, win) \ge min_{fr}$
- $\mathcal{F}(s, win, min_fr)$: collection of frequent episodes in s with respect to win and min_fr
- size = l: $\mathcal{F}_l(\mathbf{s}, win, min_fr)$.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes

20

Pattern discovery task

given an event sequence s, a set \mathcal{E} of episodes, a window width *win*, and a frequency threshold *min_fr*, find $\mathcal{F}(s, win, min_fr)$

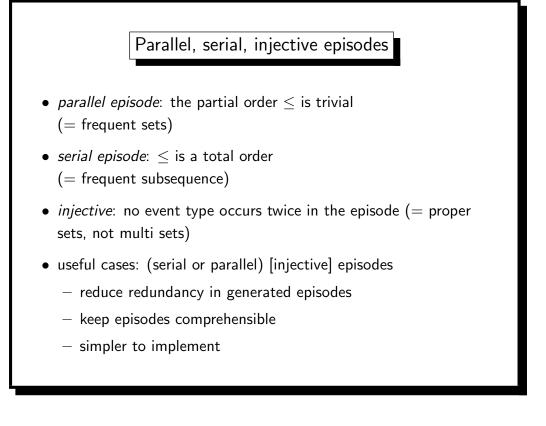


Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes

22

Basic lemma, once again

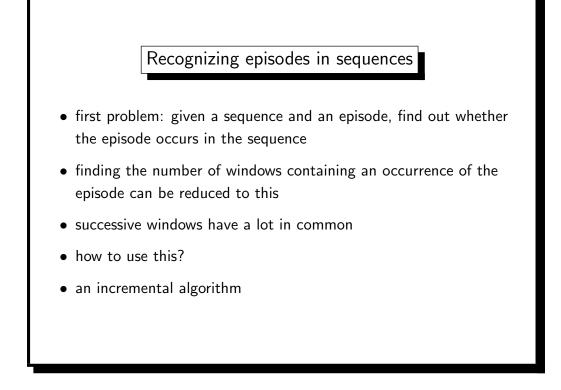
Lemma 4.12 If an episode α is frequent in an event sequence s, then all subepisodes $\beta \leq \alpha$ are frequent.



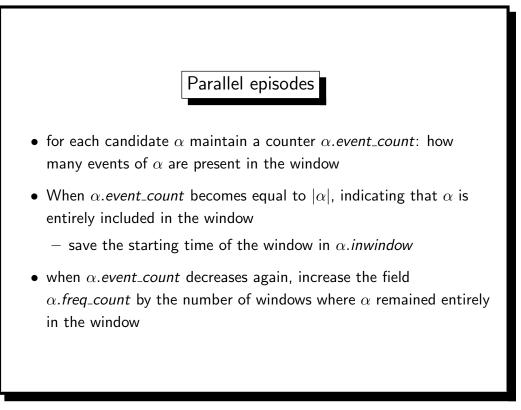
Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes

Generation of candidate episodes

- parallel episodes, serial episodes (injective or non-injective)
- same idea as for association rules
- a candidate episode has to be a combination of two episodes of smaller size
- very small variations to the candidate generation procedure



Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes



Algorithm

Input: A collection C of parallel episodes, an event sequence

 $\mathbf{s} = (s, T_s, T_e)$, a window width *win*, and a frequency threshold *min_fr*.

Output: The episodes of C that are frequent in s with respect to *win* and *min_fr*.

Method:

// Initialization: 1. 2. for each α in C do 3. for each A in α do A.count := 0; 4. 5. for i := 1 to $|\alpha|$ do $contains(A, i) := \emptyset$; 6. for each α in C do 7. for each A in α do 8. a := number of events of type A in α ; 9. $contains(A, a) := contains(A, a) \cup \{\alpha\};$ 10. α .event_count := 0; 11. α .freq_count := 0;

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes

28

Algorithm Method: // Recognition: for $start := T_s - win + 1$ to T_e do 2. // Bring in new events to the window: 3. for all events (A, t) in s such that t = start + win - 1 do 4. A.count := A.count + 1; 5. 6. for each $\alpha \in \text{contains}(A, A. count)$ do 7. α .event_count := α .event_count + A.count; 8. if α .event_count = $|\alpha|$ then α .inwindow := start; // Drop out old events from the window: 9. 10. for all events (A, t) in s such that t = start - 1 do 11. for each $\alpha \in \text{contains}(A, A. count)$ do 12. if α .event_count = $|\alpha|$ then 13. α .freq_count := α .freq_count - α .inwindow + start; 14. α .event_count := α .event_count - A.count; 15. A.count := A.count - 1; 16. // Output: for all episodes α in C do 17. if α .freq_count/ $(T_e - T_s + win - 1) \ge min_f r$ then output α ; 18.

Theorem 1 Algorithm 102 works correctly.

Proof We consider the following two invariants. (1) For each event type A that occurs in any episode, the variable A.count correctly contains the number of events of type A in the current window. (2) For each episode α , the counter α .event_count equals $|\alpha|$ exactly when α occurs in the current window.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes

30

Complexity

Assume that exactly one event takes place every time unit.

Assume candidate episodes are all of size l, and let n be the length of the sequence.

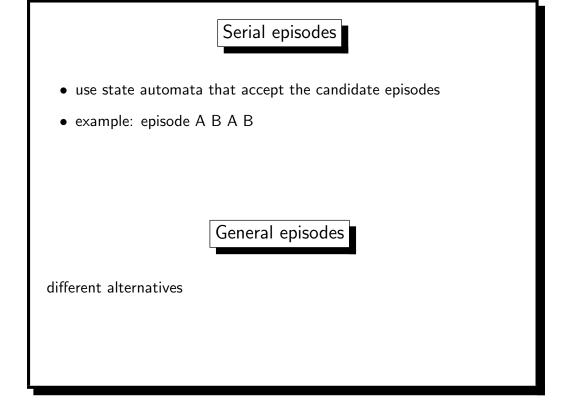
Theorem 2 The time complexity of Algorithm 102 is $O((n+l^2)|\mathcal{C}|)$.

Proof Initialization takes time $\mathcal{O}(|\mathcal{C}|l^2)$.

How many accesses to α .event_count on lines 7 and 14.

In the recognition phase there are $\mathcal{O}(n)$ shifts of the window. In each shift, one new event comes into the window, and one old event leaves the window. Thus, for any episode α , α .event_count is accessed at most twice during one shift.

The cost of the recognition phase is thus $\mathcal{O}(n|\mathcal{C}|)$.



Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes

			Inj	ective
Window	Serial episodes		paralle	l episodes
width (s)	Count	Time (s)	Count	Time (s)
10	16	31	10	8
20	31	63	17	9
40	57	117	33	14
60	87	186	56	15
80	145	271	95	21
100	245	372	139	21
120	359	478	189	22

32

Table 4.1: Results of experiments with \mathbf{s}_1 using a fixed frequency threshold of 0.003 and a varying window width

	1			
			Injective	
Frequency	Serial episodes		parallel episodes	
threshold	Count	Time (s)	Count	Time (s)
0.1	0	7	0	5
0.05	1	12	1	5
0.008	30	62	19	14
0.004	60	100	40	15
0.002	150	407	93	22
0.001	357	490	185	22

Table 4.2: Results of experiments with s_1 using a fixed window width of 60 s and a varying frequency threshold

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes

Episode	Number of	Number of	Number of	
size	episodes	candidate	frequent	Match
		episodes	episodes	
1	287	287.0	30.1	11 %
2	82 369	1 078.7	44.6	4 %
3	$2 \cdot 10^{7}$	192.4	20.0	10 %
4	$7 \cdot 10^{9}$	17.4	10.1	58 %
5	$2 \cdot 10^{12}$	7.1	5.3	74 %
6	$6 \cdot 10^{14}$	4.7	2.9	61 %
7	$2 \cdot 10^{17}$	2.9	2.1	75 %
8	$5 \cdot 10^{19}$	2.1	1.7	80 %
9	$1 \cdot 10^{22}$	1.7	1.4	83 %
10-		17.4	16.0	92 %

Table 4.3: Number of candidate and frequent serial episodes in s_1 with frequency threshold 0.003 and averaged over window widths 10, 20, 40, 60, 80, 100, and 120 s

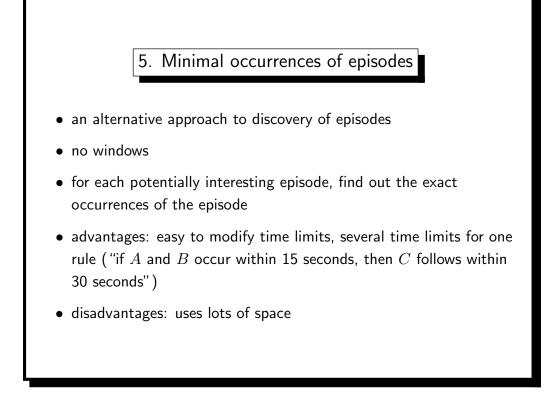
Experiences in alarm correlation

Useful in

- finding long-term, rather frequently occurring dependencies,
- creating an overview of a short-term alarm sequence, and
- evaluating the consistency and correctness of alarm databases
- discovered rules have been applied in alarm correlation
- lots of rules are trivial

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes3

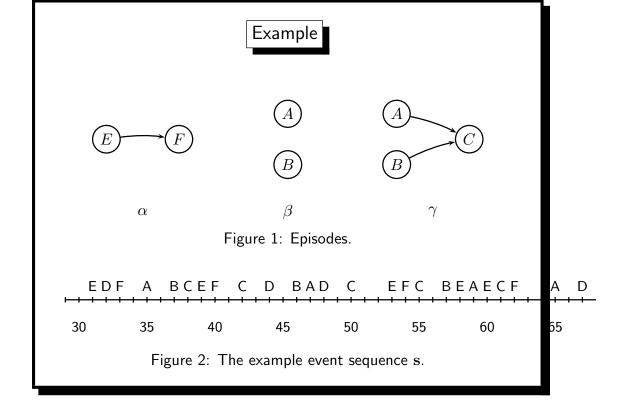
Chapter 5: Minimal occurrences of episodes



Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 37

Definitions

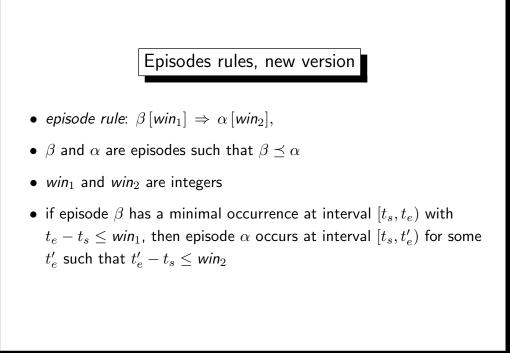
- $\bullet\,$ an episode α and an event sequence ${\bf s}\,$
- interval $[t_s, t_e)$ is a *minimal occurrence* of α in s, if
 - $\ \alpha$ occurs in the window $\mathbf{w} = (w, t_s, t_e)$ on \mathbf{s}
 - $-~\alpha$ does not occur in any proper subwindow on ${\bf w}$
- set of (intervals of) minimal occurrences of an episode α:
 mo(α) = { [t_s, t_e) | [t_s, t_e) is a minimal occurrence of α}.



Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 39

 β consisting of event types A and B has four minimal occurrences in s: $mo(\beta) = \{[35, 38), [46, 48), [47, 58), [57, 60)\}.$

The partially ordered episode γ has the following three minimal occurrences: [35, 39), [46, 51), [57, 62).



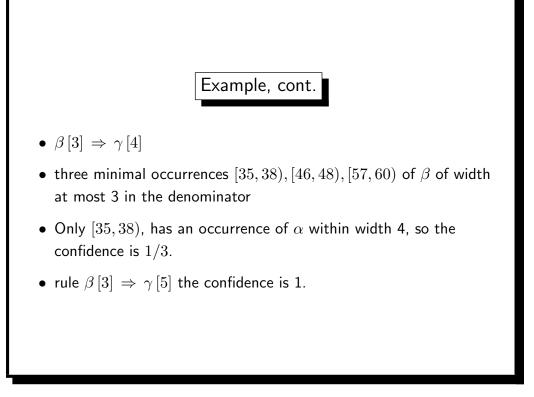
Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 41

• formally: $mo_{win_1}(\beta) = \{[t_s, t_e) \in mo(\beta) \mid t_e - t_s \le win_1\}$

• given α and an interval $[u_s, u_e)$, define $occ(\alpha, [u_s, u_e)) =$ true if and only if there exists a minimal occurrence $[u'_s, u'_e) \in mo(\alpha)$ such that $u_s \leq u'_s$ and $u'_e \leq u_e$

• The confidence of an episode rule $\beta[win_1] \Rightarrow \alpha[win_2]$ is now

$$\frac{|\{[t_s, t_e) \in \textit{mo}_{\textit{win}_1}(\beta) \mid \textit{occ}(\alpha, [t_s, t_s + \textit{win}_2))\}|}{|\textit{mo}_{\textit{win}_1}(\beta)|}$$



Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 43

Rule forms				
• temporal relationships can be complex				

Frequency and support

- previously: frequency = fraction of windows containing the episode
- no fixed window size
- several minimal occurrences within a window
- support of an episode: the number of minimal occurrences of an episode, |mo(α)|

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 45

