
Chapter 3: Alarm correlation

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Alarm correlation 1

Part II. Episodes in sequences

• Chapter 3: Alarm correlation

• Chapter 4: Frequent episodes

• Chapter 5: Minimal occurrences of episodes

• Chapter 6: Episode discovery process

3. Alarm correlation: networks and alarms

• network elements: switches, base stations, transmission

equipment, etc.

• 10–1000 elements in a network

• an alarm: a message generated by a network element

1234 EL1 BTS 940926 082623 A1 Channel missing

• hundreds of different alarm types

• 200 – 10000 alarms a day

• each contains only local information

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Alarm correlation 3

Characteristics of the alarm flow

• a variety of situations

• bursts of alarms

• hardware and software change fast

Alarm correlation

“correlating” alarms: combining the fragmented information contained

in the alarm sequence and interpreting the whole flow of alarms

• removing redundant alarms

• filtering out low-priority alarms

• replacing alarms by something else

• systems exist

– knowledge base (correlation rules) constructed manually

– look at the alarms occurring in a given time window

– apply actions given in the matching correlation rules

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Alarm correlation 5

Problem

• how to obtain the information needed for the preparation of an

alarm correlation system

• more generally: how to obtain insight into the behavior of the

network (alarms)

Solutions

• how to analyze a flow of alarms?

• lots of possibilities: hazard models, neural networks, rule-based

representations

• comprehensibility of the discovered knowledge

• simple rule-based representations

• “if certain alarms occur within a time window, then a certain

alarm will also occur”

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Alarm correlation 7

Episodes

E F

α

A

B

β

A

B

C

γ

Figure 3.2: Episodes

Basic solution

• look for repeated occurrences of episodes in the alarm flow

sequences

• occurrence: alarms of the specified type occur in the specified

order

• why this form?

– comprehensible

– “standard” for correlation systems

– represent simple causal relationships

– insensitive to inaccurate clocks

– allows analysis of merged, unrelated sequences

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 2

Chapter 4: Episodes

4. Frequent episodes

• The framework

• Algorithms

• Experiments

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 10

Example sequence

time

E D F A B C E F C D B A D C E F C B E A E C F A D

Figure 3.1: A sequence of alarms

Observations:

• whenever E occurs, F occurs soon

• whenever A and B occur (in either order), C occurs soon

Data

• a set R of event types

• an event is a pair (A, t)

• A ∈ R is an event type

• t is an integer, the (occurrence) time of the event

• event sequence s on R: a triple (s, Ts, Te)

• Ts < Te are integer (starting and ending time)

• s = 〈(A1, t1), (A2, t2), . . . , (An, tn)〉

• Ai ∈ R and Ts ≤ ti < Te for all i = 1, . . . , n

• ti ≤ ti+1 for all i = 1, . . . , n − 1

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 12

Example

30 35 40 45 50 55 60 65

E D F A B C E F C D B A D C E F C B E A E C F A D

Figure

4.1: The example event sequence s and two windows of width 5.

Windows

• event sequence s = (s, Ts, Te)

• a window on it: w = (w, ts, te)

• ts < Te, te > Ts

• w consists of those pairs (A, t) from s where ts ≤ t < te

• width(w) = te − ts: the width of the window w

• W(s,win): all windows w on s such that width(w) = win

• first and last windows!

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 14

Episodes

• an episode α is a triple (V,≤, g)

• V is a set of nodes

• ≤ is a partial order on V

• g : V → R is a mapping associating each node with an event type

• intuition: the events in g(V) have to occur in the order described

by ≤

• size of α, denoted |α|, is |V |

• parallel episode: the partial order ≤ is trivial

• serial episode: ≤ is a total order

• injective: no event type occurs twice in the episode

Example

E F

α

Figure 4.2: An episode

the set V , the mapping g

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 16

Example, subepisode

A

B

β

A

B

C

γ

Figure 4.3: A subepisode and episode

Subepisodes

β = (V ′,≤′, g′) is a subepisode of α = (V,≤, g), β � α, if:

there exists an injective mapping f : V ′ → V such that

• g′(v) = g(f(v)) for all v ∈ V ′

• for all v, w ∈ V ′ with v ≤′w also f(v) ≤ f(w)

An episode α is a superepisode of β if and only if β � α

β ≺ α if β � α and α 6� β

In the example: β � γ

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 18

Occurrences of episodes

α = (V,≤, g) occurs in an event sequence

s = (〈(A1, t1), (A2, t2), . . . , (An, tn)〉 , Ts, Te), if there exists an

injective mapping h : V → {1, . . . , n} from nodes to events, such that

• g(x) = Ah(x) for all x ∈ V

• for all x, y ∈ V with x 6= y and x ≤ y we have th(x) < th(y) (or

h(x) < h(y))

(w, 35, 40) on the example sequence: events of types A, B, C, and E

both β and γ occur

Frequency of occurrence

• the frequency of an episode α in s is

fr(α, s,win) =
|{w ∈ W(s,win) α occurs in w}|

|W(s,win)|
,

• i.e., the fraction of windows on s in which α occurs.

• a frequency threshold min fr

• α is frequent if fr(α, s,win) ≥ min fr

• F(s,win,min fr): collection of frequent episodes in s with respect

to win and min fr

• size = l: Fl(s,win,min fr).

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 20

Pattern discovery task

given an event sequence s, a set E of episodes, a window width win,

and a frequency threshold min fr, find F(s,win,min fr)

Algorithms

Algorithm 4.13

Input: A set R of event types, an event sequence s over R, a set E of

episodes, a window width win, and a frequency threshold min fr.

Output: The collection F(s, win, min fr) of frequent episodes.

Method:
1. compute C1 := {α ∈ E |α| = 1;}
2. l := 1;
3. while Cl 6= ∅ do

4. // Database pass (Algorithms 4.19 and 4.21):
5. compute Fl(s, win, min fr) := {α ∈ Cl fr(α, s, win) ≥ min fr};
6. l := l + 1;
7. // Candidate generation (Algorithm 4.14):
8. compute Cl := {α ∈ E |α| = l, and β ∈ F|β|(s, win, min fr) for all

β ∈ E such that β ≺ α and |β| < l};
9. for all l do output Fl(s, win, min fr);

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 22

Basic lemma, once again

Lemma 4.12 If an episode α is frequent in an event sequence s, then

all subepisodes β � α are frequent.

Parallel, serial, injective episodes

• parallel episode: the partial order ≤ is trivial

(= frequent sets)

• serial episode: ≤ is a total order

(= frequent subsequence)

• injective: no event type occurs twice in the episode (= proper

sets, not multi sets)

• useful cases: (serial or parallel) [injective] episodes

– reduce redundancy in generated episodes

– keep episodes comprehensible

– simpler to implement

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 24

Generation of candidate episodes

• parallel episodes, serial episodes (injective or non-injective)

• same idea as for association rules

• a candidate episode has to be a combination of two episodes of

smaller size

• very small variations to the candidate generation procedure

Recognizing episodes in sequences

• first problem: given a sequence and an episode, find out whether

the episode occurs in the sequence

• finding the number of windows containing an occurrence of the

episode can be reduced to this

• successive windows have a lot in common

• how to use this?

• an incremental algorithm

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 26

Parallel episodes

• for each candidate α maintain a counter α.event count: how

many events of α are present in the window

• When α.event count becomes equal to |α|, indicating that α is

entirely included in the window

– save the starting time of the window in α.inwindow

• when α.event count decreases again, increase the field

α.freq count by the number of windows where α remained entirely

in the window

Algorithm

Input: A collection C of parallel episodes, an event sequence

s = (s, Ts, Te), a window width win, and a frequency threshold min fr.

Output: The episodes of C that are frequent in s with respect to win and

min fr.

Method:
1. // Initialization:
2. for each α in C do

3. for each A in α do

4. A.count := 0 ;
5. for i := 1 to |α| do contains(A, i) := ∅;
6. for each α in C do

7. for each A in α do

8. a := number of events of type A in α ;
9. contains(A, a) := contains(A, a) ∪ {α};
10. α.event count := 0 ;
11. α.freq count := 0 ;

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 28

Algorithm Method:
1. // Recognition:
2. for start := Ts − win + 1 to Te do

3. // Bring in new events to the window:
4. for all events (A, t) in s such that t = start + win − 1 do

5. A.count := A.count + 1 ;
6. for each α ∈ contains(A, A.count) do

7. α.event count := α.event count + A.count;
8. if α.event count = |α| then α.inwindow := start;
9. // Drop out old events from the window:
10. for all events (A, t) in s such that t = start − 1 do

11. for each α ∈ contains(A, A.count) do

12. if α.event count = |α| then

13. α.freq count := α.freq count − α.inwindow + start;
14. α.event count := α.event count − A.count;
15. A.count := A.count − 1 ;
16. // Output:
17. for all episodes α in C do

18. if α.freq count/(Te − Ts + win − 1) ≥ min fr then output α;

Theorem 1 Algorithm 102 works correctly.

Proof We consider the following two invariants. (1) For each event

type A that occurs in any episode, the variable A.count correctly

contains the number of events of type A in the current window. (2)

For each episode α, the counter α.event count equals |α| exactly when

α occurs in the current window.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 30

Complexity

Assume that exactly one event takes place every time unit.

Assume candidate episodes are all of size l, and let n be the length of

the sequence.

Theorem 2 The time complexity of Algorithm 102 is O((n + l2)|C|).

Proof Initialization takes time O(|C|l2).

How many accesses to α.event count on lines 7 and 14.

In the recognition phase there are O(n) shifts of the window. In each

shift, one new event comes into the window, and one old event leaves

the window. Thus, for any episode α, α.event count is accessed at

most twice during one shift.

The cost of the recognition phase is thus O(n|C|).

Serial episodes

• use state automata that accept the candidate episodes

• example: episode A B A B

General episodes

different alternatives

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 32

Injective

Window Serial episodes parallel episodes

width (s) Count Time (s) Count Time (s)

10 16 31 10 8

20 31 63 17 9

40 57 117 33 14

60 87 186 56 15

80 145 271 95 21

100 245 372 139 21

120 359 478 189 22

Table 4.1: Results of experiments with s1 using a fixed frequency

threshold of 0.003 and a varying window width

Injective

Frequency Serial episodes parallel episodes

threshold Count Time (s) Count Time (s)

0.1 0 7 0 5

0.05 1 12 1 5

0.008 30 62 19 14

0.004 60 100 40 15

0.002 150 407 93 22

0.001 357 490 185 22

Table 4.2: Results of experiments with s1 using a fixed window width

of 60 s and a varying frequency threshold

Algorithmic Methods of Data Mining, Fall 2005, Chapter 4: Episodes 34

Episode Number of Number of Number of

size episodes candidate frequent Match

episodes episodes

1 287 287.0 30.1 11 %

2 82 369 1 078.7 44.6 4 %

3 2 · 10
7 192.4 20.0 10 %

4 7 · 10
9 17.4 10.1 58 %

5 2 · 10
12 7.1 5.3 74 %

6 6 · 10
14 4.7 2.9 61 %

7 2 · 10
17 2.9 2.1 75 %

8 5 · 10
19 2.1 1.7 80 %

9 1 · 10
22 1.7 1.4 83 %

10– 17.4 16.0 92 %

Table 4.3: Number of candidate and frequent serial episodes in s1 with

frequency threshold 0.003 and averaged over window widths 10, 20,

40, 60, 80, 100, and 120 s

Experiences in alarm correlation

Useful in

• finding long-term, rather frequently occurring dependencies,

• creating an overview of a short-term alarm sequence, and

• evaluating the consistency and correctness of alarm databases

• discovered rules have been applied in alarm correlation

• lots of rules are trivial

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes3

Chapter 5: Minimal occurrences of
episodes

5. Minimal occurrences of episodes

• an alternative approach to discovery of episodes

• no windows

• for each potentially interesting episode, find out the exact

occurrences of the episode

• advantages: easy to modify time limits, several time limits for one

rule (“if A and B occur within 15 seconds, then C follows within

30 seconds”)

• disadvantages: uses lots of space

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 37

Definitions

• an episode α and an event sequence s

• interval [ts, te) is a minimal occurrence of α in s, if

– α occurs in the window w = (w, ts, te) on s

– α does not occur in any proper subwindow on w

• set of (intervals of) minimal occurrences of an episode α:

mo(α) = { [ts, te) [ts, te) is a minimal occurrence of α}.

Example

E F

α

A

B

β

A

B

C

γ

Figure 1: Episodes.

30 35 40 45 50 55 60 65

E D F A B C E F C D B A D C E F C B E A E C F A D

Figure 2: The example event sequence s.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 39

β consisting of event types A and B has four minimal occurrences

in s: mo(β) = {[35, 38), [46, 48), [47, 58), [57, 60)}.

The partially ordered episode γ has the following three minimal

occurrences: [35, 39), [46, 51), [57, 62).

Episodes rules, new version

• episode rule: β [win1] ⇒ α [win2],

• β and α are episodes such that β � α

• win1 and win2 are integers

• if episode β has a minimal occurrence at interval [ts, te) with

te − ts ≤ win1, then episode α occurs at interval [ts, t
′

e) for some

t′e such that t′e − ts ≤ win2

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 41

• formally: mowin1
(β) = {[ts, te) ∈ mo(β) te − ts ≤ win1}

• given α and an interval [us, ue), define occ(α, [us, ue)) = true if

and only if there exists a minimal occurrence [u′

s, u
′

e) ∈ mo(α)

such that us ≤ u′

s and u′

e ≤ ue

• The confidence of an episode rule β [win1] ⇒ α [win2] is now

|{[ts, te) ∈ mowin1
(β) occ(α, [ts, ts + win2))}|

|mowin1
(β)|

.

Example, cont.

• β [3] ⇒ γ [4]

• three minimal occurrences [35, 38), [46, 48), [57, 60) of β of width

at most 3 in the denominator

• Only [35, 38), has an occurrence of α within width 4, so the

confidence is 1/3.

• rule β [3] ⇒ γ [5] the confidence is 1.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 43

Rule forms

• temporal relationships can be complex

Frequency and support

• previously: frequency = fraction of windows containing the episode

• no fixed window size

• several minimal occurrences within a window

• support of an episode: the number of minimal occurrences of an

episode, |mo(α)|

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 45

Rule discovery task

• an event sequence s

• a class E of episodes

• a set W of time bounds

• find all frequent episode rules of the form β [win1] ⇒ α [win2]

• β, α ∈ E and win1,win2 ∈ W.

