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Greedy approximation algorithm I

C=10
Gain of S in the context of C is f(CU {S}) — f(C)

Select the concept S that has the highest gain
C:=CU{S}

Repeat until C has k£ elements
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Basic theorem '

Let C; be the optimal set of £ concepts

Let C; be the ith set formed by the greedy algorithm.

Assume
1

f(Ci) — f(Ciz1) > E(f(ck) f(Ci—1))

fe) > ()

Proof. Separate.
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‘Why does the assumption hoId?I

£(C) — F(Cim) = L (F(E) ~ £(Cin))

f is submodular
the greedy approximation algorithm
The concept C; \ C;_1 is the one that maximizes the gain.

(Something open here.)
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Applications'

e Which functions are submodular?

e The concepts should not have interaction

e Variable selection?
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CIusteringI

e Task: group observations into groups so that the observations

belonging to the same group are similar, whereas observations in

diferent groups are different
e Lots and lots of research in various areas

e Just scratching the surface here
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Basic questions? I

e \What does “similar’ mean?

e What is a good partition of the objects? l.e., how is the quality of
a solution measured?

e How to find a good partition of observations?
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‘What does “similar” mean?.

Some function of the attribute values of the observations

Usual approach: L, distance

L((z1, - era), (s ) = (3@ — ") V7

i
Easy in 1-dimensional real case

Already 2 dimensions cause problems: how to weigh the different

dimensions?

Lots of problems
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Partition-based cIusteringI

Data mining algorithms: task; model; score function; search

Task: partition the data into K disjoint sets of points
The points within each set are as homogeneous as possible
Measured by score function

Often no clear model
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Score functions for cIusteringI

d(z,y): distance between points z,y € D
Assume d is a metric
C=(C1,0C,...,Ck)

Clusters should be compact

Clusters should be as far from each other as possible

Within cluster variation wc(C) and between cluster variation bc(C)
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Cluster centers r1,...,rg: representative points from each
cluster, e.g., the centroid of the points

Simple measure for within cluster variation

we(C) = ch(C’k) — Z Z d(z,ry)?
k=1

k=1zxzc(C}

Between cluster variation

be(C) =Y d(rj,mi)?

1<j<k<K

wc(C) leads to spherical clusters
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Evaluation of bc(C) and we(C)?

O(n) and O(K?) operations

Variations abound: define wec(Cy) as the maximum of the
minimum distance to another point in the same cluster

Leads to elongated clusters
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The K-means algorithm I

randomly pick K cluster centers

assign each point to the cluster whose mean is closest in a
Euclidean distance sense

compute the mean vectors of the points assigned to each cluster

use these as new centers

repeat until convergence
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‘As an algorithm I

data points D = {x1,...,x,}

find K clusters {C;...,Ck}:

for k=1,..., K let ri be a randomly chosen point from D;
while changes in clusters C} happen do
form clusters:
for k=1,...,K do
Cp,=4{x€eD ‘ d(rg,x) <d(rj,x) forall j=1,...,K,j
od;
compute new cluster centers:
for k=1,...,K do
r;, = the vector mean of the points in (Y},
od;
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Properties of the K-means algorithm I

Finds a local optimum
Converges often quite quickly

Sometimes slow convergence

For high dimensions the initial points can have a large influence
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Hierarchical cIusteringI

e Merge sets of points or divide sets of points

e Agglomerative or divisive

e Dendrograms (figures)
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‘ Agglomerative clustering I

fori=1,...,nlet C; = {x(1)};
while there is more than one cluster left do
let C; and C; be the clusters
minimizing the distance D(C, C}) between any two clusifirs;
C;, =C; U Cj;

remove cluster C;

od;
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Complexity I

e Quadratic, at least, in the number of points

e Not usable for large sets of data
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What is the distance?'

How to define the distance between two clusters?

Two sets of points

Lots of alternatives

Actually quite difficult to define a metric
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‘Single—link distance'

d(x,y) the distance between objects x and y

D (C;,C;) = min{d(x,y) | x € C;,y € Cj},
X,y

chaining: long, elongated clusters
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Complete IinkI

Furthest distance

Dy (Cs, Cj) = max{d(x,y) | x € C;,y € C},
X,y

leads to equal volume (or at least diameter)

(2)
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‘ Other measures'

For vectors

the centroid measure (the distance between two clusters is the
distance between their centroids)

the group average measure (the distance between two clusters is
the average of all the distances between pairs of points, one from

each cluster)

Ward's measure for vector data (the distance between two clusters
is the difference between the total within cluster sum of squares
for the two clusters separately, and the within cluster sum of
squares resulting from merging the two clusters discussed above)
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Divisive methods'

Start with a single cluster composed of all of the data points

split this into components
continue recursively

Monothetic divisive methods split clusters using one variable at a
time

Polythetic divisive methods make splits on the basis of all of the
variables together

Any intercluster distance measure can be used

computationally intensive, less widely used than agglomerative
methods
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Kleinberg's impossibility theorem I

Jon Kleinberg, An impossibility theorem for clustering, NIPS 2002

Clustering methods based on pairwise distances
Three properties for clustering methods

No algorithm can have all three
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Computational task.

A clustering function operates on a set S of n points
No underlying space; S ={1,2,...,n}

Distance function: d: S x S — R with d(7,5) > 0,
d(i,j) = d(j,7), and d(¢,5) =0 only if t = j

(Metric: additionally have d(i, j) + d(j, k) > d(i, k))

Clustering function f: f(S,d) =T, where T' is a partition of S
(A partition)
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‘Scale invariance'

a > 0; distance function ad has values (ad)(¢,j) = ad(i, j)

For any d and for any a > 0 we have f(d) = f(ad)
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‘ Richness '

The range of f is equal to the set of partitions of S

l.e., for any S and any partition I' of .S there is a distance function d
on S such that f(S5,d) =T
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Consistency'

Shrinking distances between points inside a cluster and expanding

distances betwen points in different clusters does not change the result.
I' a partition of S

d, d’ two distance functions on S

d' is a I'-transformation of d, if

e for all 3,5 € S in the same cluster of I' we have d’'(¢,j) < d(7,j)

e for all 7,7 € S in the different clusters of I' we have
d'(i,7) > d(i, j)

Consistency: if f(S,d) =T and d’ is a I'-transformation of d, then
F(8,d") =
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‘ Examples'

e Agglomerative clustering with single-link

e Repeatedly merge cluster whose distance is minimum

e Continue until a stopping criterion is met

— k-cluster stopping criterion: continue until there are k

connected components

— distance-r stopping criterion: continue until all distances
between clusters are larger than r

— scale-a stopping criterion: let p* be the maximum pairwise
distance; contine until all distances are larger than ap*
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‘ Examples, cont. I

e Single link with k-cluster stopping criterion satisfies
scale-invariance and consistency

e Single link with distance-r stopping criterion satisfies richness and
consistency

e Single link with scale-a stopping criterion satisfies richness and

scale-invariance
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‘ Theorem '

For each n > 2 there is no clustering function that satisfies
scale-invariance, richness, and consistency
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‘ Proof of theorem I

A partition IV is a refinement of partition I, if each set C' € I is

included in some set C' € T
A partial order between partitions: IV <T°

Antichain of partitions: collection of partitions such than no one is a
refinement of others

Theorem: If a clustering function f satisfies scale-invariance and
concistency, then the range of f is an antichain
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['-forcing I

partition I

d (a,b)-conforms to T', if for all points 7, j in the same cluster of T’
d(i,j) < a, and for all points ¢, j in different clusters of T’
d(i,j) = b

given a clustering function f

(a, b) is I-forcing, if for all d that (a,b)-conform to I' we have
f(S,d) =T
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Forcing, cont. I

Assume f satisfies consistency; let I' € Range( f)

Claim: there are a < b such that (a,b) is I'-forcing

[" in range of f: there is d such that f(S,d) =T

a’= minimum distance of points in the same cluster in T’
b'= maximum distance of points in different clusters in I’
Choose a < b such that a < @’ and b < ¥/

If d’ (a,b)-conforms to I', then d is a I'-transformation of d
By consistency f(d') =T

Thus (a,b) is I'-forcing
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‘Antichains'

Assume f satisfies scale-invariance

Let I'y and I'; be possible results of f, and let I'y be a refinement
of Fl

Show that this leads to contradiction

(ag, by) T'g-forcing, (a1,by) I'1-forcing

Let ay < ay, choose € so that 0 < € < agazby *

Construct a d such that
— For 4,7 in same cluster of I'y we have d(i,j) < ¢

— For 7,5 in same cluster of I'y but not in I'y we have
az < d(i,7) < ay

— For 4, 7 in different clusters of 'y d(7,5) > by
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d (a,b)-conforms to I'1, and thus f(S,d) =T
o =boay ', and let d' = ad

scale-invariance: f(d') = f(d) =T

t, 7 in same cluster of I'y we have

d/(’&,j) < 6[)0&2_1 < ag

7, 7 in different clusters of I'y we have

d’(’&,]) Z a2b0a2_1 — b()

d' (ag, by conforms to I'g, and thus f(S,d") =Ty # I'y,
contradiction
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