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‘ Examples'

e association rules
e episodes: specialization relation

e exact database rules
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Chapter 8: Complexity of finding
frequent patterns
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‘8. Complexity of finding frequent patterns'

border of a theory

time usage

guess-and-correct algorithm

analysis

borders and hypergraph transversals
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‘The border of a theory'

o T(P,r,q) of P

e the whole theory can be specified by giving only the maximally
specific patterns in 7 (P, r,q)

e collection of maximally specific patterns in 7(P,r,q)
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Definition of border.

collection of minimally specific (i.e., maximally general) patterns

not in T (P,r,q)

P be a set of patterns, S a subset of P, < a partial order on P

S closed downwards under the relation <: if o € § and v < ¢,
then vy € S

border Bd(S) of S consists of those patterns ¢ such that all more
general patterns than ¢ are in S and no pattern more specific
than ¢ is in S:

Bd(S) = {p e P|forall v € P suchthat v < ¢ we have y € S,
and for all 8 € P such that ¢ < 6§ we have 6 ¢ S}.
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e positive border Bd™(S)

Bd*(S) = {p € S|for all § € P such that ¢ < 6 we have § ¢ S},

e the negative border Bd~ (S)

Bd~(S) = {¢ € P\Sfor all v € P such that v < ¢ we have v € S}.
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‘ Example for frequent sets'

e R={A,...,F}

WAL ABEACHF A, BELAA CHAA FEAC FE{AC Fh)

e the negative border is thus
Bd~(F) = {{D},{E},{B,C},{B, F}}

e the positive border, in turn, contains the maximal frequent sets,
l.e.,

Bd—l_(j:) — {{A,B},{A,C, F}}

e frequent episodes in a sequence over events A, ..., D
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‘ Example for strings'

P: substrings over an alphabet X

q: how frequently the substring occurs

(substrings vs. subsequences & sequential episodes)

Y. ={a,b,c}
F =Aa,b,c,ab,bc,abc, cb}
positive border {abc, cb}

negative border {ca, aa, bb, ba, cc, ac} (?)
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‘ Example for episodes'

@ | @ | ®

@® | @® | @O | @@

(O (® (2X®)

© @

Figure 8.1: A collection F(s, win, min_fr) of frequent episodes.
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Figure 8.2: The positive border Bd™ (F(s, win, min_fr)).
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©

Figure 8.3: The negative border Bd™ (F(s, win, min_fr)). (Tends to be tricky
to check!)
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‘ Generic algorithm, again I

Input: A database schema R, a database r over R, a finite set P of

Algorithm 7.6

patterns, a computable selection criterion g over P, and a computable
specialization relation < on P.

Output: The set 7(P,r,q) of all frequent patterns.

Method:
compute C; :={p € P ‘ level(p) = 1};

[.=1;
while C; # 0 do
// Database pass:
compute Ti(P,r,q) := {¢ € Ci | q(,1)};
l:=1+1;
// Candidate generation:
compute C; := {¢p € P | level(p) =l and 0 € Tievei(o)(P, T, q) for all
6 € P such that 6 < p};

NSO E W

for all [ do output 7;(P,r,q);
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‘ Complexity of the generic algorithm I

Theorem 8.4 Let P,r, and q be as in Algorithm 7.6. Algorithm 7.6
evaluates the predicate g exactly on the patterns in

T(P,r,q) UBd=(T(P,r,q)). ]
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Corollary 8.5 Given a set R, a binary database r over R, and a
frequency threshold min_fr, Algorithm 2.14 evaluates the frequency of

sets in F(r, min_fr) U Bd~ (F(r, min_fr)). ]

candidate generation: computes the negative border
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D min_fr 'T(P,r,q)| |Bd™(T(P,r,q))
0.2 0.01 469 273
0.2 0.005 1291 334
0.5 0.1 1335 1125
0.5 0.05 5782 4432

Table 8.1: Experimental results with random data sets.
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min_fr 'T(P,r,q)| |Bd*(T(P,r,q))| |Bd=(T(P,r,q))]
0.08 06 35 201
0.06 270 61 271
0.04 1028 154 426
0.02 6875 328 759

Table 8.2: Experimental results with a real data set.
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The guess-and-correct aIgorithmI

levelwise search: safe but sometimes slow

if there are frequent patterns that are far from the bottom of the
specialization relation

an alternative: start finding 7 (P,r,q) from an initial guess

S C P, and then correcting the guess by looking at the database

if the initial guess is good, few iterations are needed to correct the
result
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‘Algorithm 8.7'

The guess-and-correct algorithm for finding all potentially interesting
sentences with an initial guess S.
Input: A database r, a language P with specialization relation <, a

selection predicate g, and an initial guess S C P for T(P,r,q). We

assume S is closed under generalizations.

Output: The set 7(P,r,q).
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Algorithm 8.7

Method
1. = (;

// correct S downward:

C := Bd" (S);

while C # () do
C*:=C"UC;
S:=8\{peC|q(r, o) is false};
C := Bd*(S)\C*;

od;
// now S C T(P,r,q); expand S upwards:
C:=Bd (S)\C
while C # () do
C*:=C"UC,;
S:=8U{peC|q(r,o) is true};
C = Bd—(S)\ C*;
od;
output S;
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Lemma 8.8 Algorithm 8.7 works correctly.

Theorem 8.9 Algorithm 8.7 uses at most

(SAT)UBA(T) UBAT(SNT)

evaluations of g, where 7 = T (P, r,q).
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Initial guesses? I

sampling
Take a small sample s from r
compute 7(P,r,q) and use it as S

Applied to association rules this method produces extremely good
results

with a high probability one can discover the association rules
holding in a database using only a single pass through the
database

other method: partitioning the database
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Complexity anaIysisI

Verification problem: assume somebody gives a set S C P and claims

that S = 7(P,r,q). How many evaluations of ¢ are necessary for
verifying this claim?

Theorem 8.10 Let P and § C P be sets of patterns, r a database, ¢
a selection criterion, and < a specialization relation. If the database r
is accessed only using the predicate g, then determining whether

S =T(P,r,q) (1) requires in the worst case at least |Bd(S)|

evaluations of ¢, and (2) can be done in exactly |Bd(S)| evaluations
of q. []

Corollary 8.11 Let P be a set of patterns, r a database, ¢q a
selection criterion, and < a specialization relation. Any algorithm that
computes 7 (P,r,q) and accesses the data only with the predicate g
must evaluate g on the patterns in Bd(T(P,r,q)). ]
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R={A,...,F}

claim: frequent sets are

S = UWALBLOHAFEAA, By 1A, O (A F} (G, F1 A, G F T

verify this:

Bd*t(S) = {{A, B},{A,C,F}} and
Bd~(S) = {{D},{E},{B,C},{B, F}}
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‘ Computing the border'

S, we can compute Bd*(S) without looking at the data r

the negative border Bd~(S) is also defined by S
finding the most general patterns in P \ S can be difficult

minimal transversals of hypergraphs can be used to determine the
negative border

R be a set; a collection ‘H of subsets of R is a simple hypergraph
on R, if no element of H isempty and if X, Y € Hand X CY
imply X =Y

elements of H are called the edges

elements of R are the vertices
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a simple hypergraph H on a set R, a transversal T' of H is a
subset of R intersecting all the edges of ‘H

T is a transversal if and only if TN X # () for all X € H

minimal transversal of H is a transversal T such that no 7/ C T is
a transversal

Tr(H)
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Frequent sets I

vertices R; define a simple hypergraph H to have as edges the

complements of the sets in the positive border

for each set X in the positive border we have the set R\ X as an

edge in H,;

Y C R; if there is an edge R\ X such that Y N (R\ X) = 0, then
Y C X, and Y is frequent.

if there is no such edge that the intersection is empty, then Y
cannot be frequent.

That is, Y is not frequent if and only if Y is a transversal of .

Minimal transversals are now the minimal non-frequent sets, i.e.,
the negative border.
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Negative border = minimal transversals of the complements of the sets

in the positive border
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‘ How to use this?'

e what if only the maximal frequent sets are needed, but they are
large?

e the levelwise algorithm does not work well

e Dualize-and-advance algorithm:

— compute some maximal frequent sets using a randomized

algorithm
compute minimal nonfrequent sets
verify them against the database

continue until no new sets are found
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Chapter 9: Sampling
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‘9. Sampling in knowledge discovery'

why sampling?

what types of knowledge can be discovered using sampling?

basic techniques of sampling (from files)

sampling in finding association rules
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Why sampling?'

lots of data

many algorithms are worse that linear

hunting for relatively common phenomena

solution: take a sample from the data, and analyze it

if necessary, confirm the findings by looking at the whole data set
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‘What types of knowledge? I

estimating the sizes of certain subgroups

opinion polls: about 1000 persons gives an accuracy of around 2
% points

(the size of the population does not have an influence)

what about very rare phenomena?

“there exists a subgroup of 100 objects having these and these
properties”

very difficult to verify using sampling, if the population is large
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‘ Basic techniques of sampling'

sampling from a file

given a file of NV records t4,...,tn,, we wish to choose K from

them
with replacement or without replacement

with replacement:

— for2 =1 to K do:

x generate a random integer b between 1 and N
x output record t;

— or sort the generated random integers into order and read the
data once
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‘Sampling without replacement, basic method'

keep a bit vector of N bits

generate random integers b between 1 and /N and mark bit b, if it

is not already marked
until K bits have been marked

read through the bit vector and the data file, and output the
selected records
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Sampling without replacement, sequential method'

while T' > 0 do
let b be a random number from [0, 1];
if b <T/M then
output record t;;
T=T—-1;
M = M —1;
else
M =M —1;
end;
end;
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‘ Correctness '

by induction on IV; for N = 0 and N = 1, the correctness is clear

assume the algorithm works for N = N’; we show that it works
for N =N'+1

the first element of the file will be selected with probability K/,

as required

what about the next elements? two cases: the first element was

selected or it wasn't

probability that an element will be selected is

KK-1 N-K K K

NN_1 N N_1 N
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Sampling for association ruIesI

Current algorithms require several database passes
For very large databases, the 1/O overhead is significant
Random sample can give accurate results in sublinear time

Random samples can be used to boost the discovery of exact

association rules (a variant of guess-and-correct algorithm)

Result: 1 database pass, in the worst case 2 passes
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Simple random sampIeI

Use a random sample only

e Frequent sets can be found in main memory

= very efficient!

e Good news: approximations for frequencies and confidences are

good

e Bad news: applications may require exact rules
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Algorithm: first pass'

Goal: Exact rules in (almost) one pass
. Pick a random sample s from r

. Select a lowered threshold low_fr < min_fr

. Compute § = F(s, low_fr) in main memory
Goal: § O F(r, min_fr)

. Compute the exact frequencies of sets in S using the rest of the

database
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‘ A quick analysis I

|/O cost: sampling + 1 sequential database pass

The method may fail (a frequent set is not in S)

Larger sample size = lower failure probability
Smaller low_fr = lower failure probability
e Smaller low_fr = & is larger i.e., more sets are checked

How to deal with potential failures?

How much must the threshold be lowered?
How many sets have to be checked?
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‘ Negative border'

e Recall: the border (both positive and negative) has to be
evaluated to verify the result

e Assume S = F(s, low_fr) has been computed from a sample s

e If any set not in S is actually frequent in 7, then a set in Bd~(S)
must be frequent
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‘ Negative border I

e After sampling and computing S, verify both § and Bd~(S) in
the rest of the database (and obtain the exact frequencies)

e If no set in Bd—(S) is frequent, then S is guaranteed to contain
all frequent sets

o If a set X in Bd—(S) is frequent, then a frequent superset of X
might be missed

= Second pass over the database can be necessary, if there are
frequent sets in Bd~ (S)

180
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‘ Second pass I

e Add the frequent sets in Bd—(S) to &

e Repeat:
— Recompute the negative border of S

— Add the new sets in the negative border to S

e Compute the frequencies of sets in S in one pass over the database
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‘Sampling as an instance of guess—and—correct'

e Use a random sample to obtain a guess &
— Goal: § D F(r, min_fr)

— 1st pass: correction in one direction only (removal of
infrequent sets)

e Negative border Bd—(S) tells whether frequent sets were missed

— If necessary, add all possibly frequent sets to S
— Now S D F(r, min_fr) is guaranteed

— 2nd pass: evaluate S
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‘ Dynamic threshold I

e Second pass over the database is necessary, if there are frequent
sets in Bd~(S)

e = Frequencies of border sets can be used to estimate the
probability of a second pass

e |dea: set the lowered threshold in run time, so that the probability
of a second pass is within a desired range
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‘ Chernoff bounds I

Theorem 9.8 Given an item set X and a random sample s of size

|8’ > Llng
2¢2 6

the probability that |fr(X,s) — fr(X)| > ¢ is at most §.

Proof The Chernoff bounds give the result
Prl|lz — np| > a] < 2¢72¢° /" where z is a random variable with
binomial distribution B(n,p). For the probability at hand we thus have

Pr(|f(X,s) — fr(X)| > €]
Pr||f(X,s) — fr(X
9o—2(c[s)?/]s] <6

)| - [s] > elsl]
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‘What does this mean?'

Sufficient sample sizes (note: Chernoff bounds are rough!)

€

J

Sample size

0.01
0.01
0.01
0.001
0.001
0.001

0.01
0.001
0.0001
0.01
0.001
0.0001

27 000
338 000
50 000
2 700 000
3 800 000
5 000 000

Table 9.1 Sufficient sample sizes, given € and 4.

185
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What about several sets?.

Corollary 9.9 Given a collection § of sets and a random sample s of
size

2|S]|

In

H_252 A’

the probability that there is a set X € § such that
1fr(X,s) — fr(X)| > € is at most A.

Proof By Theorem 9.8, the probability that |fr( X, s) — fr(X)| > ¢ for
a given set X is at most |§| Since there are |S| such sets, the
probability in question is at most A.
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‘ Experiments'

Three benchmark data sets from [AS94]

Assumption: real data sets can be much larger

Sampling with replacement (analysis is easier)

Sample sizes from 20,000 to 80,000
Every experiment was repeated 100 times

low_fr was set so that the probability of missing any given frequent
set is at most 0.001
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Results '

Level-wise——
Partition—o—
Sampling—+—

Passes

o) O
J J

e e
N\ N\

2 15 1 075 0.5 min_fr(%)

Figure 9.1 The number of database passes for frequent set
algorithms (T10.14.D100K)
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Results '

Lowered frequency threshold

min_fr (%)

20,000

Sample size |s]

40,000

60,000

30,000

0.25
0.50
0.75
1.00
1.50
2.00

0.13
0.34
0.55
0.77
1.22
1.67

0.17
0.38
0.61
0.83
1.30
1.77

0.18
0.40
0.63
0.86
1.33
1.81

0.19
0.41
0.65
0.88
1.35
1.84

Table 9.3 Lowered frequency thresholds for 0 = 0.001

189



\lgorithmic Methods of Data Mining, Fall 2003, Chapter 9: Sampling 190

Results '

Number of sets checked: insignificant increase

min_fr

20,000

Sample size

40,000

60,000

80,000

| evel-wise

0.50
0.75
1.00
1.50
2.00

382,282
290,311
181,031
52,369
10,903

368,057
259,015
158,189
40,512
7,098

359,473
248,594
146,228
36,679
5,904

356,527
237,595
139,006
34,200
5,135

318,588
188,024
97,613
20,701
3,211

Table 9.5 Number of itemsets considered for data set T10.14.D100K
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‘Exact 1/0 savings?'

e Depends on storage structures and sampling

methods

Example 1:
Database size 10 million rows,
sample size 20 thousand rows,

100 rows/disk block
= sampling reads at most 20 % of the database

Example 2:
database size 10 billion rows
= sampling reads at most 0.02 % of the database




