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‘ Recognizing episodes in sequences'

first problem: given a sequence and an episode, find out whether
the episode occurs in the sequence

finding the number of windows containing an occurrence of the

episode can be reduced to this
successive windows have a lot in common
how to use this?

an incremental algorithm
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‘ Parallel episodes'

e for each candidate a maintain a counter a.event_count: how
many events of « are present in the window

e When a.event_count becomes equal to |«/, indicating that « is

entirely included in the window
— save the starting time of the window in a.inwindow
e when a.event_count decreases again, increase the field

a.freq_count by the number of windows where o remained entirely
in the window
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Algorithm
Input: A collection C of parallel episodes, an event sequence
s = (s,Ts,Te), a window width win, and a frequency threshold min_fr.

Output: The episodes of C that are frequent in s with respect to win

and min_fr.

Method: =
// Initialization:

for each a in C do
for each A in o do
A.count := 0;
for i := 1 to |a| do contains(A, 1) := 0;
for each a in C do
for each A in o do
a := number of events of type A in q;
contains(A, a) := contains(A, a) U {a};
a.event_count := 0;
a.freq_count := 0;

1.
2.
3.
4.
5.
6.
1.
8.
9.
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gorithm Method:
Recognition:

for start :=Ts — win+ 1 to T. do
// Bring in new events to the window:
for all events (A,t) in s such that t = start + win — 1 do
A.count := A.count + 1;
for each a € contains(A, A.count) do
a.event_count := «.event_count + A.count;
if a.event_count = |a| then a.inwindow := start;
// Drop out old events from the window:
for all events (A,t) in s such that t = start — 1 do
for each a € contains(A, A.count) do
if a.event_count = |a| then
a.freq_count := a.freq_count — a.inwindow + start;
a.event_count := «.event_count — A.count;
A.count := A.count — 1;
// Output:
for all episodes o in C do
if a.freq_count /(Te — Ts + win — 1) > min_fr then output «;

Al
1.
2.
3.
4.
5.
6.
7.
8.
9.




\lgorithmic Methods of Data Mining, Fall 2003, Chapter 4: Episodes 104

Theorem 1 Algorithm 102 works correctly.

Proof We consider the following two invariants. (1) For each event
type A that occurs in any episode, the variable A.count correctly
contains the number of events of type A in the current window.

(2) For each episode ., the counter ac.event_count equals || exactly
when o occurs in the current window. ]
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Complexity I

Assume that exactly one event takes place every time unit.

Assume candidate episodes are all of size [, and let n be the length of
the sequence.

Theorem 2 The time complexity of Algorithm 102 is O((n + [2) |C|).

Proof Initialization takes time O(|C|1?).
How many accesses to a.event_count on lines 7 and 14.

In the recognition phase there are O(n) shifts of the window. In each
shift, one new event comes into the window, and one old event leaves
the window. Thus, for any episode «, o.event_count s accessed at
most twice during one shift.

The cost of the recognition phase is thus O(n|C|).
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SeﬁalepBodesI

e use state automata that accept the candidate episodes

e example: episode ABAB

‘ General episodes'

different alternatives
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Window
width (s)

Serial episodes

Count

Time (s)

Injective
parallel episodes

Count Time (s)

10
20
40
60
80
100
120

16
31
57
87
145
245
359

31

63
117
186
271
372
478

10 8
17 9
33 14
56 15
95 21
139 21
189 22

Table 4.1: Results of experiments with s; using a fixed frequency

threshold of 0.003 and a varying window width
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Frequency

threshold

Serial episodes

Count

Time (s)

Injective
parallel episodes

Count Time (s)

0.1
0.05
0.008
0.004
0.002
0.001

0

1
30
60
150
357

I
12
62

100
407
490

0 5

1 5
19 14
40 15
93 22
185 22

Table 4.2: Results of experiments with s; using a fixed window width

of 60 s and a varying frequency threshold
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Episode

size

Number of

episodes

Number of
candidate

episodes

Number of
frequent

episodes

109

287 287.0 30.1 11 %

82 369 1078.7 44.6 4%
2. 107 192.4 20.0 10 %
7 .109 17.4 10.1 58 %
. 1012 7.1 5.3 74 %
. 1014 4.7 2.9 61 %
1017 2.9 2.1 75 %
. 1019 2.1 1.7 80 %
. 1022 1.7 1.4 83 %
17.4 16.0 92 %

© 0O N OO G A W NN -

[ay
T

Table 4.3: Number of candidate and frequent serial episodes in s; with

frequency threshold 0.003 and averaged over window widths 10, 20,
40, 60, 80, 100, and 120 s
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‘Experiences In alarm correlation'

Useful in

finding long-term, rather frequently occurring dependencies,
creating an overview of a short-term alarm sequence, and
evaluating the consistency and correctness of alarm databases
discovered rules have been applied in alarm correlation

lots of rules are trivial

110
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Chapter 5: Minimal occurrences of
episodes
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5. Minimal occurrences of episodes.

an alternative approach to discovery of episodes
no windows

for each potentially interesting episode, find out the exact
occurrences of the episode

advantages: easy to modify time limits, several time limits for one

rule (“if A and B occur within 15 seconds, then C follows within
30 seconds” )

disadvantages: uses lots of space




\lgorithmic Methods of Data Mining, Fall 2003, Chapter 5: Minimal occurrences of episodes 112

Definitions'

e an episode « and an event sequence s

e interval [ts,t.) is a minimal occurrence of « in s, if
— « occurs in the window w = (w, t5,t.) on s

— « does not occur in any proper subwindow on w

e set of (intervals of) minimal occurrences of an episode «:

mo(c) = { [ts,te) | [ts,te) is @ minimal occurrence of a}.
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Example I

@

o I5; 8
EDF A BCEF C D BAD C EFC BEAECF

Figures 5.1: Episodes and 5.2: The example event sequence s
mo(vy) = {[35,39), [46,51),[57,62)}.
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Episodes rules, new version'

episode rule: B wini] = «[winy],
B and « are episodes such that 8 < «
winy and winy are integers

if episode 8 has a minimal occurrence at interval [tg,t.) with
te —ts < winy, then episode a occurs at interval [ts,t)) for some
t. such that t,, — t; < wing

(old version: B |w] = «[w], in windows containing [3)
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o formally: moyn, (8) = {[ts, te) € mo(B) | te —ts < wing}

e given « and an interval [us, u.), define occ(a, [us, ue)) = true if
and only if there exists a minimal occurrence [u’, u.) € mo(«a)
such that us < u’ and u., < u,

e The confidence of an episode rule 8 [wini] = «[wins] is now

{[ts, te) € Moyin, (B) | occ(a, [ts,ts + wing))}|
|mOWin1 (B)| .
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Example, cont. I

B3] = ~[4]

three minimal occurrences (35, 38), 46, 48), [57,60) of 3 of width
at most 3 in the denominator

Only [35,38), has an occurrence of a within width 4, so the
confidence is 1/3.

rule 5 [3] = ~ [5] the confidence is 1.
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Rule forms '

e temporal relationships can be complex




\lgorithmic Methods of Data Mining, Fall 2003, Chapter 5: Minimal occurrences of episodes 118

Frequency and support.

previously: frequency = fraction of windows containing the episode

no fixed window size
several minimal occurrences within a window

support of an episode: the number of minimal occurrences of an

episode, |mo(a)|
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Rule discovery task'

an event sequence s
a frequency threshold min_fr
a class £ of episodes

a set W of time bounds

find all frequent episode rules of the form g [wini] = «[wins]

B,a € £ and winy, wing € W.
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Chapter 6: Episode discovery process
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‘6. Episode discovery process'

The knowledge discovery process
KDD process of analyzing alarm sequences

Discovery and post-processing of large pattern collections

TASA, Telecommunication Alarm Sequence Analyzer
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‘The knowledge discovery process'

Goal: discovery of useful and interesting knowledge
1. Understanding the domain
. Collecting and cleaning data
. Discovery of patterns
. Presentation and analysis of results

5. Making onclusions and utilizing results

Pattern discovery is only a part of the KDD process (but the central
one)
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‘The knowledge discovery process'

Questions implied by the KDD process model:

e How to know what could be interesting?

How to ensure that correct and reliable discoveries can be made?
How to discover potentially interesting patterns?
How to make the results understandable for the user?

How to use the results?
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‘ Episode discovery process for alarm sequences'
Collecting and cleaning the data I

Can take a lot of time

Collection of alarms rather easy

Data cleaning? Inaccuracy of clocks

Missing data?

What are the event types?

— Alarm type? Network element? A combination of the two?

How to deal with background knowledge: network topology,
object hierarchies for network elements

“Alarm predicates”: properties of alarms
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Discovery of patterns'

1. Find all potentially interesting patterns
= lots of rules

Strategy:

. Allow users to explore the patterns iteratively and interactively

. All potentially interesting patterns
— Episodes: combination of alarms
Association rules: what are alarms like

Frequency and confidence thresholds

Background knowledge coded into alarm predicates in various

alternative ways

Network topology used to constrain patterns
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‘ Presentation and analysis of resuItsI

There can be lots of rules
e only a small part is really interesting

e — subjective
— hard to define in advance

— can depend on the case

e also expected regularities (or their absence) can be of interest

= Iteration IS necessary

= support for personal views is needed
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4531 rules

]

Rl

Pruning and ordering:

e alarm predicates on the left or right side

. )

Pruning

Ordering

5 rules

Alarmi —= Alarn?
Alarmi — Alarn8

Alarm2 — Alarnd
Alarm2 — Al arnb

Alarm8 — Alarn8

Structuring

—_—

e confidence, frequency, statistical significance

Structuring:

e clusters, hierarchies, etc.

126
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TASA: A KDD tool for alarm analysis

Helscape: Data Set demo.seq Home Page =
File Edit View Go Bookmarks Options

Hetscape: Unordered episodes from data set demo.ses

Directory File Edit View Go Bookmarks Options

Directory

Aftributes s Atrioute | | Grdered
l I P Associations]

Produced on wWed Jun 14 139:26:21 1335

&
o e = Unordered Episodes
arting time: .09, Original data | FHEs

Ending tine: .54 1 S10. A

Number of alarms:

Duration: dﬂh 4z 285 Whole Data Set
Frequence (avg) : n 00702245

Produced on Wed Tun 14 13:28:21 15835

Data is demo. seq
Start: 00:43:44-05.09. 94 End: 04:54:12-15.10.94 Alarms: 2E73E

Atiribute I ion  Alarm I ion Attribute

Template: Select Rules
H Aftrigutes m ‘ Alam s H -

Antecedent predicates:
Unordered Episodes Ordered Episod

Unorchered Qrdered Cansaoueht plrodicates:
Epizodes Episodes

Confidence thresholds: . [7
- - 0.1=10%) i I *
Hetscape: Alarm information from data set demo.seq

File Edit View Go Bookmarks Options Directory

maxiv

Frequency thresholds: [ =
0.1-10%) mmi max!

T Bignificance thresholds: ! maxi"
Attribute Urordered Crdered |ep Help E 0.1=10%) i =
assnciations]| | Episoes Episotss =

Mo Ordering — Options: laAnte IConse —IConf IFreq. —ISign.

Alarms

Produced onWed Tun 14 13:26:271 1335

wpply selections: | Appl | Clear selections : Reset|
Data is demo. seq
Start: 00:43:44-05. 09, 34 End: 04: 54:12—19. 10. 94 Alarms: 26796

are created automatically from arra ysrs"‘r@s*ults

Confidence reshold
20B4_30855 5 0.018% 2.6%104-05

2064 20836 0.0037%  2.6%10A-07
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TASA: Giving an overview of data

= Metscape: Attribute descriplions from data set demo.seq

Distances between occurrences of alarm 1234 5678
File Edit View Go Bookmarks Options Direclory

0- 10 min, bar = 1 s, Total count = 138

E ﬁ | Altriblte H Unordered E Qrdered H € H
Atribut Hel
S | Associalions| | Episodes Episodes 5 oE

50 100 150 200 250 300

Alarm 1234_5678 Description
Produced on Wed Tun 14 19:26:21 1335

Data is demo. seq
Start: 00:49:44-05.09. 34 End: 04:54:12-19.10. 94 Alarmns: 26736

alarm text(s):
FATLURE_IN_CHANNEL_ACTIVATION_OR_RESTORATION
Count: 138
Percentage: 0.52%
Frequency: 0.00071
First time: 13.09.94-08:46:09
Last time:  18.10.94-00:10:59
Active time: 28d-13h: 24m: 505
1

300 350 450 500

300-600s

ﬁ Aftriblte Qrdered
Ah;\butes A Associations) o Ep Epigodes
S-I- N T 1

Lrcdal 11 vlhiTiatu [N

1 cE
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episode

TASA: Rule presentation

— Hetscape: Unordered episodes from data set demo.seq

File Edit View Go Bookmarks Options Direclory

Attributes Almim s e
Associations)

Unordered episodes from data set del

File Edit View Go Bookmarks Options Directory

Unordered Episodes

Produced on Wed JTun 14 19:28:21 1395

Antecedent Consequent

Conf

Frequency

1234 44545 1234 _6EBSE

1234 44545 1234 11085

1234 44545 B7 33 44545

Data is demo.seq
Start: 00:49:44-05.09.94 End: 04:54:12-19.10. 34 Alarms: 26796

Template: Select Rules

Antecedent predicates: | 1239

Consequent predicates: I 447114

Confidence thresholds

(0.1=10%) i IR e | |

e ney thresholds:

51%%) min | 0.00003 mex |
Significance thresholds: Ii I—
OI10%) min | 0.94 mex |f

Descending Options: lante LConse [T Cont. [ Freq.

Apply selections: | Apply| Clear selections : Reset|

and assoeiatienrrHes, Views,

Confidence threshold

h

1234 44545 E7 39 66656

1234 44545 BY 89 11095

1234 44545 3245 44545

1234 44545 3245 66656

1234 44545 3245 11085

1234 31608 B7 83 31608

1234 31608 3245 31608

1234 686586 1234 44545

1234 _BE6656 1234 11085

1234 66656 BE789_44545

1234 66656 B7 339 66656

1234 GEB656 B783 11095

1234 BE56586 3245 44545

1234 686586 3245 66858

1234 _B6656 3245 11095

1234 11085 1234 44545

1234 11085 1234 66656

istograms:

1234 11085 B7 89 BEE5E

.59
B,
.00

59

.58

72

35

34

77

59

59

i EE

Q0 0 QO o 0 O 9 O O

.59

slv]
.58
L35
7z
34
96
96
L96

(=D = = I - I = I~ = = ]

98

4]

Q
Q
0
o]
Q
Q
[+]
Q
Q
Q
Q
o
s}
Q
Q
Q
Q
Q
Q
Q
Q

Qoo0157

LO000152
LO000262
LO000157
L00D0152

eleleloy il

Qo009 4

elelslslozte]
LO000367
LO000330
LO0D0157

Qooo152

Qo0o157

LO000262
LQ000152
elalsTalolol
L0001 89

QOOo0E9

0000152
LO000152
L0000152
L0000152

.93
.88
.99
.89
.89
.99
.97

.00

.99
.83
.00
.00

T

5531

file #fsdhome/group/nTs/ges. seq_slarms/ 1 234_BBBSE.html

—_—
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TASA: Views with templates.

Template:  Select Rules _||

Antecedent predicates:

Consequent predicates: | 1234 3245

Confidence thresholds: | o sd
(0.1=10%} ] R

Frequency thresholds:
(0.1=10%"

e select/prune pIfESHS thelP' Contets:

= iteration!

e criteria: left-hand/right-hand side of the rule, thresholds
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Chapter 7: Generalized framework
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7. Generalized framework.

given a set of patterns, a selection criterion, and a database

find those patterns that satisfy the criterion in the database

what has to be required from the patterns
a general levelwise algorithm

analysis in Chapter 8
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Relational databases'

a relation schema R is a set {A1,..., A, } of attributes.

each attribute A; has a domain Dom(A;)

a row over a R is a sequence {(aq,...,a.) such that
a1 € Dom(A;) foralli=1,...,m

the ith value of ¢ is denoted by t[A;]
a relation over R is a set of rows over R

a relational database is a set of relations over a set of relation
schema (the database schema)
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Discovery task I

P is a set of patterns

q is a selection criterion, i.e., a predicate
q: P x{r |ris a database} — {true, false}.

@ is selected if q(p,r) is true
frequent as a synonym for “selected” .

give a database r, the theory T (P,r,q) of r with respect to P
and ¢ is T(P,r,q) = {p € P | g(p,r) is true}.
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Example I

finding all frequent item sets
e a set R a binary database r over R, a frequency threshold min_fr
e P={X | X CR},

e g(p,r) = true if and only if fr(y,r) > min_fr
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‘ Selection predicate I

no semantics given for the patterns

selection criterion takes care of that

q(p,r) is true” can mean different things:

@ occurs often enough in r
@ is true or almost true in r
¢ defines, in some way, an interesting property or subgroup of r

determining the theory of r is not tractable for arbitrary sets P
and predicates ¢
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‘ Methodological point'

e find all patterns that are selected by a relatively simple
criterion—such as exceeding a frequency threshold—in order to
efficiently identify a space of potentially interesting patterns

e other criteria can then be used for further pruning and processing

of the patterns

e e.g., association rules or episode rules
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Specialization relation I

P be a set of patterns, g a selection criterion over P

< a partial order on the patterns in P

if for all databases r and patterns ¢, 6 € P we have that ¢g(p, r)

and 0 < ¢ imply ¢(0,r),
then < is a specialization relation on P with respect to ¢

0 < ¢, then ¢ is said to be more special than 6 and 6 to be more
general than ¢

0 < ¢: 0 <¢pandnot <80

the set inclusion relation C is a specialization relation for frequent
sets
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Generic levelwise aIgorithmI

e the level of a pattern ¢ in P, denoted level(y), is 1 if there is no 6
in P for which 6 < .

e otherwise level(y) is 1 4+ L, where L is the maximum level of
patterns 6 in P for which 8 < ¢

e the collection of frequent patterns of level [ is denoted by
Ti(P,r,q) = {p € T(P,r,q) | level(p) = 1}.
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Algorithm 7.6

Input: A database schema R, a database r over R, a finite set P of
patterns, a computable selection criterion g over P, and a computable
specialization relation < on P.

Output: The set 7(P,r, q) of all frequent patterns.

Method:
compute C1 := {p € P | level(p) = 1};

[.=1;
while C; # () do
// Database pass:
compute 7i(P,r,q) := {p € Ci | a(,r)};
l:=1+1;
// Candidate generation:
compute C; := {¢ € P | level(p) =l and 0 € Tievei(o)(P, r, q) for all
6 € P such that 6 < ¢};

1.
2.
3.
4.
5.
6.
7.
8.

for all [ do output 7;(P,r,q);
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Theorem 7.7 Algorithm 7.6 works correctly.




