Recognizing episodes in sequences

- first problem: given a sequence and an episode, find out whether the episode occurs in the sequence
- finding the number of windows containing an occurrence of the episode can be reduced to this
- successive windows have a lot in common
- how to use this?
- an incremental algorithm

Parallel episodes

- for each candidate α maintain a counter $\alpha.event_count$: how many events of α are present in the window
- When $\alpha.event_count$ becomes equal to $|\alpha|$, indicating that α is entirely included in the window
 - save the starting time of the window in α .inwindow
- when $\alpha.event_count$ decreases again, increase the field $\alpha.freq_count$ by the number of windows where α remained entirely in the window

Algorithm

Input: A collection C of parallel episodes, an event sequence $\mathbf{s} = (s, T_s, T_e)$, a window width win, and a frequency threshold min_fr .

Output: The episodes of C that are frequent in s with respect to win and min_fr.

```
Method:
     // Initialization:
      for each \alpha in \mathcal{C} do
3.
           for each A in \alpha do
4.
                A.count := 0;
5.
                for i := 1 to |\alpha| do contains(A, i) := \emptyset;
6.
      for each \alpha in \mathcal{C} do
7.
           for each A in \alpha do
8.
                a := number of events of type A in \alpha;
9.
                contains(A, a) := contains(A, a) \cup \{\alpha\};
10.
           \alpha.event_count := 0;
           \alpha.freq_count := 0;
11.
```

```
Algorithm Method: 1. // Recognition:
     for start := T_s - win + 1 to T_e do
3.
          // Bring in new events to the window:
4.
          for all events (A, t) in s such that t = start + win - 1 do
5.
               A.count := A.count + 1;
               for each \alpha \in contains(A, A.count) do
6.
7.
                    \alpha.event\_count := \alpha.event\_count + A.count;
                    if \alpha.event_count = |\alpha| then \alpha.inwindow := start;
8.
          // Drop out old events from the window:
9.
          for all events (A, t) in s such that t = start - 1 do
10.
               for each \alpha \in contains(A, A.count) do
11.
12.
                   if \alpha.event_count = |\alpha| then
13.
                        \alpha.freq_count := \alpha.freq_count - \alpha.inwindow + start;
14.
                   \alpha.event_count := \alpha.event_count - A.count;
15.
               A.count := A.count - 1;
16.
     // Output:
17.
     for all episodes \alpha in \mathcal{C} do
          if \alpha.freq\_count/(T_e - T_s + win - 1) \ge min\_fr then output \alpha;
18.
```

Theorem 1 Algorithm 102 works correctly.

Proof We consider the following two invariants. (1) For each event type A that occurs in any episode, the variable A.count correctly contains the number of events of type A in the current window. (2) For each episode α , the counter α event_count equals $|\alpha|$ exactly when α occurs in the current window.

Complexity

Assume that exactly one event takes place every time unit.

Assume candidate episodes are all of size l, and let n be the length of the sequence.

Theorem 2 The time complexity of Algorithm 102 is $\mathcal{O}((n+l^2)|\mathcal{C}|)$.

Proof Initialization takes time $O(|C| l^2)$.

How many accesses to α event_count on lines 7 and 14.

In the recognition phase there are $\mathcal{O}(n)$ shifts of the window. In each shift, one new event comes into the window, and one old event leaves the window. Thus, for any episode α , α .event_count is accessed at most twice during one shift.

The cost of the recognition phase is thus $\mathcal{O}(n|\mathcal{C}|)$.

Serial episodes

- use state automata that accept the candidate episodes
- example: episode A B A B

General episodes

different alternatives

			Injective	
Window	Serial episodes		paralle	episodes
width (s)	Count	Time (s)	Count	Time (s)
10	16	31	10	8
20	31	63	17	9
40	57	117	33	14
60	87	186	56	15
80	145	271	95	21
100	245	372	139	21
120	359	478	189	22

Table 4.1: Results of experiments with \mathbf{s}_1 using a fixed frequency threshold of 0.003 and a varying window width

			Injective	
Frequency	Serial episodes		paralle	l episodes
threshold	Count	Time (s)	Count	Time (s)
0.1	0	7	0	5
0.05	1	12	1	5
0.008	30	62	19	14
0.004	60	100	40	15
0.002	150	407	93	22
0.001	357	490	185	22

Table 4.2: Results of experiments with \mathbf{s}_1 using a fixed window width of 60 s and a varying frequency threshold

Episode	Number of	Number of	Number of	
size	episodes	candidate	frequent	Match
		episodes	episodes	
1	287	287.0	30.1	11 %
2	82 369	1 078.7	44.6	4 %
3	$2\cdot 10^7$	192.4	20.0	10 %
4	$7\cdot 10^9$	17.4	10.1	58 %
5	$2 \cdot 10^{12}$	7.1	5.3	74 %
6	$6 \cdot 10^{14}$	4.7	2.9	61 %
7	$2 \cdot 10^{17}$	2.9	2.1	75 %
8	$5 \cdot 10^{19}$	2.1	1.7	80 %
9	$1 \cdot 10^{22}$	1.7	1.4	83 %
10-		17.4	16.0	92 %

Table 4.3: Number of candidate and frequent serial episodes in s_1 with frequency threshold 0.003 and averaged over window widths 10, 20, 40, 60, 80, 100, and 120 s

Experiences in alarm correlation

Useful in

- finding long-term, rather frequently occurring dependencies,
- creating an overview of a short-term alarm sequence, and
- evaluating the consistency and correctness of alarm databases
- discovered rules have been applied in alarm correlation
- lots of rules are trivial

Algorithmic Methods of Data Mining, Fall 2003, Chapter 5: Minimal occurrences of epi

Chapter 5: Minimal occurrences of episodes

5. Minimal occurrences of episodes

- an alternative approach to discovery of episodes
- no windows
- for each potentially interesting episode, find out the exact occurrences of the episode
- advantages: easy to modify time limits, several time limits for one rule ("if A and B occur within 15 seconds, then C follows within 30 seconds")
- disadvantages: uses lots of space

Definitions

- ullet an episode lpha and an event sequence ${f s}$
- interval $[t_s, t_e]$ is a minimal occurrence of α in s, if
 - α occurs in the window $\mathbf{w}=(w,t_s,t_e)$ on \mathbf{s}
 - $-\alpha$ does not occur in any proper subwindow on ${\bf w}$
- set of (intervals of) minimal occurrences of an episode α : $mo(\alpha) = \{ [t_s, t_e) \mid [t_s, t_e) \text{ is a minimal occurrence of } \alpha \}.$

Figures 5.1: Episodes and 5.2: The example event sequence s

$$\textit{mo}(\beta) = \{[35, 38), [46, 48), [47, 58), [57, 60)\}.$$

$$mo(\gamma) = \{[35, 39), [46, 51), [57, 62)\}.$$

Episodes rules, new version

- episode rule: $\beta[win_1] \Rightarrow \alpha[win_2]$,
- β and α are episodes such that $\beta \leq \alpha$
- win₁ and win₂ are integers
- if episode β has a minimal occurrence at interval $[t_s,t_e)$ with $t_e-t_s \leq win_1$, then episode α occurs at interval $[t_s,t'_e)$ for some t'_e such that $t'_e-t_s \leq win_2$
- (old version: $\beta[w] \Rightarrow \alpha[w]$, in windows containing β)

- formally: $mo_{win_1}(\beta) = \{[t_s, t_e) \in mo(\beta) \mid t_e t_s \leq win_1\}$
- given α and an interval $[u_s,u_e)$, define $occ(\alpha,[u_s,u_e))=$ true if and only if there exists a minimal occurrence $[u'_s,u'_e)\in mo(\alpha)$ such that $u_s\leq u'_s$ and $u'_e\leq u_e$
- The confidence of an episode rule $\beta[win_1] \Rightarrow \alpha[win_2]$ is now

$$\frac{\left|\left\{\left[t_{s},t_{e}\right)\in\mathit{mo}_{\mathit{win}_{1}}(\beta)\mid\mathit{occ}(\alpha,\left[t_{s},t_{s}+\mathit{win}_{2}\right)\right)\right\}\right|}{\left|\mathit{mo}_{\mathit{win}_{1}}(\beta)\right|}.$$

Example, cont.

- $\beta[3] \Rightarrow \gamma[4]$
- three minimal occurrences [35,38), [46,48), [57,60) of β of width at most 3 in the denominator
- Only [35,38), has an occurrence of α within width 4, so the confidence is 1/3.
- rule $\beta[3] \Rightarrow \gamma[5]$ the confidence is 1.

Rule forms

• temporal relationships can be complex

Frequency and support

- previously: frequency = fraction of windows containing the episode
- no fixed window size
- several minimal occurrences within a window
- ullet support of an episode: the number of minimal occurrences of an episode, |mo(lpha)|

Rule discovery task

- an event sequence s
- a frequency threshold *min_fr*
- ullet a class ${\cal E}$ of episodes
- a set W of time bounds
- find all frequent episode rules of the form $\beta[win_1] \Rightarrow \alpha[win_2]$
- $\beta, \alpha \in \mathcal{E}$ and $win_1, win_2 \in W$.

Algorithmic Methods of Data Mining, Fall 2003, Chapter 6: Episode discovery process7

Chapter 6: Episode discovery process

- 6. Episode discovery process
- The knowledge discovery process
- KDD process of analyzing alarm sequences
- Discovery and post-processing of large pattern collections
- TASA, Telecommunication Alarm Sequence Analyzer

The knowledge discovery process

Goal: discovery of useful and interesting knowledge

- 1. Understanding the domain
- 2. Collecting and cleaning data
- 3. Discovery of patterns
- 4. Presentation and analysis of results
- 5. Making onclusions and utilizing results

Pattern discovery is only a part of the KDD process (but the central one)

The knowledge discovery process

Questions implied by the KDD process model:

- How to know what could be interesting?
- How to ensure that correct and reliable discoveries can be made?
- How to discover potentially interesting patterns?
- How to make the results understandable for the user?
- How to use the results?

Episode discovery process for alarm sequences

Collecting and cleaning the data

- Can take a lot of time
- Collection of alarms rather easy
- Data cleaning? Inaccuracy of clocks
- Missing data?
- What are the event types?
 - Alarm type? Network element? A combination of the two?
- How to deal with background knowledge: network topology, object hierarchies for network elements
- "Alarm predicates": properties of alarms

Discovery of patterns

Strategy:

- 1. Find *all* potentially interesting patterns
 - \Rightarrow lots of rules
- 2. Allow users to explore the patterns iteratively and interactively
- 1. All potentially interesting patterns
 - Episodes: combination of alarms
 - Association rules: what are alarms like
 - Frequency and confidence thresholds
 - Background knowledge coded into alarm predicates in various alternative ways
 - Network topology used to constrain patterns

Presentation and analysis of results

There can be lots of rules

- only a small part is really interesting
- subjective
 - hard to define in advance
 - can depend on the case
- also expected regularities (or their absence) can be of interest
- ⇒ iteration is necessary
- \Rightarrow support for personal views is needed

Pruning and ordering:

- alarm predicates on the left or right side
- confidence, frequency, statistical significance

Structuring:

• clusters, hierarchies, etc.

TASA: A KDD tool for alarm analysis

TASA: Giving an overview of data

TASA: Rule presentation

• criteria: left-hand/right-hand side of the rule, thresholds

Algorithmic Methods of Data Mining, Fall 2003, Chapter 7: Generalized framework8

Chapter 7: Generalized framework

7. Generalized framework

- given a set of patterns, a selection criterion, and a database
- find those patterns that satisfy the criterion in the database
- what has to be required from the patterns
- a general levelwise algorithm
- analysis in Chapter 8

Relational databases

- a relation schema R is a set $\{A_1, \ldots, A_m\}$ of attributes.
- ullet each attribute A_i has a domain $Dom(A_i)$
- ullet a *row* over a R is a sequence $\langle a_1,\ldots,a_m
 angle$ such that $a_1 \in Dom(A_i)$ for all $i=1,\ldots,m$
- the *i*th value of t is denoted by $t[A_i]$
- ullet a *relation* over R is a set of rows over R
- a *relational database* is a set of relations over a set of relation schema (the *database schema*)

Discovery task

- ullet \mathcal{P} is a set of *patterns*
- q is a selection criterion, i.e., a predicate $q: \mathcal{P} \times \{\mathbf{r} \mid \mathbf{r} \text{ is a database}\} \rightarrow \{\text{true, false}\}.$
- ullet φ is *selected* if $q(\varphi, \mathbf{r})$ is true
- frequent as a synonym for "selected".
- give a database \mathbf{r} , the theory $\mathcal{T}(\mathcal{P}, \mathbf{r}, q)$ of \mathbf{r} with respect to \mathcal{P} and q is $\mathcal{T}(\mathcal{P}, \mathbf{r}, q) = \{\varphi \in \mathcal{P} \mid q(\varphi, \mathbf{r}) \text{ is true}\}.$

Example

finding all frequent item sets

- ullet a set R a binary database r over R, a frequency threshold min_fr
- $\bullet \ \mathcal{P} = \{X \mid X \subseteq R\},\$
- $\bullet \ q(\varphi,r) = {\rm true} \ {\rm if} \ {\rm and} \ {\rm only} \ {\rm if} \ {\it fr}(\varphi,r) \geq {\it min_fr}$

Selection predicate

- no semantics given for the patterns
- selection criterion takes care of that
- " $q(\varphi, \mathbf{r})$ is true" can mean different things:
- ullet φ occurs often enough in ${f r}$
- $ullet \varphi$ is true or almost true in ${f r}$
- ullet arphi defines, in some way, an interesting property or subgroup of ${f r}$
- ullet determining the theory of ${f r}$ is not tractable for arbitrary sets ${\cal P}$ and predicates q

Methodological point

- find all patterns that are selected by a relatively simple criterion—such as exceeding a frequency threshold—in order to efficiently identify a space of potentially interesting patterns
- other criteria can then be used for further pruning and processing of the patterns
- e.g., association rules or episode rules

Specialization relation

- ullet $\mathcal P$ be a set of patterns, q a selection criterion over $\mathcal P$
- ullet \preceq a partial order on the patterns in ${\cal P}$
- if for all databases ${\bf r}$ and patterns $\varphi, \theta \in \mathcal{P}$ we have that $q(\varphi, {\bf r})$ and $\theta \leq \varphi$ imply $q(\theta, {\bf r})$,
- ullet then \preceq is a specialization relation on ${\mathcal P}$ with respect to q
- $\theta \leq \varphi$, then φ is said to be *more special* than θ and θ to be *more general* than φ
- $\theta \prec \varphi$: $\theta \preceq \varphi$ and not $\varphi \preceq \theta$
- ullet the set inclusion relation \subseteq is a specialization relation for frequent sets

Generic levelwise algorithm

- the *level* of a pattern φ in \mathcal{P} , denoted $level(\varphi)$, is 1 if there is no θ in \mathcal{P} for which $\theta \prec \varphi$.
- otherwise $level(\varphi)$ is 1+L, where L is the maximum level of patterns θ in $\mathcal P$ for which $\theta \prec \varphi$
- the collection of frequent patterns of level l is denoted by $\mathcal{T}_l(\mathcal{P}, \mathbf{r}, q) = \{ \varphi \in \mathcal{T}(\mathcal{P}, \mathbf{r}, q) \mid \mathit{level}(\varphi) = l \}.$

Algorithm 7.6

Input: A database schema \mathbf{R} , a database \mathbf{r} over \mathbf{R} , a finite set \mathcal{P} of patterns, a computable selection criterion q over \mathcal{P} , and a computable specialization relation \prec on \mathcal{P} .

Output: The set $\mathcal{T}(\mathcal{P}, \mathbf{r}, q)$ of all frequent patterns.

```
Method:
```

- 1. compute $\mathcal{C}_1:=\{arphi\in\mathcal{P}\mid \textit{level}(arphi)=1\};$
- 2. l := 1:
- 3. while $C_l \neq \emptyset$ do
- 4. // Database pass:
- 5. compute $\mathcal{T}_l(\mathcal{P}, \mathbf{r}, q) := \{ \varphi \in \mathcal{C}_l \mid q(\varphi, \mathbf{r}) \};$
- 6. l := l + 1;
- 7. // Candidate generation:
- 8. compute $C_l := \{ \varphi \in \mathcal{P} \mid \textit{level}(\varphi) = l \text{ and } \theta \in \mathcal{T}_{\textit{level}(\theta)}(\mathcal{P}, \mathbf{r}, q) \text{ for all } \theta \in \mathcal{P} \text{ such that } \theta \prec \varphi \};$
- 9. **for** all l **do** output $\mathcal{T}_l(\mathcal{P}, \mathbf{r}, q)$;

Theorem 7.7 Algorithm 7.6 works correctly.	