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Sampling for finding association ruIesI

two causes for complexity

lots of attributes

lots of rows

potentially exponential in the number of attributes
linear in the number of rows

too many rows: take a sample from them

in detail later
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Chapter 3: Alarm correlation
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Part |l. Episodes in sequences'

Chapter 3: Alarm correlation

Chapter 4: Frequent episodes

Chapter 5: Minimal occurrences of episodes

Chapter 6: Episode discovery process
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3. Alarm correlation: networks and alarms'

network elements: switches, base stations, transmission

equipment, etc.

10-1000 elements in a network

an alarm: a message generated by a network element

1234 EL1 BTS 940926 082623 A1 Channel missing

hundreds of different alarm types
200 — 10000 alarms a day

each contains only local information
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‘Characteristics of the alarm rowI

e a variety of situations

e bursts of alarms

e hardware and software change fast
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Alarm correlation '

“correlating” alarms: combining the fragmented information contained

in the alarm sequence and interpreting the whole flow of alarms
e removing redundant alarms
o filtering out low-priority alarms
e replacing alarms by something else

e systems exist
— knowledge base (correlation rules) constructed manually
— look at the alarms occurring in a given time window

— apply actions given in the matching correlation rules
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Problem '

e how to obtain the information needed for the preparation of an
alarm correlation system

e more generally: how to obtain insight into the behavior of the

network (alarms)
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‘ Solutions '

how to analyze a flow of alarms?

lots of possibilities: hazard models, neural networks, rule-based

representations
comprehensibility of the discovered knowledge
simple rule-based representations

“if certain alarms occur within a time window, then a certain

alarm will also occur”
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Episodes'
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Figure 3.2: Episodes
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‘ Basic solution '

look for repeated occurrences of episodes in the alarm flow

sequences

occurrence: alarms of the specified type occur in the specified
order
why this form?

comprehensible

“standard” for correlation systems

represent simple causal relationships

insensitive to inaccurate clocks

allows analysis of merged, unrelated sequences
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‘4. Frequent episodes'

e The framework
e Algorithms

e Experiments
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Example sequence.

EDF A BCEF C D BAD C EFC BEAECF D

time
Figure 3.1: A sequence of alarms

Observations:

e whenever E occurs, F occurs soon

e whenever A and B occur (in either order), C occurs soon
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a set R of event types

an event is a pair (A,t)

A € R is an event type

t is an integer, the (occurrence) time of the event
event sequence s on R: a triple (s,Ts,T:)

Ts < Te are integer (starting and ending time)

s = ((A1,t1), (Aa,t2), ..., (An,tn))

A;e Rand T, <t; <T.forallzi=1,...,n

tiétfH_l forallizl,...,n—l
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Example I

EDF A BCEF C D BAD C EFC BEAECF
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Windows'

event sequence s = (s,75,T,)
a window on it: w = (w, ts,te)
ts < Teate > Ts

w consists of those pairs (A, t) from s where t; <t < t.

width(w) = t. — ts: the width of the window w

W(s, win): all windows w on s such that width(w) = win

first and last windows!
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Episodes.

an episode « is a triple (V, <, g)

V is a set of nodes
< is a partial order on V'
g : V — R is a mapping associating each node with an event type

intuition: the events in g(V') have to occur in the order described
by <

size of a, denoted |a/, is |V

parallel episode: the partial order < is trivial
serial episode: < is a total order

injective: no event type occurs twice in the episode
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Example I

E—®

Figure 4.2: An episode

the set V', the mapping g
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‘ Example, subepisode'

@
p

Figure 4.3: A subepisode and episode
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SubepSodesI

B= V' < g is a subepisode of a = (V, <, g), 8 =< ¢, if:

there exists an injective mapping f : V' — V such that
e g'(v) =g(f(v)) forall v eV’
e for all v,w € V' with v <'w also f(v) < f(w)

An episode « is a superepisode of 3 if and only if 3 < «

B<aif<aanda X f
In the example: 5 <~
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‘Occurrences of episodes'

a = (V,<,g) occurs in an event sequence
S = (<(A1, tl), (Az, tz), Ceey (An, tn)> , s, Te), if there exists an
injective mapping h: V — {1,...,n} from nodes to events, such that

® g(x) = Ap(y) forallz € V

o forall z,y € V with z # y and x <y we have t;) < th( (or
h(z) < h(y))

(w, 35,40) on the example sequence: events of types A, B, C, and E

both 3 and v occur
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Frequency of occurrence'

the frequency of an episode « in s is

{w € W(s, win) | a occurs in w}

[W(s, win)| |

fr(a, s, win) =

I.e., the fraction of windows on s in which « occurs.
a frequency threshold min_fr
« is frequent if fr(a, s, win) > min_fr

F (s, win, min_fr): collection of frequent episodes in s with respect
to win and min_fr

size = I: Fi(s, win, min_fr).
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‘ Pattern discovery task'

given an event sequence s, a set £ of episodes, a window width win,
and a frequency threshold min_fr, find F (s, win, min_fr)
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‘ Algorithms I
Algorithm 4.13

Input: A set R of event types, an event sequence s over R, a set £ of

episodes, a window width win, and a frequency threshold min_fr.

Output: The collection F(s, win, min_fr) of frequent episodes.

Method:
compute C; :={a €€ \ o] =1};

[.=1;
while C; # 0 do
// Database pass (Algorithms 4.19 and 4.21):
compute Fi(s, win, min_fr) := {a € C; | fr(c, s, win) > min_fr};
l:=1+1;
// Candidate generation (Algorithm 4.14):
compute C; :={a € € | |a| =1, and 3 € Fig((s, win, min_fr) for all
B € € such that § < a and |B| < 1};
for all [ do output Fi(s, win, min_fr);

1.
2.
3.
4.
5.
6.
1.
8.
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Basic lemma, once again'

Lemma 4.12 If an episode « is frequent in an event sequence s, then
all subepisodes 8 < « are frequent. []
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Parallel, serial, injective episodes'

parallel episode: the partial order < is trivial

(= frequent sets)

serial episode: < is a total order
(= frequent subsequence)

injective: no event type occurs twice in the episode (= proper
sets, not multi sets)

useful cases: (serial or parallel) [injective] episodes

— reduce redundancy in generated episodes
— keep episodes comprehensible

— simpler to implement
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‘Generation of candidate episodes'

parallel episodes, serial episodes (injective or non-injective)

same idea as for association rules

a candidate episode has to be a combination of two episodes of

smaller size

very small variations to the candidate generation procedure
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‘ Recognizing episodes in sequences'

first problem: given a sequence and an episode, find out whether
the episode occurs in the sequence

finding the number of windows containing an occurrence of the

episode can be reduced to this
successive windows have a lot in common
how to use this?

an incremental algorithm




