Chapter 2. Association rules

- 1. Problem formulation
- 2. Rules from frequent sets
- 3. Finding frequent sets
- 4. Experimental results
- 5. Related issues
- 6. Rule selection and presentation
- 7. Theoretical results

Example

• Customer 1: mustard, sausage, beer, chips

Customer 2: sausage, ketchup

Customer 3: beer, chips, cigarettes

. . .

Customer 236513: coke, chips

- beer \Rightarrow chips
 - accuracy (conditional probability): 0.87
 - frequency (support): 0.34

Problem formulation: data

- ullet a set R of items
- ullet a 0/1 relation r over R is a collection (or multiset) of subsets of R
- the elements of r are called rows
- ullet the number of rows in r is denoted by |r|
- ullet the *size* of r is denoted by $||r|| = \sum_{t \in r} |t|$

Row ID	Row
t_1	A,B,C,D,G
t_2	$\{A,B,E,F\}$
t_3	$\{B,I,K\}$
t_4	$\{A,B,H\}$
t_5	$\{E,G,J\}$

Figure 1: An example 0/1 relation r over the set $R = \{A, \ldots, K\}$.

Notation

- Sometime we write just ABC for $\{A,B,C\}$ etc.
- Attributes = variables
- An observation in the data is
 - A set of attributes, or
 - a row of 0s and 1s

Patterns: sets of items

- r a 0/1 relation over R
- \bullet $X \subseteq R$
- X matches a row $t \in r$, if $X \subseteq t$
- the set of rows in r matched by X is denoted by $\mathcal{M}(X,r)$, i.e., $\mathcal{M}(X,r)=\{t\in r\mid X\subseteq t\}.$
- the (relative) frequency of X in r, denoted by fr(X, r), is

$$\frac{|\mathcal{M}(X,r)|}{|r|}$$

• Given a frequency threshold $min_fr \in [0,1]$, the set X is frequent, if $fr(X,r) \geq min_fr$.

Example

Row ID	Α	В	С	D	Ε	F	G	Н		J	K
t_1	1	1	1	1	0	0	1	0	0	0	0
t_2	1	1	0	0	1	1	0	0	0	0	0
t_3	0	1	0	0	0	0	0	0	1	0	1
t_4	1	1	0	0	0	0	0	1	0	0	0
t_5	0	0	0	0	1	0	1	0	0	1	0

a 0/1 relation over the schema $\{A,\ldots,K\}$

•
$$fr({A,B},r) = 3/5 = 0.6$$

•
$$\mathcal{M}(\{A,B\},r) = \{t_1,t_2,t_4\}$$

Frequent sets

- given R (a set), r (a 0/1 relation over R), and min_{fr} (a frequency threshold)
- the collection of frequent sets $\mathcal{F}(r, min_fr)$

$$\mathcal{F}(r, min_fr) = \{X \subseteq R \mid fr(X, r) \ge min_fr\},$$

• In the example relation:

$$\mathcal{F}(r, 0.3) = \{\emptyset, \{A\}, \{B\}, \{E\}, \{G\}, \{A, B\}\}\}\$$

Association rules

- Let R be a set, r a 0/1 relation over R, and $X,Y\subseteq R$ sets of items
- $X \Rightarrow Y$ is an association rule over r.
- The *accuracy* of $X\Rightarrow Y$ in r, denoted by $conf(X\Rightarrow Y,r)$, is $\frac{|\mathcal{M}(X\cup Y,r)|}{|\mathcal{M}(X,r)|}$.
 - The accuracy $conf(X \Rightarrow Y, r)$ is the conditional probability that a row in r matches Y given that it matches X

Association rules II

- The frequency $fr(X \Rightarrow Y, r)$ of $X \Rightarrow Y$ in r is $fr(X \cup Y, r)$.
 - frequency is also called support
- a frequency threshold min_fr and a accuracy threshold min_conf
- $X \Rightarrow Y$ holds in r if and only if $fr(X \Rightarrow Y, r) \geq min_fr$ and $conf(X \Rightarrow Y, r) \geq min_conf$.

Discovery task

- given R, r, min_fr, and min_conf
- find all association rules $X \Rightarrow Y$ that hold in r with respect to min_fr and min_conf
- X and Y are disjoint and non-empty
- $min_fr = 0.3$, $min_conf = 0.9$
- The only association rule with disjoint and non-empty left and right-hand sides that holds in the database is $\{A\} \Rightarrow \{B\}$
- frequency 0.6, accuracy 1
- when is the task feasible? interesting?
- note: asymmetry between 0 and 1

How to find association rules

- ullet Find all frequent item sets $X\subseteq R$ and their frequencies.
- Then test separately for all $Y\subset X$ with $Y\neq\emptyset$ whether the rule $X\setminus Y\Rightarrow Y$ holds with sufficient accuracy.
- Latter task is easy.
- exercise: rule discovery and finding frequent sets are equivalent problems

Rule generation

Algorithm

Input: A set R, a 0/1 relation r over R, a frequency threshold min_fr , and a accuracy threshold min_conf .

Output: The association rules that hold in r with respect to min_fr and min_conf , and their frequencies and accuracies.

Method:

- 1. // Find frequent sets (Algorithm 52):
- 2. compute $\mathcal{F}(r, min_fr) := \{X \subseteq R \mid fr(X, r) \geq min_fr\};$
- 3. // Generate rules:
- 4. for all $X \in \mathcal{F}(r, min_fr)$ do
- 5. **for all** $Y \subset X$ with $Y \neq \emptyset$ **do**
- 6. if $fr(X)/fr(X \setminus Y) \ge min_conf$ then
- 7. output the rule $X \setminus Y \Rightarrow Y$, fr(X), and $fr(X)/fr(X \setminus Y)$;

Correctness and running time

- the algorithm is correct
- running time?

Finding frequent sets: reasoning behind Apriori

- trivial solution: look at all subsets of R
- not feasible
- iterative approach
- first frequent sets of size 1, then of size 2, etc.
- ullet a collection \mathcal{C}_l of candidate sets of size l
- ullet then obtain the collection $\mathcal{F}_l(r)$ of frequent sets by computing the frequencies of the candidates from the database
- minimize the number of candidates?

- ullet monotonicity: assume $Y\subseteq X$
- then $\mathcal{M}(Y) \supseteq \mathcal{M}(X)$, and $\mathit{fr}(Y) \geq \mathit{fr}(X)$
- ullet if X is frequent then Y is also frequent
- Let $X \subseteq R$ be a set. If any of the proper subsets $Y \subset X$ is not frequent then (1) X is not frequent and (2) there is a non-frequent subset $Z \subset X$ of size |X| 1.

Example

$$\mathcal{F}_2(r) = \{ \{A, B\}, \{A, C\}, \{A, E\}, \{A, F\}, \{B, C\}, \{B, E\}, \{C, G\} \},\$$

- then $\{A,B,C\}$ and $\{A,B,E\}$ are the only possible members of $\mathcal{F}_3(r)$,
- levelwise search: generate and test
- candidate collection:

$$\mathcal{C}(\mathcal{F}_l(r)) = \{X \subseteq R | X| = l+1 \text{ and } Y \in \mathcal{F}_l(r) \text{ for all } Y \subseteq X, |Y| = l \}$$

Apriori algorithm for frequent sets

Algorithm

Input: A set R, a 0/1 relation r over R, and a frequency threshold min_{r} .

Output: The collection $\mathcal{F}(r, min_fr)$ of frequent sets and their frequencies.

```
Method: 1. \mathcal{C}_1 := \{\{A\} \mid A \in R\};
        l := 1;
```

- 3. while $\mathcal{C}_l \neq \emptyset$ do
- // Database pass (Algorithm 59):
- 5. compute $\mathcal{F}_l(r) := \{X \in \mathcal{C}_l \mid \mathit{fr}(X, r) \geq \mathit{min_fr}\};$
- 6. l := l + 1:
- // Candidate generation (Algorithm 56):
- 8. compute $C_l := C(\mathcal{F}_{l-1}(r))$;
- for all l and for all $X \in \mathcal{F}_l(r)$ do output X and fr(X, r); 9.

Correctness

- reasonably clear
- optimality in a sense?
- For any collection S of subsets of X of size l, there exists a 0/1 relation r over R and a frequency threshold $min_{_}fr$ such that $\mathcal{F}_{l}(r) = S$ and $\mathcal{F}_{l+1}(r) = \mathcal{C}(S)$.
- fewer candidates do not suffice

Additional information can change things...

- frequent sets: $\{A,B\}$, $\{A,C\}$, $\{A,D\}$, $\{B,C\}$, and $\{B,D\}$
- candidates: $\{A, B, C\}$ and $\{A, B, D\}$
- what if we know that $fr(\{A, B, C\}) = fr(\{A, B\})$
- can infer $fr(\{A, B, D\}) < min_fr$
- how?

Candidate generation

- how to generate the collection $\mathcal{C}(\mathcal{F}_l(r))$?
- trivial method: check all subsets
- ullet compute potential candidates as unions $X \cup Y$ of size l+1
- here X and Y are frequent sets of size l
- check which are true candidates
- not optimal, but fast
- collections of item sets are stored as arrays, sorted in the lexicographical order

Candidate generation algorithm

Algorithm

Input: A lexicographically sorted array $\mathcal{F}_l(r)$ of frequent sets of size l.

Output: $C(\mathcal{F}_l(r))$ in lexicographical order.

Method:

- 1. for all $X \in \mathcal{F}_l(r)$ do
- 2. for all $Y \in \mathcal{F}_l(r)$ such that X < Y and X and Y share their l-1 lexicographically first items do
- 3. for all $Z \subset (X \cup Y)$ such that |Z| = l do
- 4. **if** Z is not in $\mathcal{F}_l(r)$ **then** continue with the next Y at line 2;
- 5. output $X \cup Y$;

Correctness and running time

Theorem 1 Algorithm 56 works correctly.

Theorem 2 Algorithm 56 can be implemented to run in time $\mathcal{O}(l^2 |\mathcal{F}_l(r)|^2 \log |\mathcal{F}_l(r)|)$.

Optimizations

compute many levels of candidates at a single pass

$$\mathcal{F}_2(r) = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, G\}, \{C, D\}, \{F, G\}\}.$$

$$\begin{array}{rcl} \mathcal{C}(\mathcal{F}_2(r)) & = & \{\{A,B,C\},\{A,B,D\},\{A,C,D\},\{B,C,D\}\}, \\ \mathcal{C}(\mathcal{C}(\mathcal{F}_2(r))) & = & \{\{A,B,C,D\}\}, \text{ and} \\ \mathcal{C}(\mathcal{C}(\mathcal{C}(\mathcal{F}_2(r)))) & = & \emptyset. \end{array}$$

Database pass

- go through the database once and compute the frequencies of each candidate
- thousands of candidates, millions of rows

Algorithm

```
Input: R, r over R, a candidate collection C_l \supseteq \mathcal{F}_l(r, min\_fr), and min\_fr.
```

```
Output: Collection \mathcal{F}_l(r, min\_fr) of frequent sets and frequencies.
Method:
      // Initialization:
2.
     for all A \in R do A.is\_contained\_in := \emptyset;
3.
     for all X \in \mathcal{C}_l and for all A \in X do
          A.is\_contained\_in := A.is\_contained\_in \cup \{X\};
4.
5.
     for all X \in \mathcal{C}_l do X.freq_count := 0;
6.
     // Database access:
7.
    for all t \in r do
8.
          for all X \in \mathcal{C}_l do X.item_count := 0;
          for all A \in t do
9.
10.
               for all X \in A.is_contained_in do
11.
                    X.item\_count := X.item\_count + 1;
12.
                   if X.item\_count = l then X.freq\_count := X.freq\_count + 1;
13.
     // Output:
14.
     for all X \in \mathcal{C}_l do
          if X.freq\_count/|r| \ge min\_fr then output X and X.freq\_count/|r|;
15.
```

Data structures

- \bullet for each $A \in R$ a list $A. \textit{is_contained_in}$ of candidates that contain A
- ullet For each candidate X we maintain two counters:
 - $-X.freq_count$ the number of rows that X matches,
 - X.item_count the number of items of X

Correctness

• clear (?)

Time complexity

• $\mathcal{O}(||r|| + l |r| |\mathcal{C}_l| + |R|)$

Experimental results

- small course registration database
- 4 734 students
- 127 courses
- frequency thresholds 0.01–0.2

Size	Frequency threshold							
	0.200	0.100	0.075	0.050	0.025	0.010		
1	6	13	14	18	22	36		
2	1	21	48	77	123	240		
3	0	8	47	169	375	898		
4	0	1	12	140	776	2 203		
5	0	0	1	64	1 096	3 805		
6	0	0	0	19	967	4 899		
7	0	0	0	2	524	4 774		
8	0	0	0	0	165	3 465		
9	0	0	0	0	31	1 845		
10	0	0	0	0	1	690		
11	0	0	0	0	0	164		
12	0	0	0	0	0	21		
13	0	0	0	0	0	1		

Table 1: Number of frequent sets of each size with different frequency thresholds.

	Frequency threshold					
	0.200	0.100	0.075	0.050	0.025	0.010
Candidate sets:						
Count	142	223	332	825	4 685	24 698
Generation time (s)	0.1	0.1	0.2	0.2	1.1	10.2
Frequent sets:						
Count	7	43	122	489	4 080	23 041
Maximum size	2	4	5	7	10	13
Database pass time (s)	0.7	1.9	3.5	10.3	71.2	379.7
Match	5 %	19 %	37 %	59 %	87 %	93 %
Rules (min_conf = 0.9):						
Count	0	3	39	503	15 737	239 429
Generation time (s)	0.0	0.0	0.1	0.4	46.2	2 566.2
Rules (min_conf = 0.7):						
Count	0	40	193	2 347	65 181	913 181
Generation time (s)	0.0	0.0	0.1	8.0	77.4	5 632.8
Rules ($min_conf = 0.5$):						
Count	0	81	347	4 022	130 680	1 810 780
Generation time (s)	0.0	0.0	0.1	1.1	106.5	7 613.62

Different statistics of association rule discovery with course database.

	Can	didates	Frequ		
Size	Count	Time (s)	Count	Time (s)	Match
1	127	0.05	22	0.26	17 %
2	231	0.04	123	1.79	53 %
3	458	0.04	375	5.64	82 %
4	859	0.09	776	12.92	90 %
5	1 168	0.21	1 096	18.90	94 %
6	1 058	0.30	967	18.20	91 %
7	566	0.24	524	9.69	93 %
8	184	0.11	165	3.09	90 %
9	31	0.04	31	0.55	100 %
10	3	0.01	1	0.15	33 %
11	0	0.00			
Total	4 685	1.13	4 080	71.19	87 %

Number of sets and time used for set of different sizes

Figure 2: Results of scale-up tests.

Extensions

- candidate generation
- rule generation
- database pass
 - inverted structures
 - Partition method
 - hashing to determine which candidates match a row or to prune candidates
- item hierarchies
- attributes with continuous values

Rule selection and presentation

- recall the KDD process
- association rules etc.: idea is to generate all rules of a given form
- lots of rules
- all rules won't be interesting
- how to make it possible for the user to find the truly interesting rules?
- second-order knowledge discovery problem
- provide tools for the user

Uninteresting rules

- There are 2010 association rules in the course enrollment database that match at least 11 students (i.e., the frequency (or support) threshold is 0.01).
- prior knowledge: Design and Analysis of Algorithms \Rightarrow Introduction to Computers (0.97, 0.03).
- uninteresting attributes or attribute combinations. Introduction to Computers ⇒ Programming in Pascal (0.95, 0.60) is useless, if the user is only interested in graduate courses.
- Rules can be redundant. Data Communications, Programming in C ⇒ Unix Platform (0.14, 0.03) and Data Communications, Programming in C, Introduction to Unix ⇒ Unix Platform (0.14, 0.03).

Iteration

- filter out rules referring to uninteresting courses
- all rules containing basic courses away: only half are left
- focus to, e.g., all rules containing the course "Programming in C"
- filter out "Unix Platform"
- etc.

Operations

- pruning: reduction of the number of rules;
- ordering: sorting of rules according, e.g., to statistical significance; and
- structuring: organization of the rules, e.g., to clusters or hierarchies.
- other operations?

Pruning using templates

- hierarchies among attributes {Artificial Intelligence, Programming in C, Data Communications} ⊂ Undergraduate Course ⊂ Any Course,
- a template is an expression $A_1, \ldots, A_k \Rightarrow A_{k+1}, \ldots, A_l$,
- A_i : an attribute name, a class name, or an expression C+ or C*
- \bullet Graduate Course, Any Course* \Rightarrow Design and Analysis of Algorithms
- selective/unselective template

Theoretical analyses

- fairly good algorithm
- is a better one possible?
- how good will this algorithm be on future data sets
- a lower bound (skipped)
- association rules on random data sets (skipped)
- sampling

Sampling for finding association rules

- two causes for complexity
- lots of attributes
- lots of rows
- potentially exponential in the number of attributes
- linear in the number of rows
- too many rows: take a sample from them
- in detail later