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ise 3, 2.2.2007Problem 1.Denote the propositions as S = inno
ent, T = �ngerprints are identi
al, M = guilty. Wewish to 
ompute p(S|T ), whi
h is a

ording to Bayes theorem

p(S|T ) =
p(T |S)p(S)

p(T )The terms in the above formula are:

p(S) = 1 − 10−7 = 10−7(107 − 1), as there is one burglar among 10 million inhabitants

p(T ) = p(T |S)p(S) + p(T |M)p(M) is the total probability that the �ngerprints are iden-ti
al. Here

p(T |S) = 9

107
−1

, as there are 10 − 1 = 9 people with identi
al �ngerprints as the burglaramong the 107 − 1 inno
ent 
itizens.

p(T |M) = 1, as the �ngerprints of the burglar are of 
ourse identi
al with themselves,

p(M) = 10−7, as we assume there is exa
tly one burglar.We get

p(S|T ) =
9

107
−1

10−7(107 − 1)
9

107
−1

10−7(107 − 1) + 10−7
=

9 · 10−7

10 · 10−7
= 0.9If a suspe
t is senten
ed of a burglary based only on identi
al �ngerprints, the probabilityof inno
en
e is around 90 %!.Example of wrong intuition: sin
e �ngerprint re
ognition is very reliable, the probabilitythat you are inno
ent is very small.This is wrong be
ause we are not trying to �nd out the probability P (T |S), that is "theprobability that your �ngerprint mat
hes if you are inno
ent". It would only tell that fora randomly pi
ked inno
ent 
itizen it is unlikely that the �ngerprints mat
h. You werenot pi
ked randomly, you were among the people with mat
hing �ngerprints.This problem illustrates that even in simple problem settings intuitition 
an lead very farfrom the 
orre
t answer. One must be very 
areful in formulating the problem in termsof 
onditional probabilities, and 
omputing the right probability.Problem 2Yes, you should 
hange your 
hoi
e, be
ause that in
reases your probability of having theprize:Denote the 
orre
t door by A. Then the prior probabilities are p(A = 1) = p(A = 2) =

p(A = 3) = 1/3. We wish to know the posterior of A given the observation.1

Choose door number 1. Then assume that door 2 is opened and there is no prize behindthat. Now we should 
ompute p(A|D) where D means �door number 2 was opened�. Weknow that p(A = 2|D) = 0.By Bayes' rule, p(A|D) = p(D|A)p(A)/p(D). We are interested in A so it is enough that
p(A|D) ∝ p(D|A)p(A), as p(D) is merely a s
aling term.
p(D|A = 1) = 1/2, be
ause if the prize is behind the door that you had already 
hosen,then either of the doors 2 and 3 is opened with equal probability.
p(D|A = 3) = 1, be
ause if you had 
hosen door 1 and the prize is behind door 3, thenthe only possibility is to open door 2.
p(D|A = 2) = 0, be
ause door 2 is not opened if the prize is behind it.Thus p(A = 1|D) ∝ p(D|A = 1)p(A = 1) = 1

2
∗ 1

3and p(A = 3|D) ∝ p(D|A = 3)p(A = 3) = 1 ∗ 1

3

.You in
rease your probability of getting the prize, if you 
hange to door 3!Problem 3.i) Suppose A1 and A2 equivalent events. Then Cox's axiom requires that p(A1) = p(A2).Violating the axiom requires q(A1) 6= q(A2). Let q(A1) > q(A2) (otherwise swap the rolesof the variables in the following). If you buy T1 and sell T2 at your the limit pri
e, youhave paid q(A1) − q(A2) > 0 EUR. The Bayesian will agree to the trade sin
e the netpayment he re
eives is > 0 EUR but the sum of the winning probabilities on the ti
ketshe gives away is 0. But A1 and A2 are equivalent, so either both ti
kets win or both ti
ketslose. In both 
ases your winnings are zero, so you have paid a positive amount of moneyto obtain nothing.ii) Suppose q(A1) < 1(= p(A1)). Then selling T1 at the limit pri
e gives you q(A1) EURbut when A1 happens, you have lost 1 EUR making a net loss of 1 − q(A1) EUR. If

q(A1) > 1, then you are willing to pay more than 1 EUR for T1, whi
h pays you only 1EUR.iii) The sum rule says that for two mutually ex
lusive but exhaustive events A1 and A2,

p(A1) + p(A2) = 1. Violating the assumption thus requires that q(A1) + q(A2) = S 6= 1.Let S < 1. Then the Bayesian is willing to buy ti
kets T1 and T2 from you sin
e yourtotal pri
e S is less than the winning probability p(A1) + p(A2) = 1. After observing theout
omes you pay him 1 EUR with 
ertainty. You thus have lost 1−S EUR. On the otherhand, if S > 1 the Bayesian is willing to sell you ti
kets for your pri
e. On
e again, youlose S − 1 EUR with 
ertainty.Comments: Just as in the 
ase of the sum rule, it would be possible to show that violatingthe produ
t rule p(AB|C) = p(A|BC)p(B|C) leads to a Dut
h Book. However, the related
al
ulation is more 
ompli
ated and is skipped here. Also, violating p(A) ∈ R or p(A) ≥ 0leads to a Dut
h Book.This problem illustrates the Dut
h Book Theorem, whi
h formally says that a Dut
h2



Book 
an be 
onstru
ted if and only if q is not a probability. We have now shown that if

q la
ks any of the basi
 properties of a probability measure then a Dut
h Book follows.Proving that the possibility of a Dut
h Book leads into a non-probability measure is amore di�
ult task.Problem 4.i) The iteration formula Var(x) = E(Var(x|y))+Var(E(x|y)) says something about distri-butions p(x) and p(x|y). Substitute x = θ and y = D to obtainVar(θ) = E(Var(θ|D)) + Var(E(θ|D)).The left-hand side is the varian
e of the prior distribution. The right-hand side has twoterms where both terms are nonnegative. The expe
tation E(Var(θ|D)) is an expe
tationof the posterior varian
e taken over all data sets using the predi
tive distribution p(D).This tells us the average posterior varian
e. Sin
e the se
ond term is nonnegative, we
on
lude that posterior varian
e on average 
annot be larger than prior varian
e. Thereforeon average Bayesian Inferen
e is redu
ing un
ertainty in θ.ii) The number of terms in the sum is random: this seems di�
ult, but 
an easily behandled using the iteration formulas demonstrating their usefulness.Re
all that if a random variable X ∼ Poisson(λ), we have E(X) = λ and Var(X) = λ. Ifa random variable Y ∼ Exp(µ), we have E(Y ) = 1/µ and Var(Y ) = 1/µ2.The mean of s is E(s) = E(E(s|N)).Conditional to N , the sum s has a known number of terms. Therefore E(s|N) = NE(s1) =
N/µ. To �nd E(s), we 
ompute E(s) = E(N/µ) = λ/µ.Then the varian
e: Var(s) = E(Var(s|N)) + Var(E(s|N)).The last term is Var(N/µ) = µ−2Var(N) = µ−2λ. In the �rst term, the varian
e of s given
N is NVar(s1) = Nµ−2. The mean of Var(s|N) is then E(Nµ−2) = µ−2λ. Adding themup we obtain Var(s) = 2λµ−2.
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