
T-61.5040 Oppivat mallit ja menetelmätT-61.5040 Learning Models and MethodsPajunen, ViitaniemiExer
ises 12, 20.4.2007Problem 1.The solution for Gaussian Pro
ess regression was given in the le
tures in the form of aNormal predi
tive distribution for a point ỹ. Che
k that the predi
tive mean and varian
eare 
orre
t, using the following formulas for a joint normal distribution p(u, v):E(u|v) = E(u) + Cov(v, u)(Var(v))−1(v − E(v))Var(u|v) = Var(u) − Cov(v, u)(Var(v))−1Cov(u, v).What is the 
omputational 
omplexity of �nding the solution, as a fun
tion of n, the numberof training points? What is the extra 
ost of predi
ting another point? Assume that it is
heap to evaluate the 
ovarian
e fun
tion.Problem 2.The 
ovarian
e fun
tion C(xi, xj) is the key element in a Gaussian Pro
ess prior. In thisproblem we see examples of pro
esses of varying properties, whi
h are not always apparentfrom the 
ovarian
e fun
tion. Find the 
ovarian
e fun
tion of the following pro
esses:i) Brownian motion B(t), where B(0) = 0, in
rements B(s) − B(t) with s > t are Normallydistributed random variables with distribution N(0, s − t). Disjoint in
rements B(s) −B(t)and B(v) − B(w) are independent if s > t ≥ v > w. Find the 
ovarian
e fun
tion C(ti, tj).ii) Linear model yi = wTxi + ei where the i.i.d. noise ei is distributed as N(0, σ2). Inputs xiare d-dimensional ve
tors and the prior for w is p(w) = N(w|0, I). Find C(xi, xj).iii) A neural network f(x) = b+
∑

k vk exp(− 1

2σ2 ‖x−uk‖
2), where the network weights haveNormal priors p(u) = N(u|0, σ2

uI), p(v) = N(v|0, σ2
vI), p(b) = N(b|0, σ2

b ). The weights areindependent of ea
h other. For simpli
ity, assume that σ2
u is very large and σ2 = 1.Hint: use the assumption that the weights are independent to write the 
ovarian
e as afun
tion of E

[

exp(− 1

2σ2 ‖xi − u‖2) exp(− 1

2σ2 ‖xj − u‖2)
]. The expe
tation is 
omputed over

p(u), whi
h you 
an assume to be 
onstant sin
e its varian
e is very large. Now you shouldbe able integrate u out by rearranging the exponent term. Note that the integral 
an be
omputed only up to a proportionality 
onstant.



Problem 3.Using the notation of the le
tures, the distribution p(u|x̃, D) in GP 
lassi�
ation is di�
ultto formulate sin
e the training data D 
ontains only the inputs xi and 
orresponding 
lasslabels yi ∈ {−1, +1}. Various approximations 
an be used, and some of them require thatthe mode is 
omputed. Choose a linear 
lassi�er, so u = XT w with X = [x1, . . . , xn]. Usethe prior p(w|x̃, x) = p(w) = N(w|0, I) for the 
lassi�er w. Assume that the linear 
lassi�er
w is obtained as a linear 
ombination of inputs, i.e. w =

∑

i xiai = Xa. For the 
lass labeldistribution, use p(yi|ui) = (1 + exp(−2yiui))
−1i) Write the problem of �nding the mode of p(u|x̃, D) as a minimization problem wrt w.Hints:- �nd the prior p(u|x̃, x) = p(u|x) indu
ed by p(w) by writing u = XT w and 
omputing

E[uuT ].- to repla
e u by w you need to use the representation w = Xa.ii) Compare the result with Soft Margin SVM, where the optimization is to minimize ‖w‖2 +
K

∑

i(1 − yi(w
T xi))+ where z+ = max(z, 0).Hint:- to solve this problem, examine what happens approximately in the 
ost fun
tions when

wTxi has a very large absolute value and has either the same or di�erent sign as the 
orre
t
lass label yi.


