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T-61.5040 Learning Models and Methods
Pajunen, Viitaniemi

Exercises 12, 20.4.2007

Problem 1.

The solution for Gaussian Process regression was given in the lectures in the form of a
Normal predictive distribution for a point . Check that the predictive mean and variance
are correct, using the following formulas for a joint normal distribution p(u,v):

E(u|v) = E(u) 4+ Cov(v, u)(Var(v)) " (v — E(v))
Var(u|v) = Var(u) — Cov(v, u)(Var(v)) " 'Cov(u,v).

What is the computational complexity of finding the solution, as a function of n, the number
of training points? What is the extra cost of predicting another point? Assume that it is
cheap to evaluate the covariance function.

Problem 2.

The covariance function C(x;,x;) is the key element in a Gaussian Process prior. In this
problem we see examples of processes of varying properties, which are not always apparent
from the covariance function. Find the covariance function of the following processes:

i) Brownian motion B(t), where B(0) = 0, increments B(s) — B(t) with s > t are Normally
distributed random variables with distribution N (0, s — ¢). Disjoint increments B(s) — B(t)
and B(v) — B(w) are independent if s >t > v > w. Find the covariance function C'(t;,t;).

ii) Linear model y; = w’z; + ¢; where the i.i.d. noise e; is distributed as N(0,0?). Inputs x;
are d-dimensional vectors and the prior for w is p(w) = N(w|0, I). Find C(x;, x;).

iii) A neural network f(z) = b+, v exp(—5s3||@ — ux||?), where the network weights have
Normal priors p(u) = N(u|0,021), p(v) = N(v|0,021I), p(b) = N(b|0,0?). The weights are
independent of each other. For simplicity, assume that o2 is very large and o = 1.

Hint: use the assumption that the weights are independent to write the covariance as a
function of E [exp(—5 |2 — ul|?) exp(—52 [|2; — u[|?)]. The expectation is computed over
p(u), which you can assume to be constant since its variance is very large. Now you should
be able integrate u out by rearranging the exponent term. Note that the integral can be
computed only up to a proportionality constant.



Problem 3.

Using the notation of the lectures, the distribution p(u|Z, D) in GP classification is difficult
to formulate since the training data D contains only the inputs x; and corresponding class
labels y; € {—1,+1}. Various approximations can be used, and some of them require that
the mode is computed. Choose a linear classifier, so u = X7w with X = [1,...,2,). Use
the prior p(w|Z,z) = p(w) = N(wl|0, I) for the classifier w. Assume that the linear classifier
w is obtained as a linear combination of inputs, i.e. w = >, x;a; = Xa. For the class label
distribution, use p(y;|u;) = (1 + exp(—2y;u;)) ™"

i) Write the problem of finding the mode of p(u|Z, D) as a minimization problem wrt w.
Hints:

- find the prior p(u|Z,z) = p(u|x) induced by p(w) by writing u = XTw and computing
E[uu®].

- to replace u by w you need to use the representation w = Xa.

ii) Compare the result with Soft Margin SVM, where the optimization is to minimize ||w||*+
K .(1 —y;(whz;)); where z; = max(z,0).

Hint:

- to solve this problem, examine what happens approximately in the cost functions when
w?lx; has a very large absolute value and has either the same or different sign as the correct
class label y;.



