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Problem 1.

An important task in modeling is to limit the set of possible functions among which the
model is chosen. Otherwise, the observations cannot be extrapolated or interpolated, that
is, the model does not generalize to new observations.
As an example of this problem we try to model a black box whose input and output can
be measured. Describe how you can �t a prede�ned model exactly into the observations,
making as little modi�cations to the model as possible, if

i) we do not assume anything of the set of functions.
ii) we assume that the model is continuous.
iii) we assume that the model is smooth, that is, in�nitely many times di�erentiable.

Problem 2.

Consider gray shade images of size 256 × 256 where the shade is represented using 256
levels (8 bits per pixel, 28 = 256). Assume that we compress the �gures using function K
that gives an image Xi a binary code bi, that is, K(Xi) = bi.

i) How many bits does the image consist of before the compression?
ii) Assume that you wish to compress images so that the size of the code bi is at least
10 bits shorter than the size of the original image. What percentage of all possible gray
shade images can be compressed using this kind of code, if you still wish to obtain lossless
compression?
iii) Consider an image of a natural scene, of the above size. Do you think that compressing
it 10 bits shorter is as di�cult as it seems in Problem ii)? If not, why?

Problem 3.

Assume you have a bag full of binary vectors of length n (n is even). Suppose that your
learning problem is to predict the n:th bit given the n − 1 �rst bits when a vector is
randomly drawn (with replacement) from the bag. Design an optimal prediction method
when

i) you know the bag contains one of each possible binary vectors.
ii) you don't know anything about the bag's contents.
iii) you have 10 training vectors which all have di�erent �rst n− 1 bits. Mining through
di�erent functions f : {0, 1}n−1 → {0, 1} you �nd a function f1 which works perfectly on
the training set.
iv) you know that the bag contains exactly 10% of all possible binary vectors and they
are all di�erent.



Problem 4.

Assume the same type of bag as in problem 3, part iv), and assume nothing else. You
are given an imaginary algorithm to be evaluated on the bag, called the Binary Vector
Machine, which is a general learning algorithm independent of your binary bag. You draw
a vector from the bag and predict the last bit by BVM. The prediction is correct. You
draw more vectors and BVM always predicts the last bit correctly! This happens n times
in total. You draw the n+1:st vector. What is the expected prediction error using BVM?

Problem 5. (demo) In this problem, consider the set of all bags of 2n−1 binary vectors
of length n such that the �rst n− 1 bits of each vector are di�erent. This means that in
each bag there is exactly one vector that matches any given bit pattern of length n− 1.

Compare two algorithms which try to predict the nth bit as a function of the n− 1 �rst
bits. Algorithm A guesses the last bit with equal probability for 0 and 1. Algorithm B is
any algorithm: lets call it the Binary Vector Machine.

When each algorithm is applied to a bag described above, denote the performance by
CA and CB. These are average prediction errors and are de�ned as the number of errors
divided by 2n−1.

Estimate the fraction of bags for which |CA − CB| ≥ ε when the bags contain 219 vectors
and ε = 1/128. You need to use either the Chebyshev inequality or the Hoe�ding inequality
(easier?) to do this.

Hoe�ding inequality:

If x1, . . . , xn are iid random variables for which xi − E(xi) ∈ [ai, bi] and X =
∑

i xi, then

P (X − E(X) ≥ ε) ≤ exp(−2ε2/
∑

i

(bi − ai)
2).

(Reminder: Chebyshev: P (|D − E(D)| > ε) ≤ 1
ε2

Var(D).)

The purpose of this problem is to show that the proportion of learning problems in which
any algorithm can beat guessing even by a little margin is very small.

Note: Some copies of the solutions are delivered in the exercise sessions. Extra copies (if
any) can be found in the clear plastic boxes in the beginning of the CIS lab corridor. The
(possibly corrected) solutions only appear in the course web page in the end of the course,
though.


