
T-61.5030 Advanced course in neural computing

Solutions for exercise 11

1. The network in Figure 15.4 has the following equations xI(n + 1) = f1(xI(n),u(n)),
xII(n + 1) = f2(xII(n),xI(n + 1)) and xo(n + 1) = f3(xo(n),xII(n + 1)), where we have
denoted the feedforward functions of different layers by f1, f2 and f3. The output of the
network is y(n) = xo(n + 1). Therefore we have

xII(n + 1) = f2(xII(n), f1(xI(n),u(n)))

and
xo(n + 1) = f3(xo(n), f2(xII(n), f1(xI(n),u(n)))) .

If we now set

x(n) =





xI(n)
xII(n)
xo(n)



 ,

f(x(n),u(n)) =





f1(xI(n),u(n))
f2(xII(n), f1(xI(n),u(n)))

f3(xo(n), f2(xII(n), f1(xI(n),u(n))))





and
g(x(n),u(n)) = f3(xo(n), f2(xII(n), f1(xI(n),u(n)))) ,

we see that x(n + 1) = f(x(n),u(n)) and y(n) = g(x(n),u(n)).

2. The internal state of the NARX model can be deduced by observing as many outputs as
the delay line has delays. In other words, NARX model is always observable. This means
that a state space model which is not observable cannot be modelled by a NARX model.
Any observable state space model can be modelled by a NARX model, however. The
delay line needs to be at least as long as the number of observations which are needed for
deducing the internal state of the state space model.

The transformation of a NARX model into a state space is trivial and can be done using
the same guidelines as were used in the previous problem (the internal state is the contents
of the memory).

3. Any NARX model serves as an example of an observable network. The network in Figure
15.4. which was referred to in the problem 1. is an example of a network which is not,
in general, observable because it has feedback from somewhere else than the outputs or
inputs (which are assumed to be observed by the definition of observability).

The following figure gives an example of networks which are (in general) controllable and
uncontrollable. The layers of the networks (denoted by boxes with sigmoid) are assumed
to compute weighted sums followed by saturating nonlinearities.

Delay

Not controllable (in general)Controllable (in general)

Delay



The reason for the first network to be controllable is that the state of the network can
always be overridden by suitable values for the inputs. This is not the case in the second
network because the effect of the inputs is restricted by the saturating nonlinearity applied
before the inputs can affect the layer which gets input from the internal state (the delayed
values).

4. (a) Both algorithms compute the instantaneous gradient ∇
w
E(n). RTRL achieves this

by forward-propagating the derivatives of the state variables w.r.t. the weights, i.e.,
by updating the Jacobian matrix of states w.r.t. the weights. This means that in
RTRL, backpropagation only needs to be done up to the inputs and states and the
gradient is not propagated through the delays. In BPTT, the forward propagation
is not done for Jacobian matrix and the gradient needs to be propagated through
delays. In other words, most of the work in RTRL is done in the forward propagation
phase while in BPTT the work is done in the back propagation phase.

(b) In RTRL, the approximation of the instantaneous gradient ∇
w
E(n) does not take

into account the fact that changing weights affects the gradient earlier in time. This
may cause instabilities.

(c) The update has to change weights so little that the learning remains stable. By
choosing a small enough learning rate, the time scale of the weight changes can be
kept smaller than the time scale of the recurrent network operation.

5. The states are denoted by A and B and the input can be either zero or one. The automaton
is supposed to tell whether a sequence contains an odd number of ones. The state changes
each time the input is one and remains constant when the input is zero. If the automaton
starts at state A, it is easy to see that number of ones is odd if at the end of the sequence
the state is B.

The conversion from finite state automaton to second order recurrent network is easy if
the states and inputs are encoded by place-code such that A = (1, 0) and B = (0, 1)
and similarly, zero = (1, 0) and one = (0, 1). The network gets two inputs and has two
hidden units that each compute one output. Denote the two inputs by u1 and u2 and the
outputs by x1 and x2. The input vk to hidden unit k, k = 1, 2, is a weighted sum of the
products between state xi and input ui.

vk =
∑

i,j

wkijxiuj

With the coding we use, it is easy to see that only one of the terms xiuj is 1 with any given
input and state. By taking the activation function to be the logistic sigmoid 1/(1+ e−vk),
the ouput is close to 1 if vk ≫ 0 and close to 0 if vk ≪ 0. If for instance the current
state is (x1, x2) = (1, 0) (corresponding to state A) and the input is (u1, u2) = (0, 1)
(corresponding to input one), the output should be (0, 1) (state B), i.e., v1 ≪ 0 and
v2 ≫ 0. This means that w112 ≪ 0 and w212 ≫ 0. Similar considerations give w111 ≫ 0,
w211 ≪ 0, w121 ≪ 0, w221 ≫ 0, w122 ≫ 0 and w222 ≪ 0.

As long as the activation function is differentiable, it is possible to use for instance RTRL
or BPTT to learn the weights from given examples.


