T-61.5030 Advanced course in neural computing

Karhunen, Peltonen

Exercise 7, Nov. 9, 2006

- 1. Consider a random input vector \mathbf{X} made up of two component vectors, $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2]^T$. Assume that you would like to represent the central dependencies between \mathbf{X}_1 and \mathbf{X}_2 with a simple model. How would you do that? (Hint: Consider linear combinations.)
- 2. Assume a mixture of time-delayed (but not convolved) sources with known delays D_{ij} :

$$x_i(t) = \sum_{j=1}^{N} a_{ij} s_j (t - D_{ij}),$$

- (a) Show that by Fourier transform, this can be reduced to the instantaneous mixture model $\mathbf{X} = \mathbf{AS}$.
- (b) From this mixing matrix **A**, how do you solve the original mixing coefficients a_{ij} ?
- 3. Prove the following properties of kurtosis by using the definition of kurtosis: If x_1 and x_2 are independent random variables, then

$$kurt(x_1 + x_2) = kurt(x_1) + kurt(x_2)$$
$$kurt(\alpha x_1) = \alpha^4 kurt(x_1)$$

where α is a scalar.

4. Show that if \mathbf{x} is the observed vector and

$$\mathbf{x}_2 = \mathbf{E}\mathbf{D}^{-1/2}\mathbf{E}^T\mathbf{x}$$

Then \mathbf{x}_2 is white, where \mathbf{E} is the orthogonal matrix of eigenvectors of $E[\mathbf{x}\mathbf{x}^T]$ and \mathbf{D} is the diagonal matrix of its eigenvalues.

5. Consider the following distribution:

$$g(x) = \frac{b}{4} \{ \exp(-b|x-a|) + \exp(-b|x+a|) \}$$

(a) Using the general expression for the n^{th} order moment of a distribution p(x), which has infinite support, $m_n = \int_{-\infty}^{\infty} p(x) x^n dx$ show that the kurtosis of g(x) is defined by the expression

$$\frac{12 - 2a^{4}b^{4}}{4 + 4a^{2}b^{2} + a^{4}b^{4}}$$

- (b) Study the values of kurtosis for this distribution when the parameters a and b take on a range of values.
 - i. When is the value of the kurtosis negative?
 - ii. When is the value of the kurtosis positive?
 - iii. When is the value of the kurtosis zero?
- (c) Is this distribution Sub- or Super-Gaussian? Discuss.