
9. n-gram-language models

9.1 Statistical modeling

1. Take some data (generated from unknown probability distribution)

2. Make an estimate of the distribution based on data

3. Make inferences based on the estimate

Tasks of the modeling:

• Dividing data into equivalence classes

• Finding a good statistical estimator for each class

• Combining several estimators

Typical assumption: stationarity: probability distribution of the data does
not change essentially over time.



Why statistical language modeling

Classical task: prediction of next word (or letter) based on words (or letters)
already seen (’Shannon game’). Can be used, for instance, in the following
applications:

• speech recognition

• OCR

• statistical MT

Estimation methods are common, can be used also in other tasks (e.g. word
sense disambiguation, parsing)
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9.2 N-gram models

n-gram model: one predicts word wn based on previous n− 1 words:

P (wn|w1w2 · · ·wn−1) (1)

Equation can also be given as P (wt|wt−(n−1)wt−(n−2) · · ·wt−1) where t is the
index of the word in the whole material.

Example: the slides of this lecture (in Finnish), n=4:

wt−3 wt−2 wt−1 wt

. . . sitä enemmän dataa tarvitaan mallin estimointiin . . .

Names for models

n=1 unigram
n=2 bigram
n=3 trigram
n=4 4-gram, fourgram

Connection to equivalence classes: in n-gram models every n−1 word history
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gets its own equivalence class.

Same n-gram property from another point of view: model assumes that a
word depends only on the previous (n − 1) words but not from any further
than thata (Markov assumption).

Markov model: k’th degree Markov model is a model that puts all histories
of the length k:n into the same equivalence class. In other words, n-gram
model is a Markov model of degree n− 1.

Examples:
Sue swallowed the large green

Samppa Lajunen voitti kultaa
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Growth of the number of parameters

Model Parameters if vocab 20,000
n=1 unigram 20000
n=2 bigram 200002 = 400 million
n=3 trigram 200003 = 8 billion
n=4 4-gram, fourgram 1.6× 1017
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9.3 Dividing features into equivalnce classes

• Features (continuous and discrete) can be divided into equivalence
class bins.

• E.g.. continuous variable ’age’ divided into classes 0-2; 3-5; 7-10; 11-
15; 16-25; 26-35 etc.

• The higher the number of eq. classes the more data is needed for model
estimation

• On the other hand, if the number of classes is low the value of the
variable cannot be predicted accurately.

Example: Prediction based on:
1. three previous part of speech tags (noun, verb, adj, num etc.) OR
2. three previous words

1. less data and less accurate estimates
2. more accurate estimates but much more needed
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Some ways to form equivalence classes

• ’Features are’ -¿ ’features are’

• Tranforming inflected word forms into the basic word form (’saunan’,
’saunalle’, saunalta’, ’saunojemme’, etc. -¿ ’sauna’)

• Grouping based on POS tag (those words that have same syntactic
role form an eq. class)

• Grouping based on semantic information (those words that have the
same or similar meaning form an eq. class)

It is beneficial that the words would “behave” in a similar manner within an
eq. class.
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Different ways to take the history into account

• Some features are selected from the history without considering their
position in time, e.g. model: P (wt|predicate of the sentence, wt−1)

• Instead of stream of words, a bag of words is considered, i.e. not ta-
king into account word order:
P (wn|w1, w2, . . . , wn−1)
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9.4 n-gram model statistical estimation

Gioven: set of sample from each equivalence class (bin) From Bayesin rule:

P (wn|w1 · · ·wn−1) =
P (w1 · · ·wn)

P (w1 · · ·wn−1)
(2)

Modeln optimization: maximize datan probability (i.e. product of word pro-
babilities).

Notation:

N Number of training samples
B Number of eq. classes (bins)
w1n n-gram w1 · · ·wn

C(w1 · · ·wn) n-gram w1 · · ·wn number in training data
r number of n-grams
Nr Number of those bins in which there are r samples
h history (preceeeding words)
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Maximum likelihood-estimate (MLE)

PMLE(w1 · · ·wn) =
C(w1 · · ·wn)

N
(3)

PMLE(wn|w1 · · ·wn−1) =
C(w1 · · ·wn)

C(w1 · · ·wn−1)
(4)

• MLE-estimation leads into such parameter selection that the probabi-
lity of training data maksimized.
(within inpendence assumptions)

• The whole prob. mass is divided among the cases that appear in the
training data, following ratios of frequency.

• Thus, gives P=0 for a case that does not appear in the training data

• Because the overall P is calculated as a product of the individual word
probabilities, any zero value will cause the overall P to be zero.

10



• Example of data sparseness: within the first 1.5 million words (IBM
laser patent text corpus) 23% subsequent trigrams were previously
unseen.

• MLE is thus not a very useful estimatefor sparse data, such as n-grams.

• One needs a systematic approach to take into account previously un-
seen word and n-gram probabilities. This is called smoothing

Table 6.3: MLE-estimates from Austen’s books for some n-grams of a sen-
tence
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Laplace law

Some probability is “moved” to unseen cases by adding one to each frequency
count:

PLAP(w1 · · ·wn) =
C(w1 · · ·wn) + 1

N + B
(5)

• This corresponds to the Bayes estimate with the prior that all cases
are equally probable.

• If the data is very sparse, this gives too much probability mass to the
previously unseen cases.

• One could ask should one add, for instance, 0.01 or 0.001 rather than
1?
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Estimates of expected frequency:
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Lidstone law, Jeffreys-Perks law

PLid(w1 · · ·wn) =
C(w1 · · ·wn) + λ

N + Bλ
(6)

This corresponds to linear interpolation between the prior of uniform distri-
bution and MLE estimate. Let’s set µ = N/(N + Bλ):

PLid(w1 · · ·wn) = µ
C(w1 · · ·wn)

N
+ (1− µ)

1

B
(7)

• Jeffreys prior: λ = 1/2, i.e. add 1/2 to each frequency lukumäärään
1/2. This is also called Expected Likelihood Estimation (ELE)

• One has to choose the value of λ in one way or another

• With low frequencies this does not coincide well with the real distribu-
tion either
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Good-Turing estimator

See frequence histograms in Table 6.7.

PGT (w1 · · ·wn) =
r∗

N
, jossa r∗ =

(r + 1)S(r + 1)

S(r)
(8)

S(r) is expected value for Nr

Simple Good-Turing estimator: choose a power function: S(r) = arb in
which the parameters a and b are fitted with the frequences according to the
frequency histogram.

This is a quite good estimator that is commonly in use.
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Other smoothing methods

Term ’discounting’ refers to the idea that the P of seen n-grams is moved
to the unseen n-grams.

• Absolute discounting: From all seen n-grams a constant probability
mass σ is removed and divided evenly among unseen n-grams.

• Linear discounting: The probabilities of seen n-grams is scaled with a
constant that is smaller than 1, and the remaining probability mass
is divided evenly among unseen ones. This approach is not particu-
larly good as it “punishes” the frequent n-grams relatively mor (the
estimates of which are, however, better).

• Witten-Bell discounting: The probability mass of surprising events is
estimated based on the fact how common it has been so far to encoun-
ter unseen events:

∑
i:C(i)=0 pi = T

N+T
where T is the number of bins

seen so far
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These methods differ from each other in what kind of assumptions are made
concerning cases that have not been seen and their relation to the cases that
have been seen.

E.g. CMU Statistical Language Toolkit implements several different discoun-
ting ja smoothing methods for n-grams.
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9.5 Combining estimators

• Previously we have considered a situation in which one tries to estimate
an identical probability for all n-grams of particular size that have been
seen.

• However, if the parts of an n-gram are frequent, should one not use
that information in estimating the probability of the whole n-gram?

• The basic motivation is the smoothing of the estimate of more generally
combining different information sources.
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Linear interpolation

(also: mixture models tai sum of experts)

A weighted average is calculated based on the estimates of contexts of dif-
ferent lengths: estimaateista:

Pli(wn|wn−2wn−1) = λ1P1(wn) + λ2P2(wn|wn−1) + λ3P3(wn|wn−2wn−1)
(9)

(0 ≤ λ1 ≤ 1 ja
∑

i λ1 = 1)

Parameters λ can be set manually or optimized with data.

General linear interpolation

Previously parameters λ did not depend on the words, and thus the parameter
is constant for all n-grams of particular size.

In a more general approach, the parameters can be set to depend on the
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history:

Pli(w|h) =
∑

i

λi(h)Pi(w|h) (10)

(0 ≤ λ1 ≤ 1 ja
∑

i λ1 = 1) and optmize them using, for instance, EM
algorithm. However, if there is an own λ for each history, the sparseness of
data problem is again encountered, and some smoothing is needed, like the
equivalence classes of the history, etc.
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Backing off

• Principle: look for the most specific model that gives “sufficiently
enough” information on the data in the current context

• In the other words, one backs off from using long contexts to shorter
ones. One can decide to “believe” an estimate if it is based on at least
k samples (k may be e.g. 1 or 2)

• Criticism: Adding new training data may influence a lot the probabilities
when it causes changes for many different words concerning the n-gram
frequencies related to them.

• However, the models are simple and work reasonably well and therefore
they are commonly in use.

• Back-off model is a special case of general lineara interpolation: λi(h) =
1 when k’s value is large enough, 0 otherwise.

• This approach resembles Dynamically Expanding Context (DEC) met-
hod by Kohonen. Consider also VariKN Language Modeling toolkit by
Siivola.
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Back-off- model usage example:
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9.6 Model estimation in general

This applies to any model comparison, not only n-grams or language models.

Held-out estimation

Usually data is divided into three parts before method development / model
estimation:

• Training set: data with which the model is trained

• Validation set: data independent from training set with which para-
meters are selected (e.g. previously mentioned λ)

• Test set: randomly selected data independent from training and vali-
dation set with which the model is evaluated. (for instance 10% of the
training data),

Test set has to be kept completely separate from other parts of the data
during method development. If the test data is allowed to influence during
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the method development, it is not suitable for testing in the end anymore.

However, method development is often a cyclical process in which methods
are refined and results tested over and over again. Therefore one may have
a division between:
1. Development test set that is used to compare the variants of the method
being developed
2. Final test set that is used to produce final published results that have
not been used for anything before

There are different options for choosing test set (and validation set):
1. random selections (random short text fragments) 2. longer portions of the
corpus (for instance, later parts of the data)

The second approach matches usually better real usage situations. It also
gives more realistic, usually slightly worse results because rarely phenome-
na are fully stationary (for instance in news corpora new names are being
introduced over time, etc.)
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Comparison of methods

If one compares just averages, it is not possible to know whether the diffe-
rences between results significant.

One solution: The variance of the results is also measured for different data
sets and the statistical significance is measured using, e.g., the t test.
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Cross validation

• Data is divided into K parts among which one at the time is test data,
others training data. is repeated in such a way that each set is training
data in its turn. K is a number between 2. . . N, where N is the number
of samples.

• Advantage: All data influences both model training and testing. Thus
the data is used maximally which is important expecially when there
is limited amount of data available.

• There are several different variants (deleted estimation, leave-one-out-
estimation)

Both cross validation and held-out-estimation can be used to choose model
parameters, and thus, for instance, smoothen the probability estimates.
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9.7 n-gram model critique

problems of n-grams as language models:

• Neglecting long distance dependencies

• Neglecting word order

• Need for smoothing shows that there is a structural problem

• Dependencies are estimated directly between words. It would be bet-
ter that the dependencies would be modeled between some latent va-
riables.

• However: n-gram model combines syntactic and semantic short context
dependecies in a rather well functioning manner, at least for English

• Model optimization and improving smoothing methods has been an
active topic of research. It is possible that a vertain optimum has been
reached within the family of models.

30


	n-gram-language models
	Statistical modeling 
	N-gram models 
	Dividing features into equivalnce classes 
	n-gram model statistical estimation 
	Combining estimators 
	Model estimation in general 
	n-gram model critique 

	Markov models
	Visible Markov models 
	Hidden Markov Models 


