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Lecture based on:

• Chapter 5 in Manning & Schütze.

• Mathias Creutz. ’Induction of the morphology of natural language:
unsupervised morpheme segmentation with application to automatic
speech recognition’, PhD Thesis, 2006.
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7. Contextual Information and
Compositionality

• The importance of context in the interpretation of language:
for instance ambiguous word meanings:

– “Aloitin alusta.”

– “Alusta kovalevy!”

– “Näin monta alusta.”

• Compositionality of meaning and form (within and beyond words):

– “I saw you yesterday.” (= i + see + you + yesterday)

– “openmindedness” (= open + mind + -ed + -ness)

– “What is chewing gum made of?”

– “The New Scientist reports that people who chewed gum during
the memory tests scored higher than those who did not.”

– “How do you do.”
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7.1 Word Context: “Meaning Is Use”

• What is meaning? What is meaning in language?

– cognitive linguistics (1970 – ) vs. structuralists (18xx – 1970)

• Words are not labels for real things in the world. They refer to ideas
that we have of the world. (Saussure)

• To understand a particular word, one has to know in which possible
combinations with other words it occurs. Consider less obvious cases
such as time, consider, the, of. (Harris)

• You shall know a word by the company it keeps. (Firth)

• Meaning is use. (Wittgenstein)

⇒ Computational approach: The typical context in which a word occurs can
be used to characterize the word in relation to other words.
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Types of Contexts

• n-grams, dynamical context

– I don’t like . . .

• fixed window, word-document matrix

– I don’t like icecream , but I do like cookies.

– Represent words as vectors

• bag of words vs. position sensitivity

– Are different positions in the word context mapped onto different
subvectors?

• distant dependencies and phrasal structure:
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Example: Phrasal Structure Using Functional Dependency Grammar
(FDG)

• President Bush gave the Idol finalists a tour of the White House.

7



7.2 Expressions with Limited Compositionality:
Collocations

• A collocation is a conventional phrase that consists of one or more
words

• Examples:

– ’weapons of mass destruction’, ’disk drive’, ’part of speech’
(as compound words in Finnish ’joukkotuhoaseet’, ’levyasema’,
’sanaluokkatieto’)

– ’bacon and eggs’

– verb selection: ’make a decision’ not ’take a decision’.

– adjective selection: ’strong tea’ but not ’powerful tea’; ’vahvaa
teetä’, rarely ’voimakasta teetä’ (the choices may reflect cultural
positions: strong → {tea, coffee, cigarettes}, powerful → {drugs,
antidote})

– ’kick the bucket’, ’heittää veivinsä’ (euphemism, saying, idiom)
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• Names that individualize beings, societies, or events: ’White House’
Valkoinen talo, ’Tarja Halonen’

• Concepts that overlap with collocations: term, technical term, termi-
nological phrase. NB. in information retrieval ’a term’ has a broader
meaning: ’word or collocation’.
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Word frequence and part-of-speech filtering

Only frequence:

Example: Is it more natural to say “strong tea” or “powerful tea”?
Solution: Search with Google: “strong tea” 289 000; “powerful tea” 3 420

Sufficient method for some specific questions. However, if bigrams are or-
dered according to frequency, the best ones are ’of the’, ’in the’, ’to the’,
. . .

Frequence + part-of-speech (POS):

If the POS for each word is known, and ’allowed’ POS patterns for colloca-
tions can be described:

• Order word pairs (or tuples) according to frequency (count)

• Accept only certain POS patterns:
AN, NN, AAN, ANN, NAN, NNN, NPN (Justeson & Katz’s POS filter)
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Word distance mean and variance

How about more flexible collocations, that contain words in the middle that
are not part of the collocation?

Calculate mean and variance for distance. If mean is not zero and variance
is small, it is a potential collocation (NB. assuming distance is normally
distributed).

E.g. ’knock . . . door ’ (not ’hit’, ’beat’, or ’rap’):
a) ’she knocked on his door ’
b) ’they knocked at the door ’
c) ’100 women knocked on Donaldson’s door ’
d) ’a man knocked on the metal front door ’
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Algorithm

• Slide a fixed size window over the text (e.g., width 9) and collect all
word pair instances in the whole text

• Count mean of word distances:
d̄ = 1

n

∑n
i=1 di = 1

4
(3 + 3 + 5 + 5) = 4.0

(if apostrophe and ’s’ are counted as words)

• Estimate variance s2 (small sample sizes):

s2 =
Pn

i=1(di−d̄)2

n−1
= 1

3
((3− 4.0)2 +(3− 4.0)2 +(5− 4.0)2 +(5− 4.0)2)

s = 1.15

13



14



Consider:

1. What happens if the words have two or more typical positions related to
each other?
2. What is the significance of the window width?
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7.3 Hypothesis Testing (for the Discovery of Collocations)

Is the large hit count a coincidence (e.g., base frequence for one of the words
is high)? Do two words occur more together than randomness would suggest?

1. Formulate null hypothesis H0: the association is random

2. Count prob. p that words co-occur if H0 is true

3. Abandon H0 if p is too low, less than significance level, e.g., p < 0.05
or p < 0.01.

The definition of independence is applied to the null hypothesis.

Assuming that the word pair probability, if H0 is true, is a product of the
probabilities of each word:
P (w1w2) = P (w1)P (w2)
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The t Test

A statistical test for determining whether the sample mean differs from the
expected mean of a generative data distribution. It assumes that probabilities
are approximately normally distributed.

t =
x̄− µ√

s2

N

, where (1)

x̄, s2: sample mean and variance, N : number of samples, and µ: mean of
distribution. Choose wanted p level (0.05 or lower). Read the corresponding
upper bound for t from the table. If t is higher, discard H0.
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Discovery of Collocations Using the t Test

The null hypothesis is that word co-occurrences are random: Example: H0 :
P (new companies) = P (new)P (companies)

µ = P (new)P (companies)

x̄ = c(new companies)
c(·,·) = p̂

s2 = p(1− p) = p̂(1− p̂) ≈ p̂ (true for the Bernoulli distribution and low p)
N = c(·, ·)

Bernoulli: special case of binomial distribution: b(r;n, p) =
(
n
r

)
pr(1− p)n−r, such

that n = 1 and r ∈ {0, 1}.
• Sort words in order according to the test OR

• Hypothesis testing: Choose significance level (p = 0.05 or p = 0.01)
and see the value from the t table for which higher values mean discar-
ding the null hypothesis.
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Pearson’s Chi-Square Test χ2

• χ2 test measures the dependence of variables based on the definition
of independence: if two variables are independent, the joint distribution
is the product of marginal distributions

• A distribution for two variables can be represented as a two-dimensional
contingency table (r × c).

• Count for each table cell (i, j) the difference between observed di-
stribution O (real joint distribution) and the expected distribution E
(product of marginal distributions), and take the sum scaled with the
expected value of the distribution:

X2 =
∑
i,j

(Oi,j − Ei,j)
2

Ei,j

(2)

where Ei,j = Oi,· ∗O·,j.

• X2 is asymptotically χ2 distributed. A problem still: sensitive to sparse
data.
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• Thumb of rule: do not apply the test if N < 20 or if 20 ≤ N ≤ 40
and some Ei,j ≤ 5
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Discovery of Collocations Using the χ2 Test

Formulate the problem so that for each word there is one random variable
that can have two values (the word either occurs or doesn’t occur in a word
pair instance).

The joint distribution for words can then be represented as a 2 × 2 table.
E.g.

w1 = new w1 6= new
w2 = companies 8 4 667
w2 6= companies 15 820 14 287 181

In the case of a 2× 2 table, Eq. 2 has the form:

X2 =
N(O11O22 −O12O21)

2

(O11 + O12)(O11 + O21)(O12 + O22)(O21 + O22)

• Sort words in order according to the test OR

• Hypothesis testing: Choose significance level (p = 0.05 or p = 0.01)
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and see the value from the χ2 table for which higher values mean
discarding the null hypothesis.

Problem with collocation identification

This approach doesn’t separate negative and positive dependencies. I.e., if
the words shun each other, the test will also give a high value, because
then there indeed is a dependency between the occurrences of the words. In
collocation detection, however, only positive dependencies are interesting.

Other applications for the χ2 test:

• Machine translation: Identification of word translation pairs from sen-
tence aligned corpus (cow, vache: co-occurrences are due to depen-
dency).

• A similarity metric between two corpora: n× 2 table in which for each
observed word wi, i ∈ (1 . . . n), the frequency of the word in question
in corpus j is reported.
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Likelihood Ratios

How much more likely is H2 than H1? Calculate the likelihood ratio λ:

log λ = log
L(H1)

L(H2)

Example:
H1: w1 and w2 are independent: P (w2|w1) = p = P (w2|¬w1)
H2: w1 and w2 are dependent: P (w2|w1) = p1 6= p2 = P (w2|¬w1)

Assume clear positive dependency, i.e., p1 � p2.

Apply ML estimates (means) while counting p, p1 and p2:
p = c2

N
, p1 = c12

c1
, p2 = c2−c12

N−c1

Assume binomial distributions. E.g., p(w2|w1) = b(c12; c1, p). Describe the
simultaneously effective constraints for each model as a product. Final result:
Eq. 5.10 in the book.

−2 log λ is asymptotically χ2 distributed. It has also been shown that for
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sparse data the likelihood ratio gives a better approximation for the χ2 di-
stribution than the X2 statistic.
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Pointwise Mutual Information

Lets recall the formulas for entropy H(x) and mutual information I(x; y):

H(x) = −E(log p(x))

I(X; Y ) = H(Y )−H(Y |X) = (H(X) + H(Y ))−H(X, Y )

= EX,Y (log p(X,Y )
p(X)p(Y )

)

which represents the average information that both x and y contain.

Lets define pointwise mutual information between some specific events x and
y (Fano, 1961):

I(x, y) = log p(x,y)
p(x)p(y)

Could it be applied to selecting collocations? Motivated by intuition: if there
is high mutual information between words (i.e., the information communica-
ted by both words is high), it may assumed to be a collocation.
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We can see from Table 5.16 that if either of the words is infrequent, the
score is high.
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Mutual information for completely dependent words:

I(x, y) = log
p(x, y)

p(x)p(y)
= log

p(x)

p(x)p(y)
= log

1

P (y)

grows when the words get less frequent. Extreme: two words both occur
only once and at that time together. However, there is little evidence of a
collocation which is lost.

Conclusion: Not too good score for this purpose, misleading with especially
low probabilities. As a consequence data sparseness is very badly tolerated.
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Summary: Hypothesis Testing

My guess is that you will not use hypothesis testing in order to discover
collocations (except in the exercise session and possibly in the exam of this
course).

However, you will need hypothesis testing if you do research and compare the
performance of your system to some other system. You will need to prove that
your system performs better than your competitor in a statistically significant
way.

• T-test (assumes Gaussian distribution)

• Pearson’s chi-square test (small sample sizes are not sufficient)

Also take a look at (not taught in this course):

• Sign test

• Wilcoxon signed-rank test
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7.4 Compositionality Within Words

Just as it may be important to recognize that the vocabulary of a language
partly consists of multi-word expressions (collocations), it is important to
recognize that words have inner structure and are related to one another.

Linguistic morphology studies how words are formed from morphemes, which
are the minimal meaningful form-units. Morphemes are portions of utterances
that recur in other utterances with approximately the same meaning.

For instance, the Finnish morpheme talo (house):

aave+talo+i+sta, aika+kaus+lehti+talo+j+en, aika+talo+a, ai-
kuis+koulu+t+us+talo+n, aikuis+talo+uks+i+en, aito+talo+ude+n,
akatemia+talo, akatemia+talo+n, akatemia+talo+ssa, akvaario+talo+us,
alas+talo, alas+talo+n, alas+talo+on, ala+talo, ala+talo+a,
ala+talo+kin, ala+talo+lla, ala+talo+n, ala+talo+on, ala+talo+sta,
. . .
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Zellig Harris’ Heuristic Morpheme Segmentation Method (1955)

Morpheme boundaries are proposed at intra-word locations with a peak in
successor and predecessor variety.

Let us take a look at some examples of successor variety:

• How many different letters can continue an English word starting with
‘d’? (day, debt, dig, dog, drill, . . .)

• How many different letters can continue a word starting with ‘drea’?
(dream, dreadful, . . .)

• How many different letters can continue a word starting with ‘dream’?
(dreams, dreamy, dreamily, dreamboat, . . .)

Predecessor variety works in the same way, but the words are read backwards:

• How many different letters can precede ‘ily’ at the end of an English
word? (dreamily, happily, funnily, . . .)
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Example of Harris’ Method

Note that there are more refined versions, e.g., Hafer and Weiss (1974).
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Statistical Approaches (1995–)

Think of it as a compression problem. If we observe a corpus of natural language

containing lots of different word forms, what kind of model could explain the kind

of data we observe in an elegant manner?

From what kind of lexicon could words such as apple, orange, lemon,

juice, applejuice, orangejuice, appletree, lemontree emerge?

Suppose that lexicon candidates are created using a statistical generative process:

characters are drawn from an alphabet including a morph break character:

Lexicon 1 “a c e g i j l m n o p r t u  ” (14 morphs),

P (Lexicon 1) = ( 1
27)29

Lexicon 2 “apple juice lemon orange tree  ” (5 morphs),

P (Lexicon 2) = ( 1
27)31

Lexicon 3 “apple applejuice appletree juice lemon lemontree 
orange orangejuice  ” (8 morphs), P (Lexicon 3) = ( 1

27)69
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Statistical Approaches: Continued

Rewrite the words in the corpus (data) as morphs and compute probability
(# is a word boundary morph):

Data | Lexicon 1 “a p p l e # o r a n g e # l e m o n # j u i c e # a p

p l e j u i c e # o r a n g e j u i c e # a p p l e t r e e # l e m

o n t r e e # #” The sequence consists of 69 morphs and its probability

conditioned on Lexicon 1 is: P (Data | Lexicon 1) = ( 1
14+1)69 ≈ 7.1 · 10−82.

Data | Lexicon 2 “apple # orange # lemon # juice # apple juice #

orange juice # apple tree # lemon tree # #”. The sequence con-

sist of 21 morphs, and P (Data | Lexicon 2) = ( 1
5+1)21 ≈ 4.6 · 10−17.

Data | Lexicon 3 “apple # orange # lemon # juice # applejuice #

orangejuice # appletree # lemontree # #”. The sequence consists

of 17 morphs, and P (Data | Lexicon 3) = ( 1
8+1)17 ≈ 6.0 · 10−17.
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Statistical Approaches: Maximum A Posteriori (MAP) Optimization

The model selection procedure is based on maximizing the posterior probabi-
lity of the model P (Lexicon X |Data). The posterior can be rewritten using
the Bayes’ rule:

P (Lexicon X |Data) =
P (Lexicon X) · P (Data | Lexicon X)

P (Data)

∝ P (Lexicon X) · P (Data | Lexicon X).

P (Lexicon 2) · P (Data | Lexicon 2) ≈ 1.9 · 10−61 > P (Lexicon 3) ·
P (Data | Lexicon 3) ≈ 1.0 · 10−115 > P (Lexicon 1) · P (Data | Lexicon 1) ≈
2.2 · 10−123.

In this comparison the complexity of the model has been balanced against
the fit of the training data, which favors a good compromise, that is, a model
that does not overlearn and that adequately generalizes to unseen data.

35



Statistical Approaches: Demo

Variations of the approach sketched out above have been used for both word
segmentation (Asian languages, where words are written without explicit
boundaries) and morphology modeling, e.g.,

• Carl de Marcken (1995)

• Michael R. Brent (1999)

• John Goldsmith (2001) (Linguistica)

• Mathias Creutz and Krista Lagus (2002–) (Morfessor)

• Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson (2006)

Morfessor demo: http://www.cis.hut.fi/projects/morpho/
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