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1. Euclidean distance (L2 norm)

Euclidean distance between the vectors x = [x1 x2 . . . xn] and y = [y1 y2 . . . yn] is
defined as

Euc(x,y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (1)

The distance between Tintus and Koskisen korvalääke is calculated as an example:

Euc(T i, Ko) =
√

(0 − 10)2 + (0 − 6)2 + (5 − 2)2 + (1 − 1)2 + (4 − 0)2

= 12.7

Euc(Ko, Te) = 9.9

Euc(T i, T e) = 5.1

L1 norm

The distance according to the L1 norm is defined as

L1(x,y) =
n

∑

i=1

|xi − yi| (2)

So the distances are:

L1(T i, Ko) = |0 − 10| + |0 − 6| + |5 − 2| + |1 − 1| + |4 − 0|
= 23.0

L1(Ko, Te) = 17.0

L1(T i, T e) = 10.0

Cosine

The cosine measure is a little different case. It can be defined as

cos(x,y) =

∑n

i=1
xiyi

√

∑n

i=1
x2

i

√

∑n

i=1
y2

i

(3)



fresh acidic sweet fruity soft
Tintus 0 0 0.50 0.10 0.40
Korvalääke 0.53 0.32 0.11 0.05 0
Termiitti 0.07 0.29 0.21 0.21 0.21

Table 1: ML estimates for the word probabilities

Let’s calculate the distances:

cos(T i, Ko) =
0 · 10 + 0 · 6 + 5 · 2 + 1 · 1 + 4 · 0√

52 + 1 + 42
√

102 + 62 + 22 + 12

= 0.14

cos(Ko, Te) = 0.55

cos(T i, T e) = 0.70

Here a larger value corresponds to a larger similarity, so the distances are in the same
order as before.

Information radius

For the information radius we formulate the maximum likelihood estimates for that
the next word is generated by a source li (Tintus, Korvalääke, Termiitti) is wi. This
is done by dividing the each element of the table by the sum of its row (Table 1).
Last we define that

0 log
0

x
= 0, ∀x ∈ ℜ.

The information radius is given by the formula

Irad(p, q) = D(p||p + q

2
) + D(q||p + q

2
)

=
∑

i

pi log
pi

pi+qi

2

+
∑

i

qi log
qi

pi+qi

2

Let’s calculate it for the given sources:

Irad(T i, Ko) = 0 · log
2 · 0
0.53

+ 0 · log
2 · 0
0.32

+ 0.50 · log
2 · 0.50

0.61
+ 0.10 · log

2 · 0.10

0.15

+0.40 · log
2 · 0.40

0.40
+ 0.53 · log

2 · 0.53

0.53
+ 0.32 · log

2 · 0.32

0.32

+0.11 · log
2 · 0.11

0.61
+ 0.05 · log

2 · 0.05

0.15
+ 0 · log

2 · 0
0.40

= 1.5

Irad(Ko, Te) = 0.6

Irad(T i, T e) = 0.5
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We see that all the measures set the medicines to a similar order: Tintus and Temiitti
are the most similar ones, Tintus and Korvalääke are the most different.

Kullback-Leibler divergence

From the definition of the KL divergence we can directly see some of its problems:

D(p||q) =
∑

i

pi log
pi

qi

First, the KL divergence is not symmetric, so we should each time decide which one
of the two drugs is the reference drug p. The second problem is that if the compared
distribution has a zero probability in some dimension where the reference distribution
has a non-zero probability, the divergence goes to infinity.

2. Kullback-Leibler divergence

The definition of the Kullback-Leibler divergence was

D(p||q) =
∑

i

pi log
pi

qi

Let’s find a distribution that minimizes the KL divergence. We add a Lagrange
coefficient λ1 to make sure that p shall be a correct probability distribution (i.e.
∑

i pi = 1) and λ2 for q.

E = D(p||q) + λ(1 −
∑

i

pi) =
∑

i

pi log
pi

qi

+ λ1(1 −
∑

i

pi) + λ2(1 −
∑

i

qi)

Let’s set the partial derivative with respect to the pi to zero:

∂E

∂pi

= pi ·
1
pi

qi

· 1

qi

+ log
pi

qi

− λ1

= log pi − log qi + 1 − λ1 = 0

Now we solve pi:

pi = qi · eλ1−1

Let’s calculate the partial derivative with respect to λ1:

∂E

∂λ1

= 1 −
∑

i

pi = 0

⇒
∑

i

pi = 1
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A similar condition is obtained for qi when derivating with respect to λ2 (which was
exactly the purpose of the multipliers). The last condition is obtained by derivating
with respect to qi:

∂E

∂qi

= pi ·
1
pi

qi

· pi · (−
1

q2
i

) − λ2 = −pi

qi

− λ2 = 0

⇔ pi = −λ2qi

Because both q and p should sum up to one, we get:

1 =
∑

i

pi =
∑

i

(−λ2qi) = −λ2

∑

i

qi = −λ2

⇒ pi = −λ2qi = qi

Considering the second order derivates we can make sure that this is really the
minimum and not maximum:

∂2E

∂pi∂pi

=
1

pi

> 0

∂2E

∂qi∂qi

=
pi

q2
i

> 0

∂2E

∂pi∂pj

=
∂2E

∂qi∂qj

= 0

If we set qi = pi to the formula of KL divergence we get the divergence of zero. So
KL divergence is zero if and only if the distributions q and p are equal, otherwise

greater than zero.

Information radius

The definition of the information radius is

IRad(p, q) = D(p||p + q

2
) + D(q||p + q

2
)

We just calculated that the KL divergence is zero if the distributions are same, and
larger than zero if not. In the case of the information radius, the zero divergence is
also obtained if and only if qi = pi:

IRad(p, q) =
∑

i

pi log
pi

pi+pi

2

+
∑

i

pi log
pi

pi+pi

2

= 0

So the condition is the same as before.
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L1 norm

Definition of the L1 norm is

L1(p, q) =
∑

i

|pi − qi|

Clearly the smallest value is zero, which comes only if qi = pi.

To conclude, we notice that all the measures give zero distance with the same condi-
tion: The distributions must be equal.

3. Kullback-Leibler -divergence

Let’s look at the definition once more:

D(p||q) =
∑

i

pi log
pi

qi

We can see that if qi = 0 when pi 6= 0 we get the distance ∞.

Information radius

Let’s write the definition of information radius open:

IRad(p, q) = D(p||p + q

2
) + D(q||p + q

2
) =

∑

i

pi log
2pi

pi + qi

+
∑

i

qi log
2qi

pi + qi

With intuition we might guess that a suitable distribution would be one where the
distributions are in completely separate areas:

if pi > 0 ⇒ qi = 0

if qi > 0 ⇒ pi = 0

Let’s insert these to the equation:

IRad(p, q) =
∑

i

pi log
2pi

pi

+
∑

i

qi log
2qi

qi

= log 2
∑

i

pi + log 2
∑

i

qi = 2 log 2

We knew that this was the largest distance. To prove that it really is, and that the
guessed conditions are required to get it, would be somewhat more diffcult.
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L1 norm

The definition for the L1 norm was

L1(p, q) =
∑

i

|pi − qi|

With intuition we could say that the answer is the same as with information radius,
but let’s try to prove it more mathematically. We separate the elementary events I

to two sets. In set j ∈ I were have the cases where pj > qj and in set k ∈ I the cases
where qk > pk. Using these,

L1(p, q) =
∑

j

(pj − qj) +
∑

k

(qk − pk)

=
∑

j

pj −
∑

k

pk +
∑

k

qk −
∑

j

qj

As the probabilities are positive and sum up to one, the largest distance is get when

if pi > 0 ⇒ qi = 0

if qi > 0 ⇒ pi = 0

so the distance is

L1(p, q) =
∑

i

pi +
∑

i

qi = 2

Conclusions

For both information radius and L1 norm, the same conditions for the distributions
are required to get the largest distance. The KL divergence, however, goes to infinity
already when the distribution q is zero somewhere where the reference distribution p

is not.
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