T-61.5020 Statistical Natural Language Processing

Exercises 9 — Statistical machine translation Version 1.1

- 1. You are looking for answer to a problem that horsemen have pondered for a long time: "Varför får hästen inte gå i bastun?" ("Why shouldn't horse go in sauna?"). The solution is known only by the Swedish: "Den blir ren och äter laven". You have a language model and translation probabilities between English and Swedish words given in Table 1. You have two strong candidates for the translated sentence:
 - It becomes clean and eats the seats
 - It turns into a reindeer and eats lichen

Which is the more probable one?

			w_1	w_2	$P(w_1 \to w_2)$
		_	it	den	1.0
w	P(w)		becomes	blir	0.7
it	0.18		becomes	klär	0.3
becomes	0.05		turns	blir	0.7
clean	0.01		turns	vänder	0.3
eats	0.1		into		1.0
the	0.12		clean	ren	0.9
seats	0.02		clean	$st\ddot{a}da$	0.1
turns	0.07		a		1.0
into	0.11		reindeer	ren	1.0
\mathbf{a}	0.21		and	och	1.0
reindeer	0.01		eats	äter	1.0
and	0.13		the		1.0
lichen	0.01		seats	laven	0.1
			seats	stolar	0.9
			lichen	laven	1.0

Table 1: Unigram model in left, translation probabilities in right.

2. (Computer assignment) Let's examine the problems of estimating translation probabilities. European Parliament Proceedings Parallel Corpus¹ consists of sentence aligned texts between pairs of various European languages. Use a suitable parallel file, e.g. Finnish-English².

The corpora include XML-style tags and other information not needed here. They can be removed using a Python script available in the course's web page³. The corpus

¹Europarl: A Parallel Corpus for Statistical Machine Translation, Philipp Koehn, MT Summit 2005. http://www.statmt.org/europarl/

²http://www.statmt.org/europarl/v2/fi-en.tgz

 $^{^3{\}rm Address:\ http://www.cis.hut.fi/Opinnot/T-61.5020/Exercises08/extra/cleanfile.py}$ Usage example: python cleanfile.py corpus_in corpus_out

package has separate files for the two languages, and the same line numbers of the same files are the corresponding sentences.

Next choose a relatively common word f of source language, e.g. Finnish. Find all the sentences which include that word from the Finnish corpus. Then go through the target language (e.g. English) and collect all the words e that are in the corresponding sentences (lines) where the Finnish word was found, together with their co-occurrence counts (C(e, f)). Then try to find the most probable translation(s) from this set of words.

- a) Start using directly the number of co-occurrences C(e, f). How does it work?
- b) Try then to weight the values by the number of sentences where e occurs in the whole corpus, C(e).
- c) Try other kind of weights and/or statistical methods to find the correct translation possibilities. Some ideas can be found from the Exercise 5 that concerned collocations.