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1 Course Bureaucracy

1.1 General Information

People and Locations

e People:

— Kai Puolamaki, PhD, lecturing researcher, lecturer.

— Antti Ukkonen, MSc, course assistant.

e Please see the course web site at http://www.cis.hut.fi/0Opinnot/T-61.3050/2007/ for
current information.

e If you want to send email related to the course please use the email alias t613050@james . hut .fi
(not personal addresses).

e Lectures: in T1 on Tuesdays at 10-12 (11 September to 11 December 2007, no lecture on 30
October).

e Problem sessions: in T1 on Fridays at 10-12 (from 14 September to 7 December, no problem
session on 26 October; problem sessions not every week).

Participating

e To participate to this course you need to be a registered student at TKK (that is, you need
a student number).

e You must sign in to course using WebTOPI, https://webtopi.tkk.fi/|Please sign in today,
if you have not already done it.

e You will need to have an addresses of form 12345X@students.hut.fi, where 12345X is your
student number (for exam results, exercise work feedback etc.). Check that this address works
(if not, you should contact the student registry and update your email address there!).

Prerequisites

e To participate to this course you need to have the following prerequisite knowledge:
— basic mathematics and probability courses (Mat-1.1010, Mat-1.1020, Mat-1.1031/1032
and Mat-1.2600/2620; or equivalent);
— basics of programming (T-106.1200/1203/1206,/1207 or equivalent); and
— data structures and algorithms (T-106.1220/1223 or equivalent).

e If you lack this prerequisite knowledge we strongly encourage you to take the above mentioned
courses before participating to this course!

e You should be able to complete the problems in the prerequisite knowledge test (problem 1)
for the first problem session next Friday (see the instructions in the problem sheet).
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How to Pass the Course

e You will get 5 cr for passing this course.
e Requirements for passing the course:

— Pass the ezercise work. The exercise work should be submitted by 2 January 2008. More
instructions will appear in a few weeks time.

— Pass the ezamination. You can participate to the examination after passing the exercise
work (exception: you can participate to the December examination before passing the
exercise work; you’ll then pass the course if you pass the exercise work).

e Optional, but useful:

— Lectures.
— Problem sessions.

— Reading the book and other material.

About Exercise Work

e Detailed instructions for the exercise work will be announced within a couple of weeks.
e The exercise work will include a data analysis challenge.

e The final report, which should describe the methods you have used and your results, should
be submitted at 2 January 2008, at latest.

e You can submit the results of the data analysis challenge by 1 December 2007.

e You must pass the exercise work to pass the course. You will get an increase to your grade
if your report is well done. You get some extra points if you additionally perform well in the
data analysis challenge.

About Examination

e The examinations are currently scheduled as follows:

— In B at 16-19 on 19 December 2007.
— In * at 10-13 on 2 February 2008.
— In T1 at 13-16 on 15 May 2008.

e Check the exam schedule later, times may still change!

e You must pass the exercise work before participating to the examination (exception: you can
participate to the December examination before passing the exercise work; you’ll then pass
the course if you pass the exercise work).

e You must sign in to the examination at least one week in advance using WebTOPI, https:
//webtopi.tkk.fi/
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e The examination will be based on the parts of the Alpaydin’s book discussed in the lectures,
plus on the PDF chapter to be distributed from the course web site.

e Lectures, problem sessions and doing the exercise work help.

How to Get a Grade

e You need to pass both the exercise work and the examination to pass the course.

e You will get a grade of 1-5 based mainly on the examination. You can increase your grade
by. ..

— Participating to the problem sessions diligently.
— Solving the exercise work well.

— Submitting a good answer by 1 December 2007 to the data analysis challenge of the
exercise work.

Literature

e The course follows a subset of the book: Alpaydin, 2004. Introduction to Machine Learning.
The MIT Press.

¢ Additionally, there will also be a PDF chapter on algorithmics (complexity of problems, local
minima etc.) to be distributed from the course web site.

e The lecture slides are available for download from the course web site. I have also given Edita
a permission to print them on request.

e You might also find the material — especially the errata and slides — at the |Alpaydin’s web
site| (see the link at the course web site) useful.

1.2 Relation to Old Courses
Relation to the Old Courses

e The CIS course reform: more weight on the principles of machine learning, less weight to the
neural networks beginning Autumn 2007.

e In curriculum and for the purposes of the degree requirements, this course replaces the old
course T-61.3030 (and T-61.261) Principles of Neural Computing.

e However, the contents of this course have little overlap with the old course T-61.3030 Princi-
ples of Neural Computing.

Relation to the Old Courses
See http://www.cis.hut.fi/Opinnot/T-61.3050/0ldcourses
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Old course (before Autumn 2007) New course

T-61.3030 Principles of Neural Computing T-61.3050 Machine Learning: Basic Principles
T-61.5030 Advanced Course in Neural Computing T-61.5130 Machine Learning and Neural Networks
T-61.5040 Learning Models and Methods T-61.5140 Machine Learning: Advanced Probabilistic Methods

Table 1: Correspondences in degree requirements.

Old course (before Autumn 2007) New course
T-61.3050 Machine Learning: Basic Principles
T-61.5140 Machine Learning: Advanced Probabilistic Methods

T-61.5040 Learning Models and Methods

T-61.3030 Principles of Neural Computing

T-61.5030 Advanced Course in Neural Computing T-61.5130 Machine Learning and Neural Networks

Table 2: Approximate topical correspondeces.

1.3 Contents of the Course
Very Preliminary Plan of the Topics

e Supervised learning, Bayesian decision theory, probability distributions and parametric meth-
ods, multivariate methods, clustering (mostly Alpaydin’s chapters 1-7 and appendix A)

e Algorithmic issues in machine learning, such as hardness of problems, approximation tech-
niques and their features (such as local minima), time and memory complexity in data analysis
(separate PDF chapter to be distributed from the course web site)

e Nonparametric methods (Alpaydin 8.1-8.2), linear discrimination (Alpaydin 10.1-10.8), as-
sessing and comparing classification algorithms (Alpaydin’s chapter 14)

e I'll try to keep the Alpaydin’s ordering of topics, and emphasize principles rather than to go
through all possible algorithms and methods.

What You Should Know After the Course

e After this course, you should. ..

— be able to apply the basic methods to real world data;
— understand the basic principles of the methods; and

— have necessary prerequisites to understand and apply new concepts and methods that
build on the topics covered in the course.

e This course does not include:

— all possible machine learning methods; or

— all possible applications of machine learning.

2 Chapter 1: Introduction

2.1 Examples of Machine Learning Applications
What is Machine Learning?



Definition 1. Machine learning is programming computers to optimize a performance criterion
using example data or past experience. (Alpaydin)

Examples of Applications

e Associations (basket analysis)
e Supervised learning

— Classification

— Regression
e Unsupervised learning

e Reinforcement learning (not in this course)

Association rules

e Example: sales data

— rows: customer transactions (millions)

— columns: products bought (thousands)
e Question: Can you find something interesting of this?
Association rule

“80% of customers who buy beer and sausage buy also mustard.” Or: P(mustard | beer, sausage) =
0.8.

e Accuracy (conditional probability): 0.8
e Frequency or support (fraction of clients who bought mustard, beer and sausage): 0.3
Classification

e Example: data on credit card applicants
e Question: Should a client be granted a credit card?

e Differentiate between low-risk (4) and high-risk (-) customers using their income and savings.

Discriminant
IF income> 61 AND savings> 6o THEN low-risk ELSE high-risk.



Savings

Low-Risk
o
N &
7.
& &
&
o &
Hfgf!-Rf.ﬁ'k
o &
o S
o
| >
Income

Figure 1.1 of Alpaydin (2004).
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Real |CREDIT-SCREENING, data from [UCI Machine Learning Repository.

Classification

e Classification: predict something (variate, Y'), given something else (covariate, X). Or: try
to estimate P(Y | X).

e Speech recognition: temporal dependency. Predict words, given the speech signal.
e Character recognition (OCR): different handwriting styles.

e Medical diagnosis: from symptoms to diagnosis.
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e Eye movement analysis: is the user interested in the text she is reading?

Classification

e The Internet search engines use machine learning to give the best search results, given a
query.

e Fundamental problem in information retrieval: given a query (“machine learning”), list rele-
vant documents (web sites related to “machine learning”).
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As a broad subfield of artificial intelligence, machine learning is concerned with the design
and development of algorithms and techniques that allow ...
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Classification

e Example: eye movement measurements during information search (ongoing research by the
lecturer and his friends during 2003-2007, see http://www.cis.hut.fi/projects/mi/proact))

e Question 1: Is the user interested in text she is reading?
e Question 2: What is the user interested in?

e This is a classification problem: predict relevance of a viewed document or true interest of
the user, given the eye movement trajectory.

e The problem is (was) quite difficult to solve.

Classification

e Eye movements are measured in a controlled experiment.
e A sentence (title of a scientific article) is partitioned into words.

e Most discriminative word-specific features were used (one or many fixations, total fixation
duration, reading behaviour).

e The title relevance was predicted using a discriminative machine learning models.

12


http://www.cis.hut.fi/projects/mi/proact

Pleistocene to Holocene E@qgtjg_n Dynamics in Giant 5eer and Woolly Mammoth
How to Better Use Expert Advice

Accelerating Reinforcement Learning through Implicit Imitation

Models of the Mechanism Underlying Perceived Location of a Perisaccadic Flash
Updating Frobahilities

Expression Influences the Recognition of Familiar Faces

Machine

4
Sphere—PackinV BO)/(ds Convolutional Codes

Quw State Tr4nsfer Bet\N}u/— at land |[Light
N

PAC-Bayesian el |[[Selection

-




Classification
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Classification

e For this to work, there must be a link between the relevance of a word to a topic of the user’s
interest and eye movements related to it.

e This link can be learned and used on new topics.

Xenotaws (”straﬂe—aﬁ(le lizard") is a little-understood theropﬁ of the late Xenotarsosaurus lizard") little-understood theropod late
—— —_— _— —

Cretace*”s (~83 - 73 mya). It probably weighed 0

1.0 tons. Cretaceous probably weighed tons.

The on\‘ fossjl evidence consists of-a small humber of vertebrae and leg bones, only fossil evidence consists small number of vertebrae bones,
retrieved from the‘Béjt'Ba/rreal Formation, Chubut, Argentina. From these samples, retrieved from Bajo Barreal Formation, Argentina. From these samples,
Martinez, Giminez, Rodriguez and Bochatey named the type species, X. bonapartei, Rodriguez Bochatey named type species,

in 1986. It was probably an allosaurid. probably an allosaurid.

Regression

e Regression is classification where the variate Y is a continuous variable.

e The principles in classification and regression are the same, methods differ.

e Example: fuel consumption of cars.
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e Y fuel consumption.
e X: car attributes.
e Y =G(X|0)

— G(): a model.

— 6: model parameters.

15
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Linear regression
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Regression using degree 10 polynomial

G(X)=862.8-87.6 X+...




AUTO-MPG data set from UCI Machine Learning Repository.

Uses of Supervised Learning

e Prediction of future cases: Use the rule to predict the output for future inputs.
o Knowledge extraction: The rule is easy to understand.
o Compression: The rule is simpler than the data it explains.

e Qutlier detection: Exceptions that are not covered by the rule, for example, fraud.

Unsupervised Learning

o In supervised learning, an imaginary “supervisor” tells us in the training phase what is the
correct variate (Y'), given the covariate (X). We then try to predict P(Y | X) without the
supervisor.

o Unsupervised learning is like supervised learning, except there is no supervisor telling us the
Y. We try to predict P(X). (In supervised learning we really do not care about P(X).)

e Another view: unsupervised learning is like supervised learning, except the covariate Y is
fixed, in which case we try to predict P(Y | X) = P(Y).

e Again, the principles are the same, but the methods differ.
e Example: clustering (grouping similar instances together)

e Example: probabilistic modeling (find the most likely model to describe the data, given some
prior family of models)

Clustering

e Example: European land mammals.
e Question: Can we find ecological communities?
e Question: What explains the communities?

e The 50 x 50 km map grids were grouped into clusters. Map grids within a cluster should
occupy similar mammals.

Heikinheimo et al. (2007) Biogeography of European land mammals. .. J Biogeogr.

17
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Clustering

e Endangered species appear to have least spatial coherence.

18



e The clustering can be explained mostly by temperature and precipitation.

e Somewhat surprisingly the natural factors seem to explain the mammalian metacommunity
distributions, despite a long history of intensive human presence.

19
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Other Applications of Machine Learning

Bioinformatics

Reinforcement Learning

2.2

Learning a policy: A sequence of output.
No supervised output but delayed reward.
Credit assignment problem.

Game playing.

Robot in a maze.

Multiple agents, partial observability. . .

Example: our search engine is showing an user documents. The user tells us if the shown
document is interesting. Tradeoff:

— Ezploitation: show the user documents that we think might interest her most (immediate
reward).

— FEzxploration: show the user uninteresting documents with which we would learn more of
her interests (delayed reward).

Not covered in this course.

What is Machine Learning?

What is Machine Learning?

Definition 2. Machine learning is programming computers to optimize a performance criterion
using example data or past experience. (Alpaydin)

Machine learning is using computers to analyze data.
The data is noisy, there are measurement errors etc.

We usually do not observe all factors that would be needed for certainty: we must resort to
statistics.

What is “learning”? Often, we do not want just to describe the data we have, but be able to
predict of (yet) unseen data.

21



About Generalization

e Often, it would be quite easy to make a model that would describe already known data.

e It is more difficult to...

— Say something (predict) of yet unseen data (generalization).

— Make a good (not too complex and not too simple) description of known data.

e Prior knowledge is important.

Linear regression Regression using degree 10 polynomial
© 4 G(X)=2.17+0.087 X O 4 G(X)=862.8-87.6 X+...
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= =
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What is Machine Learning?

e How does machine learning relate to data mining?
e How does machine learning relate to statistics?
e How does machine learning relate to algorithms?

e How does machine learning relate to artificial intelligence, neural networks, ...?7

Machine Learning and Data Mining

Machine learning has (depending on the speaker) a strong overlap with data mining.

Machine learning emphasizes statistical principles and methods.

Data mining emphasizes algorithms which also work on large data volumes.

Data miners may also have a modest goal of helping user to find something interesting of the
data, not attempting to make a model of the world.

22



Machine Learning and Statistics

e Modern statistics forms (with algorithms) the theoretical foundations of machine learning.

e In “traditional” statistics one typically tests single hypothesis of the data. Example: patients
with a new treatment had 80% recovery rate, while patients with the old treatment had 60%
recovery rate. Is the new treatment more effective than the old one?

Machine Learning and Algorithms

e Algorithms are needed to solve machine learning problems.

e In machine learning the algorithmic aspects (convergence, running times etc.) have not been
emphasized. This is however changing.

e Summary: there are lots of connections between machine learning and various disciplines.
The exact connections vary depending on whom you ask. The field is still developing.
2.3 Resources

Software

e There is lots of good software available. You will need some software to pass this course (for
example, exercise work). Some examples follow.

e R. An open source software for statistical computing and publication quality graphics. An
usable functional programming language. (Lecturer’s favourite.)

e Matlab. Matlab is a commercial software that is especially popular in signal processing. It is
too matrix-oriented for the lecturer’s taste. Quite a few people use it (including Alpaydin),
though. Matlab has an open source variant, GNU Octave.

e Wekal Open source Weka is a collection of machine learning algorithms for solving real-world
data mining problems. It is written in Java and runs on almost any platform. (Assistant
seems to like it.)

Datasets

e Often, finding a good data set one of the most difficult tasks in developing machine learning
methods.

UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html

UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html

Statlib: http://1ib.stat.cmu.edu/

Delve: http://www.cs.utoronto.ca/~delve/

23
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Journals

e Journal of Machine Learning Research

e Machine Learning

e Neural Computation

e Neural Networks

e IEEE Transactions on Neural Networks

e IEEE Transactions on Pattern Analysis and Machine Intelligence
e Annals of Statistics

e Journal of the American Statistical Association

Conferences

e International Conference on Machine Learning (ICML)

e European Conference on Machine Learning (ECML)

e Neural Information Processing Systems (NIPS)

e Uncertainty in Artificial Intelligence (UAI)

e Computational Learning Theory (COLT)

e International Joint Conference on Artificial Intelligence (IJCAI)

e International Conference on Neural Networks (Europe)

Questions?

Next lecture

e Next Tuesday: Chapter 2 of Alpaydin (2004), “Supervised Learning”.

e Remember the problem session next Friday at 10 o’clock.
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2nd Lecture: Supervised Learning

3 Learning a Class from Examples

3.1 Introduction

Learning a Class from Examples

e What follows is some theory of classification into two classes.

e We assume there is no noise (results can be generalized to noise, though).

e What you should learn:

Learning can be seen as pruning out possible hypothesis.

Learning is generalization (we want to predict classes of new examples).

Learning is impossible if the hypothesis space is too large (in other words: we need some
prior information, we need to select a model family)

The complexity of the hypothesis space (model family) can be characterized using the
VC dimension.

— More complex model, bigger the training data needed.

Independent and Identically Distributed (iid) Data

e We assume that we have a training data X that contains N data points drawn independently
from the identical distribution.

In other words: ordering of the data points does not matter.

Usually a good approximation.

Notable exception: time series.

Example: today’s temperature is not independent of the yesterday’s temperature, in fact,
there is a strong correlation.

20,5

30

o

Tl

ik g

A

T h\rwrha

¥

Jun  Jul  Aug  Sep Oct Now Dec  Jan Feb Mar Apr  May Jun Jul  Aug

B outside temperature

Outside temperature in Otaniemi from

http://outside.hut.fi/.
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3.2

x! r(x")

t Sky AirTemp  Humidity  Wind  Water  Forecast | EnjoySport
1 | Sunny Warm Normal  Strong Warm Same 1
2 | Sunny Warm High Strong  Warm Same 1
3 | Rainy Cold High Strong  Warm  Change 0
4 | Sunny Warm High Strong  Cool Change 1

Table 3: Aldo’s observed sport experiences in different weather conditions.

Aldo and Family Car

Does Aldo Enjoy Sport?

Question: Does Aldo enjoy sport, given weather conditions?

Assumption: we have sufficient information (6 weather attributes) that fully determine Aldo’s
enjoyment of sports (no “noise”, Aldo is deterministic).

Does Aldo Enjoy Sport?

Hypothesis h is a function from weather attributes x to {0, 1}.
Hypothesis class H is the chosen set of hypothesis.

The goal of the learner is to find a hypothesis h € H such that h(x) = r(x) for every possible
X.

One possible hypothesis class in Aldo’s case is a vector of six weather attributes. For each
attribute, the hypothesis will be either:

— 7. any value is acceptable for this attribute.
— single value (e.g., “Warm”): required value for this attribute.

— (: no value is acceptable.
If an instance x satisfies the constraints then h classifies this as a positive example, h(x) = 1.

Example: Aldo enjoys the sport only on cold days with high humidity (independent of other
attributes), this would be represented with (7, Cold, High,?,7,7).

Does Aldo Enjoy Sport?

Definition 3. Let h and g be hypothesis on X. h is more general than or equal to g (written
h > g) if and only if

Vxe X :g(x)=1= h(x)=1.

Examples:

The most general hypothesis is represented by (7,7,7,7,7,7) (every day is a positive example).
The most specific hypothesis is represented by (0,0,0,0,0,0) (no day is a positive example).

h = (Sunny,?,?7,7,7,7) is more general than g = (Sunny,?,?, Strong,?,?), or h = g.
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Does Aldo Enjoy Sport?

Definition 4 (Consistent Hypothesis). A hypothesis h is consistent with a set of training examples
X if and only if h(x) = r(x) for each example (x,7) € X.

Definition 5 (Version Space). The version space is the set of all hypothesis that are consistent
with the training examples.

Does Aldo Enjoy Sport?

e Question 1: What are the most general hypothesis that are consistent with the training data
(4 days of observation of Aldo)? (general boundary G)

e Question 2: What are the most specific hypothesis that are consistent with the training data?
(specific boundary S)

Theorem 6 (Version Space Representation Theorem). Let G and S the most general and most
specific hypothesis that are consistent with the training data. Then all hypothesis that are consistent
with the training data (version space) are given by

{heH|(3s€S8)(FgeG):g9g=h=s}.
Does Aldo Enjoy Sport?

G = {(Sunny,?,72,2,2.?7),(?, Warm,?,7,7.7)}

(Sunny,?.?, Strong,?,7) (Sunny, Warm,?,7,7,7) (?, Warm,?, Strong,?,7?)

S = {(Sunny, Warm,? Strong,?,7)}

t

b r(x")
t ‘ Sky AirTemp  Humidity ~ Wind  Water  Forecast | EnjoySport
1 | Sunny Warm Normal  Strong Warm Same 1
2 | Sunny Warm High Strong  Warm Same 1
3 | Rainy Cold High Strong Warm  Change 0
4 | Sunny Warm High Strong  Cool Change 1

See Mitchell (1997) and CANDIDATE-ELIMINATION algorithm for details.

Does Aldo Enjoy Sport?
e One of the consistent hypothesis could be the “truth”. For others we get some error:

Definition 7 (Error of Hypothesis).

1 N
E(h|X)= NZ1 # ')



e Given enough training samples, we might be able to end up with only one consistent hypoth-
esis.

e Given enough training samples, we might end up with no consistent hypothesis if:

— If none of the hypothesis in the hypothesis class is correct. (For example, if Aldo would
enjoy sport only if (sky is sunny and wind is strong) or (sky is rainy and wind is light).)

— If there is noise (e.g., some positive examples are incorrectly observed as negative exam-
ples).

Does Aldo Enjoy Sport?

e If none of the hypothesis in the hypothesis class is correct we might end up with no consistent
hypothesis.

e “Solution”: include all possible hypothesis into the hypothesis class! In the Aldo’s case, there
are 22° = 1.8 x 1019 possible hypothesis (number of boolean functions with 6 inputs).

e This does not work (even if we could compute): we could not say anything of the unseen
cases.

e Inductive bias: we must restrict the allowed hypothesis to be able to generalize (predict classes
of new instances).

e The selection of hypothesis space is called model selection.
e Underfitting: the hypothesis space is too simple.

e Querfitting: the hypothesis space is too complex.

A Family Car

e Question 1: Is car x a family car, given car properties?
e Question 2: What do people expect from a family car?
e Car properties: x = (price, engine power).

e Hypothesis: h(x) =1 if car is a family car.

A Family Car
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x,: Engine power

| ! .

x,: Price
Figure 2.1 of Alpaydin (2004).

X = {Xtvrt}i\il

. 1 if x is positive
| 0if x is negative

( X1 >
X =

X9
A Family Car
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x,: Engine power

N

S

‘ >

? x,: Price
I Figure 2.2 of
Alpaydin (2004).

'r(x) _ 1 p1 < price < p2 Aer < engine power < em
1 0 otherwise

A Family Car
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x,: Engine power

>

x,: Price
Figure 2.4 of Alpaydin (2004).

Error of h in X:
N

E(h|X)= Z

=1

h € H between S and G is consistent and make up the version space (error in X is zero). Notice
that if S and G are close the error on new data will be smalll

e The hypothesis class H is the set of all rectangles.
e The cars between the most general (G) and most specific (S) hypothesis may be classified

incorrectly. C' is the correct hypothesis.
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What did we learn from Aldo and Family Cars?

e We must choose some hypothesis to be able to predict anything (unless we observe all possible
data values). (model selection)

e This causes inductive bias (the choice of hypothesis space affects your results).
e All consistent hypothesis can be found between the most general and most specific hypothesis.

e There may be no consistent hypothesis due to too simple hypothesis space (underfitting) or
noise. These must be taken into account in practical applications.

3.3 PAC Learning and VC Dimension
Probably Approximately Correct (PAC) Learning

e How many training examples N should we have, such that with probability of at least 1 — 6,
any consistent hypothesis h has error at most €?

Probably Approximately Correct (PAC) Learning

Theorem 8. The probability that version space has no hypothesis with error greater than € is at
most |H|e=<N . (Assume finite hypothesis class H.)

Proof. The probability that a hypothesis that has an error greater than e is consistent with one
randomly drawn example is at most 1 — e¢. Therefore, the probability that this hypothesis is
consistent with N independently drawn examples is at most (1 — ¢). There are at most |H|
hypothesis that have an error greater than e. The probability that there is at least one hypothesis
in the version space with an error greater than e is at most |H|(1 — )V < [H|e™V. O

It follows that [H|e=*N < §, or N > 1 (In|H| +In(1/5)).

Probably Approximately Correct (PAC) Learning

Theorem 9 (Probably Approximately Correct (PAC) Learning). We should have N training ex-
amples to have an probability of at least 1 — & that any consistent hypothesis h has error at most e,
where

N > E <ln\'H|+ln1)
€ 0

If we accept that the best hypothesis might have a non-zero training error (often case in practice)
the limit becomes

1 1

where the obtained error will be with probability 1 — § no more than E(hpest | X) + €, where
E(hpest | X) is the error of the best hypothesis.
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e H shatters N points if there exists h € H consistent for all 2V labellings.

e N points can be labelled 7/ = 0/1 in 2V ways.

Vapnik-Chervonekis (VC) Dimension
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Definition 10 (VC Dimension). VC Dimension is the largest number N of points that can be

shattered by H.

Rectangles can shatter four points, VC = 4. Figure 2.5 of Alpaydin (2004).

PAC Bound using VC Dimension



Theorem 11. We should have N training examples to have an probability of at least 1 — & that
any consistent h has error at most €, where

1 2 13

e We can use the VC dimension instead of In|H| as a measure of model complexity.
e Lesson: larger VC dimension, more complex model, more training samples are needed.

e (See Mitchell (1997), chapter 7, for details.)

What Did We Learn of PAC Learning and VC Dimension?

e Hypothesis class complexity (or model complexity) can be evaluated using the VC dimension.

e More complex model, more data you need to learn (learning is ability to describe the true
hypothesis with a given confidence).

e PAC bounds are extremely conservative, in practice (when we also have noise) we usually
need significantly smaller data sets.

4 Noise and Regression

4.1 Noise

Noise and Model Complexity
e Noise is unwanted anomaly of data.
e Because of the noise, we may never reach zero error.
e Noise may be caused by:

— Errors in measurements of input attributes or class labels.

— Unknown or ignored (hidden or latent) attributes.

Noise is best treated probabilistically (next lectures).

Why to use simpler model:

— simpler to use

easier to train

— easier to explain

— generalizes better
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Figure 2.7 of Alpaydin (2004).

4.2 Regression

Regression
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y: price

I I
x: milage
Figure 2.9 of Alpaydin (2004).
Regression

e Classification is the prediction of a 0-1 class, given attributes.

e Regression is the prediction of a real number, given attributes. (Usually with noise.)

e The training set is given by X = {xt, rt}i\il, where rt € R.

36



e We imagine that the 7! are given by some function r! = f(x!,z!), where z

hidden variables.

t are some unknown

e The role of hypothesis is taken by the model g(x). We would like to find a model such that
g(x') = r! for all items in the training set.

e Usually, we want to minimize a quadratic error function,

E(g|X)= (r' —g(x

||Mz

Linear Regression
e The simplest case is linear regressor: g(x) = wy + wiX.

e Optimization task: find wg and wy such that the error E(g | X) = Zt L (rt = (wo + wix ))2
is minimized.

Analytic solution:

S atrt —TrN
w =
b @) - N
wy = T —wWT,

where 7 =Y, x'/N and 7 = ), r'/N
Linear Regression

e Toy data: we have generated 100 data points using sin(X/7) in interval [—1, 1], added with
Gaussian random noise.

We randomly selected 7 data points to act as the training data (shown in black).

Solution: g(x) = 0.12 + 1.37x.

Error on training data: E(g | X') = 0.0032.

Error on the remaining 93 points: 0.21 (much larger than on training datal)
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1.5

1 --- sin(X/m)
—— degree 1 polynomial

1.0

-1.5

-1.0 -0.5 0.0 0.5

Linear Basis Functions
We can generalize linear regression using k basis functions ¢;(x),

k
g(x) = > wigh(x),
=0

where usually ¢o(x) = 1.
e A common choice: ¢;(x) = x* (polynomial basis).

e ¢;(x') can be computed beforehand and w; can be solved using linear algebra.
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e In practice, there are lots of good software packages available that do the solving for you.
e Clearly, a high degree polynomial can represent a lower degree polynomial as a special case.

e Higher degree polynomial means larger hypothesis space or model family.

Polynomial Regressors
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1.5

1.0

0.0 0.5

-0.5

-1.0

-1.5

--- sin(X/m)
—— degree 1 polynomial

-1.0 -0.5
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1.5

1.0

0.0 0.5

-0.5

-1.0

-1.5

--- sin(X/m)
—— degree 2 polynomial

-1.0 -0.5
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1.5

1.0

0.0 0.5

-0.5

-1.0

-1.5

--- sin(X/m)
—— degree 3 polynomial

-1.0 -0.5 0.0 0.5
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-0.5

-1.0

-1.5

--- sin(X/m)
—— degree 4 polynomial
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--- sin(X/m)
—— degree 5 polynomial
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legree 6 polynomial

sin(X/m)
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e Errarn is the error in the training data. It decreases as model complexity increases.

e Erpgr is the error on the remaining 93 data points (“test set”). It has minimum at k = 3.

Errary - Bresr | gla | wo,...,wp) = 38w X'
0.580 0.541 | —0.14
0.077 0.294 | +0.1241.37X
0.076 0.275 | +0.17 4+ 1.33X — 0.18 X2
0.057 0.057 | +0.17+2.22X —0.35X2 — 2.00X°
0.046 0.562 | 40.02 +2.67X +2.23X% —3.19X°% — 4.73X*
0.035 4.637 | +0.21 +3.28X — 2.70X% —11.88X° + 5.24X* + 15.82X°
0 10° | —5.86 4+ 57X + 186X2 — 875X 3 — 1490X*
+1634X° + 2412X°

DU W= O

Table 4: Polynomial regressors.

N  Errain  Erpst
7 0.0131 1.2187
10 0.0141 0.0821
15 0.0202 0.0761
20 0.0300 0.0511
25 0.0328 0.0507
30 0.0318 0.0573
35 0.0380 0.0494
40 0.0405 0.0484
45 0.0400 0.0476
50 0.0388 0.0473

Table 5: Effect of the size of the training data, k = 5.

Polynomial Regressors

Polynomial Regressors
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1.5

1 --- sin(X/m) °
—— Polynomial of degree 5 e * 5

1.0
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-1.0 -0.5 0.0 0.5 1.0

4.3 Validation
Validation

e Error on training set:

— Decreases as model becomes more complex.

— Increases as number of data points grows.

e We want to minimize generalization error or error on test set:
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— Has a minimum at certain model complexity.

— Decreases and approaches training set error as number of data points grows.

e How to minimize error on test set when we have no access to test set?

Validation

o To estimate generalization error, we need data unseen during training. We split the data in
random as

— training set (50%)
— validation set (25%)
— test set (25%)

e Train models of different complexities on training set. Pick a model complexity that gives
smallest validation set error.

e Train model on combined training and validation set. Report test set error.

Validation
e We are given 20 points from our sinusoidal curve data set.
e Divide the data in random to training (10), validation (5) and test (5) sets.

e Train regressors of different complexities on training set:

kE___ErTRrRAIN EvarLip
0 0.492 0.644
1 0.091 0.125
2 0.090 0.137
3 0.044 0.041
4 0.044 0.049
5 0.042 0.142
6 0.030 18.820
7 0.025 181.850
8 0.024 34.014
9 0 10°

e Validation set error is minimized for the degree 3 polynomial (k = 3). Pick degree 3 polyno-
mial.

Validation

e Train degree 3 polynomial on 15 points (training+validation set) and report the results on
the test set:

k  Errain+varip Erest
3 0.0378  0.0594

e If we would like to make predictions we should train on all 20 points (training+validation+test
set). We know that the error on new data points should be approximately at most 0.0594.

e Training with all 20 points in fact gives slightly smaller error (0.0557) on 80 newly sampled
data points.
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5 Conclusion

5.1 About Supervised Learning

Model Selection and Generalization

e Learning is ill-posed problem: data is not sufficient to find unique/correct solution.

e Inductive bias is needed; we need assumptions about the hypothesis class (model family) H.

Generalization: how well model performs on new data.

Overfitting: H more complex than C' or f.

Underfitting: H less complex than C or f.

Triple trade-off (Diettrich 2003):

— complexity of H;
— amount of training data; and

— generalization error on new data.

Dimensions of a Supervised Learner
1. Model: g(x | ).
2. Loss function: E (6 | X) = + Zi\;l L(rt, g(x"]9)).
3. Optimization procedure: 6 « argming E (6 | X).

5.2 Better Basis Functions

Polynomial Basis
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Chebyshev Polynomials of the First Kind

Chebyshev Polynomials of the First Kind

1.0

Ta(X)
0.0
|

- T

-1.0

I I
0.0 0.5 1.0

X

T3(X) = 4X3 — 3X
T4(X) =8X* —8Xx2 +1

To(X) =1
Ts(X) = 16X° — 20X°3 +5X

Ti(X) =X
Th(X)=2X2 -1

Chebyshev Polynomials of the First Kind

e Chebyshev Polynomials are orthogonal polynomials in X € [—1, 1].
e Def.: T),(cosf) =cosnb, n € {0,1,...}.

e Recurrence relation: Tj,19(x) = 227511 (x) — Ty ()

e Chebyshev Polynomials are useful in numerical analysis:
— max T, (z) = +1, minT,,(z) = —1. (X" basis also satisfies this in X € [-1,1].)
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k | Brraiv  Erpsr | g(z |wo,. .. ,we) = 38 wiTi(X)

0| 0580 0541 | —0.1470(X)

1| 0077 0204 | +0.1270(X) + 1.37T3(X)

2| 0076 0275 | +0.08Tp(X) + 1.33T(X) — 0.09T3(X)

3| 0057 0.057 | —0.01T0(X) + 0.7271(X) — 0.18T3(X) — 0.5075(X)

4 0.046  0.562 | —0.64Tp(X) + 0.287T3(X) — 1.25T5(X) — 0.80T3(X)
—0.59T4(X)

5| 0035  4.637 | +0.83T0(X) +4.26T3 (X) + L.27T5(X) + 1.97T3(X)
+0.65T4(X) + 0.9975(X)

6 0 100 | +282.4Tp(X) + 422.6T3 (X) + 478.9T3(X) + 291.8T5(X)
+266.074(X) + 102175 (X) + 75.3T5(X)

Table 6: Chebyshev regressors; compare the magnitude of the terms to the X" basis.

X)=1 T3(X) = 4X3 - 3X
T(X)=X Ty(X)=8X*-8X2+1
X)=2X2-1 Ty(X)=16X°—-20X3+5X
Te(X) = 32X0 —48X* +18X2%2 — 1

Table 7: |Chebyshev Polynomials of the First Kind.

— The maxima and minima are spread reasonably uniformly over [—1,1]. (Comparing, in
X"™ basis the maxima and minima are only in X = —1 and X = +1.)

— In least squares regression, the Chebyshev basis is analytically equivalent but numerically
much more robust than the commonly used X" basis especially for larger (> 10) degrees.

To(X)=1T1(X)=X; To(X) =2X? — 1; T5(X) = 4X3 — 3X; Ty(X) = 8X* —8X?% + 1;
Ts(X) = 16X° — 20X +5X; ...

Conclusion

e No problem session this week, next problem session on 28 September.

e This week’s problem sheet contains a small data analysis task (for 28 September). [Will be
in the web later today, hopefully.]

e Next lecture on 25 September: Bayesian Decision Theory, Alpaydin (2004) Ch 3.

6 Supervised Learning

6.1 Elements of a Learner

Dimensions of a Supervised Learner

Model
g(x|0)
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Loss Function
N

E(0]X) = %ZL (', g(x" | 0)).
t=1

Optimization Procedure

0 — argmeinE(H | X).

6.2 Generalization

Model Selection and Generalization

- testset Y --- testset
—— training set N —— training set

error
error

model complexity training set size

e empirical error = error on training set
e generalization error = error on test set

e We see empirical error, but want to minimize the error on new data.

Validation

Question 1
What is the correct model complexity?

Question 2
What is the generalization error?

e To answer the Question 1 divide the data into training and validation sets. Choose model
complexity that has the smallest error on the validation set.

e To answer the Question 2 divide the data into training and test sets. The generalization error
is approximately the error on the test set.
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e To answer both questions the data should be divided into training, validation and test sets.
e There are more efficient methods, such as cross-validation.
Model Selection and Generalization

e Learning is ill-posed problem: data is not sufficient to find unique/correct solution.

e Inductive bias is needed; we need assumptions about the hypothesis class (model family) H.

Generalization: how well model performs on new data.

Overfitting: H more complex than C' or f.

Underfitting: H less complex than C or f.

Triple trade-off (Diettrich 2003):

— complexity of H;
— amount of training data; and

— generalization error on new data.

7 Bayesian Decision Theory

7.1 Probabilities

Basic of Probability
¢ You should know basics of probability (Mat-1.2600/2620 or Appendix A of Alpaydin (2004)).
e Probability can be interpreted as a frequency or degree of belief.

e Sample space S: the set of all possible outcomes.

Event E C S: one possible set of outcomes.

Probability measure P satisfies:

- P(S)=1.
—0<PE)<1lforall ECS.
- ECSANFCSANENF=0=P(EUF)=P(E)+ P(F).
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Rules of Probability

e Interpret E, F' as random variables getting values of e, f (coin tossing example: E can get a
value of e € {heads, tails}, F' can get a value of coin landing in f € {table, floor}).

e P(E,F) = P(F, E): probability of both E and F' happening.

o P(E)=) pP(E,F) (sum rule, marginalization)

e P(E,F)= P(F | E)P(FE) (product rule, conditional probability)

e Consequence: P(F' | E)=P(E | F)P(F)/P(FE) (Bayes’ formula)

e We say F and F are independent if P(E,F) = P(E)P(F) (for all e and f).

e We say E and F are conditionally independent given G if P(E,F | G) = P(E | G)P(F | G),
or equivalently P(E | F,G) = P(E | G).

Fruits in Boxes

=r,F=a)=nga/n=1/6.
B

P(B

( ) Zxé{a,o}P(B:T’F:l‘):nRA/n+nRO/n:nR/n:2/3.
P(F =o0|B=r)=ngo/nr =3/4

PB=r|F=o0)= P(F=0]B=r)P(B=r)/P(F=o)=%><

CC
OO0
OO0 1000

~IS
I

oo
\}Ia
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apples oranges >

red box nNRA = 2 nrRo =6 nr =8

blue box npa =3 npo =1 ng =4
b2} npg=>5 no =17 n =12

Table 8: Count of fruits in two boxes.

Fruits in Boxes

e B and F are random variables which can take two values (r or b; a or o, respectively).

e We computed probabilities of events of drawing one fruit in random such that the probability
of drawing each fruit is 1/12, independent of the box or type.

e We viewed the probabilities as frequencies.

e When all prior information (e.g., counts of the fruits in the boxes) is not known the probabil-
ities turn into degrees of belief (it may be still easier to think them as frequencies, though).

Estimating Probability

e In real life, estimating the probabilities of various events from a sample is difficult.
e For the purposes of today, we mostly assume that someone gives us the probabilities.
e Today we can estimate the probabilities with sample frequencies.

— Example: Someone is tossing a 0—1 coin that gives X = 1 with probability P(X =1) =p
and X = 0 with probability P(X = 0) = 1 — p (Bernoulli distribution). We notice he
got ny ones and ng zeroes in a sample of N = nj + ng tosses. Based on this sample, we
can estimate p with p = n;/N.

7.2 Classification
Using Probabilities Classification

e Someone is tossing a 0-1 coin that gives X = 1 (HEADS) with probability P(X = 1) = p and
X =0 (TAILS) with probability P(X = 0) = 1 — p (Bernoulli distribution).

e Task: make a classifier for the next toss.
e Prediction: Choose X =1 (HEADS) if p > 1/2, X = 0 (TAILS) otherwise.
Using Probabilities in Classification

e Task: classify a customer HIGH RISK (C' = 1) or LOW RISK (C' = 0) based on her income (1)
and savings (z2).

e Assume P(C | z1,x2) is known.
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Prediction:

C=1if P(C=1]|z1,22)> 3,
choose { C=0 otherwise.
or equivalently
choose C=1 if P(C:l|.731,1‘2)ZP(C:0|331,1'2),
cC=0 otherwise.
Zn A
= .
= Low-Risk
7
v <
0, A
- HJ'gJ'rJ'-RI.i'k
| >
Income
E. 1
Figure 1.1 of Alpaydin (2004).
Bayes’ Rule
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likelihood x prior

posterior = -
evidence

o P(x| C) x P(C)

P(x)

P(C|x) =
e The likelihood P(x | C = 1) is the probability that a HIGH RISK customer (C' = 1) has the
associated observed value x. (This is usually easy to compute.)
e The prior probability P(C = 1) is the probability of observing C' =1 (before x is known).

e The evidence P(x) is the marginal probability that an observation x is seen, regardless of the
value of C. (This is usually difficult to compute directly.)

Using the sum and product rules we obtain:
o« P(C=0)+P(C=1)=1.
¢« P(C=0|x)+P(C=1]|x)=1.
o P(x)=P(x|C=1)P(C=1)+P(x|C=0)P(C =0).

Bayes’ Rule

P(x | C;)P(Ci) P(x | C;)P(Ci)

P(Ci|x) = P(x) T YR P(x | CP(Cy)

o P(C})>0and Y1, P(Cy) = 1.
e Naive Bayes Classifier: choose C) where k = arg maxy P(Cy | x).

e A customer is associated with vector x such that P(x | C' = 1) =0.002 and P(x | C =0) =
0.001.

e 20% of the customers are HIGH RISK (C' = 1), we therefore set the prior probabilities to
P(C=1)=0.2and P(C=0)=0..8.

e Inserting in equation we obtain P(C' =1 | x) = 0.33 and P(C =0 | x) = 0.67, we therefore
classify the customer as LOW RISK (C' = 0).

7.3 Utility Theory
Risks and Losses

e Often, the cost of errors differs. For example, a wrong decision to grant credit may be much
more costly than a wrong decision not to grant credit.

e Decision theory: how to make optimal decisions, given all available information.

e At each time, you can choose one action c.
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e Action «; causes loss \j, when the state is Cj.

A | C=0 c=1
g = grant credit EUR 0 EUR 1000
a1 = don’t grant credit | EUR 100 EUR 0

o Expected risk: R(ay | x) = E [A\ig] = Zszl Ait P(Cy | x).
e Choose «; where i = arg min; R(q; | x).
Risks and Losses

e 0/1 loss:

0 i=k
Am_{li#k

K
R(ei |x) = Y AnP(Ci|x)

k=1

= ) P(Cy|x)
oy

— 11— PG x).

For minimum risk, choose the most probable class.

Risks and Losses

e Assume mis-classification has a cost of 1 (0/1 loss).

e Assume (almost) certain classification (e.g., by a human expert) has a cost of .

Define additional action REJECT a1 and loss by

0 1=k
ik = A i=K+1
1 otherwise

R(ag1 | %) = S50, AP(Ck [ %) = A

R(ai | %) = ¥y P(Ci | ) = 1 - P(Ci | x).

Ck if k=argmax; P(Cy|x)and P(Cy | x)>1—X\
reject otherwise

Choose {
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Discriminant Functions

e Discriminant function: choose a; where i = arg maxy, gi(x), where

—R(oy | x)

gr(x) = { P(Cy | x)
p(x | Cr)P(Ck)

e K decision regions Rq, ..., Ri:

Ri = {X | i = argmgxgk(x)} .

C

1

S

Figure 3.1 of Alpaydin (2004).
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Discriminant Functions
e Dichtotomizer (K = 2) vs. Polychotomizer (K > 2)
o g(x) = g1(x) — g2(x): choose C] if g(x) > 0, Cy otherwise.
e Log odds:

Utility Theory
e In utility theory, one usually tries to maximize expected utility (instead of minimize risk).
o Utility of a; when state is k: Ujp,
EU(a; | x) = E[Uy] =) UiP(Ck | x).
k

e Choose a; where i = argmax; FU («; | X).
e (Choosing U, = d0;x log P(Cy, | x) makes utility equal to information and leads to probabilistic
modeling.)
Utility Theory
e Utility of using x only is EU(x) = max; EU(q; | X).
e Utility of using x and new feature z is EU(x, z) = max; EU(«; | x, 2).
e zis useful if EU(x, z) > EU(x).

e You should probably measure z if the expected gain in utility, EU(x, 2) — EU(x) exceeds the
measurement costs.

Decision Theory in Court
e Classification problem GUILTY vs. NOT GUILTY.

e Typically, DNA evidence has small match probabilities. How should it be combined with
other evidence?

e Sentencing innocent should have a higher loss.

e R v. Denis John Adams.

Instructions to the Jury?

Suppose the match probability is 1 in 20 million. That means that in Britain (population about 60 million) there
will be on average about 2 or 3 people, and certainly no more than 6 or 7, whose DNA matches that found at the
crime scene, in addition to the accused. Now your job, as a member of the jury, is to decide on the basis of the
other evidence, whether or not you are satisfied that it is the person on trial who is guilty, rather than one of the few
other people with matching DNA. We don’t know anything about the other matching people. They are likely to be
distributed all across the country and may have been nowhere near the crime scene at the time of the crime. Others
may be ruled out as being the wrong sex or the wrong age group.
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x! r(x")

t Sky AirTemp  Humidity  Wind  Water  Forecast | EnjoySport
1 | Sunny Warm Normal  Strong Warm Same 1
2 | Sunny Warm High Strong  Warm Same 1
3 | Rainy Cold High Strong  Warm  Change 0
4 | Sunny Warm High Strong  Cool Change 1

Table 9: Aldo’s observed sport experiences in different weather conditions.

8 Bayesian Networks

8.1 Basics
Graphical Models

o Graphical models are diagrammatic representations of probability distributions.
e Advantages:

— The structure is more apparent in graphical representation.
— Properties of the model, such as conditional independence, are easy to see.
— Complex computations are reduced to graphical manipulations.

e Variations:

— Bayesian networks (belief networks, probabilistic networks) [today]
— Markov random fields

— Factor graphs
e Applications:

— Construction of probabilistic models

— Biological networks (see T-61.6070 Modeling of biological networks)

Bayesian Networks

e How to efficiently represent joint probability distributions such as P(Sky, AirTemp, ..

(useful in computing Aldo’s sport preferences P(EnjoySport | Sky, ..., Forecast))

Bayesian Networks
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http://www.cis.hut.fi/Opinnot/T-61.6070/

Example 1:
P(A,B,C)=P(A|C)P(B|C)P(C).
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Example 2:
P(A,B,C)=P(A| B,C)P(B | C)P(C).

Bayesian Networks
Bayesian network is a directed acyclic graph (DAG) that describes a joint distribution over the
vertices X1,...,X4 such that

d
P(Xy,...,Xq) = H P(X; | parents(X;)),
i=1

where parents(X;) are the set of vertices from which there is an edge to Xj.
e Example 1: P(A,B,C)=P(A|C)P(B|C)P(C).
e Product rule: P(A,B,C)=P(A,B|C)P(C)=P(A|B,C)P(B|C)P(C).
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° Generally: P(Xl, e ,Xd) = P(Xd | Xl, N ,Xd—l) .. .P(X2 | Xl)P(Xl).

e Example 2: All joint distributions P(X71,. .., X4) can be represented by a graph with d(d—1)/2
edges.

8.2 Inference

Causes and Bayes’ Rule

Rain P(R)=0.4

P(W|R)=0.9
Wet grass POW| ~R)=0.2

Figure 3.2 of Alpaydin (2004). P(W,R) = P(W | R)P(R)

Diagnostic inference: Knowing that grass is wet, what is the probability that rain is the cause?
P(W | R)P(R)
PW)
P(W | R)P(R)
P(W | R)P(R) + P(W |~ R)P(~ R)
0.9x0.4

= 00x04t02x06 07

P(R|W)




Causal vs. Diagnostic Inference

P(S)=0.2 P(R)=0.4

If the
sprinkler is on, what is the
probability that the grass is wet?

PMS) = AWR,S) P(RIS) +

pov|RS-095 . PVM=RS) A~R(S)
P R~s5)-000 — PUMR.S) AR) +
P(W | ~R,8)=0.90 P(WI~R,S) P(~R)

PW|~R~S)=0.10 =0.950.4+0.9 0.6 =0.92

If the grass is wet, what is the probability
that the sprinkler is on? P(S|W) = 0.35 > 0.2 P(S)
P(S|IR,W) = 0.21 Knowing that it has rained
decreases the probability that the sprinkler is on.

(2004) Ch 3 / slides

Alpaydin

Bayesian Network: Causes

P(C)=0.5

Causal inference:

PWIC) = PWIR,S) PR,SIC) +
P(R| Cy-0.8 PW~R,S) P~R,S|C) +
PR|~0)=0.1 PWR,~S) P(R~SIO) +
PW~R,~S) P(~R,~SIO)

P(S| C)=0.1
P(S | ~C)=0.5

and use the fact that
P(R,S|C) = P(R|C) P(SIC)

P(W | R,5)=0.95 Diagnostic: (CIW) = ?
P(W | R,~8)=0.90

P(W | ~R,S$)=0.90

P(W|~R~85)=0.10

Alpaydin
(2004) Ch 3 / slides
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Bayesian Networks: Local Structure

P(C)=0.5

P(S| ©)=0.1
P(S|~C)=0.5

P(R| C)=0.8

P(R | ~C)=0.1 P(F|O)="7?

P(W | R.5)=0.95
P(W | R~S)=0.90
P(W | ~R.S)=0.90
P(W | ~R~8)=0.10

P(F | R)=0.1
P(F | ~R)=0.7

P(C,S,R,W,F)= P(C)P |C)P(R|C)P(W | S,R)P(F | R)
P(X,,...X,)=[]P(X, | parents(X,))

l:]. Alpaydin
(2004) Ch 3 / slides

Bayesian Networks: Inference
e P(C,S,R,W,F)=P(F|RPW|R,S)P(R|C)P(S|C)P(C).
o P(C,F)=>% > r>wP(C,SRWF).
e P(F|C)=P(C,F)/P(C).
e More generally: To do inference in Bayesian networks one has to marginalize over variables.
e For example: P(X1) =3y, ...> x, P(X1,..., Xa).
e If we have Boolean arguments the sum has O(297!) terms. This is inefficient!
e Generally, marginalization is a NP-hard problem.
e If Bayesian Network is a tree: Sum-Product Algorithm
e If Bayesian Network is “close” to a tree: Junction Tree Algorithm

e Otherwise: approximate methods (variational approximation, MCMC etc.)
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Sum-Product Algorithm

e Idea: sum of products is difficult to compute. Product of sums is easy to compute, if sums
have been re-arranged smartly.

e Example: disconnected Bayesian network with d vertices, computing P(X7).

— sum of products: P(X1) =3 x, ... > x, P(X1)... P(Xq).

— product of sums: P(X1) = P(X1) (X, P(X2)) ... (zxd P(Xd)> = P(X)).
e Sum-Product Algorithm works if the Bayesian Network is directed tree.

e For details, see e.g., Bishop (2006).

Sum-Product Algorithm

P(A,B,C,D) = P(A| D)P(B | D)P(C | D)P(D)

Task: compute P(D) =, > 53 P(A,B,C, D).
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P(AID) PBID) | | P(CID)

Slote

P(A,B,C,D) = P(A| D)P(B | D)P(C | D)P
e Factor graph is composed of vertices (ellipses) and factors (squares), describing the factors of
the joint probability.

e The Sum-Product Algorithm re-arranges the product (check!):

P(D)

(o) (o) (g
> 3> P(A B,C,D). (1)

A B C

Observations

e Bayesian network forms a partial order of the vertices. To find (one) total ordering of vertices:
remove a vertex with no outgoing edges (zero out-degree) from the network and output the
vertex. Iterate until the network is empty. (This way you can also check that the network is

DAG.)

e If all variables are Boolean, storing a full Bayesian network of d vertices — or full joint
distribution — as a look-up table takes O(29) bytes.

e If the highest number of incoming edges (in-degree) is k, then storing a Bayesian network of
d vertices as a look-up table takes O(d2F*1) bytes.

e When computing marginals, disconnected parts of the network do not contribute.

e We can marginalize over unknown (hidden) variables.
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Bayesian Network: Classification

P(C)
Bayes’ rule inverts the arc:
_p(x1C)P(C)
p(x|0) PCIx)= p(x)

Alpaydin
(2004) Ch 3 / slides

Naive Bayes’ Classifier
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Given C, x; are independent:

p(X|C) = p(x1|C) p(x,|C) ... p(x4lC

(2004) Ch 3 / slides
8.3 Finding a Network
Finding a Network

e Often, the network structure is given by an expert.
e In probabilistic modeling, the network structure defines the structure of the model.

e Finding an optimal Bayesian network structure is NP-hard (given some complexity criterion,
described in later lectures).

Finding a Network
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t ‘ Sky AirTemp  Humidity ~ Wind  Water  Forecast ‘ EnjoySport
1 | Sunny Warm Normal  Strong Warm Same 1
2 | Sunny Warm High Strong  Warm Same 1
3 | Rainy Cold High Strong Warm  Change 0
4 | Sunny Warm High Strong  Cool  Change 1

e Full Bayesian network of d vertices and d(d — 1)/2 edges describes the training set fully and

the test set probably poorly.

e As before, in finding the network structure, we must control the complexity so that the the

model generalizes.

e Usually one must resort to approximate solutions to find the network structure (e.g., DEAL

package in R).

o A feasible exact algorithm exists for up to d = 32 variables, with a running time of o(d?29~2).

e See Silander et al. (2006) A Simple Optimal Approach for Finding the Globally Optimal
Bayesian Network Structure. In Proc 22nd UAIL (pdf)

Finding a Network

Conclusion

http://b-course.hiit.fi/bene

Network found by Bene at

e Next lecture on 2 October: Parametric Methods, Alpaydin (2004) Ch 4.
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e Problem session on 28 September: last week’s (2/2007) and this week’s problem sheets
(3/2007).

9 Bayesian Networks

9.1 Reminders

Rules of Probability
e P(E,F)= P(F,E): probability of both E and F' happening.
e P(E) =) pP(E,F) (sum rule, marginalization)

e P(E,F)=P(F | E)P(E) (product rule, conditional probability)

Consequence: P(F' | E)=P(E | F)P(F)/P(F) (Bayes’ formula)

We say E and F are independent if P(E, F) = P(E)P(F) (for all E and F).

We say E and F are conditionally independent given G if P(E,F | G) = P(E | G)P(F | G),
or equivalently P(E | F,G) = P(E | G).

Bayesian Networks
Bayesian network is a directed acyclic graph (DAG) that describes a joint distribution over the
vertices X1,...,X4 such that

d
P(Xy,...,Xg) = [[ P(Xi | parents(X;)),
=1

where parents(X;) are the set of vertices from which there is an edge to Xj.

SION

9.2 Inference

(A,B,C)=P(A|C)P(B|C)P(C). (A and B are conditionally
independent given C.)

Inference in Bayesian Networks

e When structure of the Bayesian network and the probability factors are known, one usually
wants to do inference by computing conditional probabilities.

e This can be done with the help of the sum and product rules.
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e Example: probability of the cat being on roof if it is cloudy, P(F' | C)?

P(C)=0.5

P(S10C)=0.1
P(S 1 ~C)=0.5

P(R1C)=0.8
P(R | ~C)=0.1

P(WIR,S$)=0.95
P(WIR,~5)=0.90
P(W1~R,5)=0.90
P(WI~R,~5)=0.10

P(F1R)=0.1
P(F |1 ~R)=0.7

Wet grass

Figure 3.5 of Alpaydin (2004).

Inference in Bayesian Networks

e Example: probability of the cat being on roof if it is cloudy, P(F' | C)?
e S, R and W are unknown or hidden variables.

e F and C are observed variables. Conventionally, we denote the observed variables by gray
nodes (see figure on the right).

We use the product rule P(F' | C') = P(F,C)/P(C), where P(C) =), P(F,C).

We must sum over or marginalize over hidden variables S, Rand W: P(F,C) =3 ¢> p> w P(C,S,R, W, F)
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P(F,C) =

P(C,S,R,W,F)+ P(C,—S8,R,W,F)
+P(C,S,—R,W,F)+ P(C,—S,—R,W, F)
+P(C,S,R,~W,F) + P(C,—S,R,—W, F)
+P(C,S,—R,—-W,F) + P(C,—S,—R,—W, F)

We obtain similar formula for P(F, —C), P(—F,C) and P(—F,—C).
Notice: we have used shorthand F' to denote F =1 and —F' to denote F = 0.

In principle, we know the numeric value of each joint distribution, hence we can compute the
probabilities.

There are 2° terms in the sums.

Generally: marginalization is NP-hard, the most staightforward approach would involve a
computation of O(29) terms.

We can often do better by smartly re-arranging the sums and products. Behold:

Do the marginalization over W first: P(C,S,R,F) = >, P(F | R)P(W | S,R)P(
C)P(R | C)P(C) = P(F | R) > [PW | S,R)|P(S | C)P(R | C)P(C) = P(F | R)P(
C)P(R | C)P(C).

n N

|
|
Now we can marginalize over S easily: P(C,R,F) =) ¢P(F | R)P(S|C)P(R|C)P(C) =

P(E|R) Y5 [P(S|CP(R[C)P(C) = P(F | R)P(R | C)P(C).

We must still marginalize over R: P(C,F) = P(F | R)P(R | C)P(C) + P(F | —R)P(—R |
C)P(C)=0.1x08x0.54+0.7x0.2x05=0.11.

P(C,—F)=P(—F | R\P(R| C)P(C)+ P(—F | —=R)P(—R | C)P(C) = 0.9 x 0.8 x 0.5 +
0.3 x 0.2 x 0.5 =0.39.

P(C) = P(C,F) + P(C,—F) = 0.5.
P(F | C) = P(C,F)/P(C) = 0.22.
P(—F | C) = P(C,—F)/P(C) = 0.78.
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4

Sprinkler Rain

y

Wet grass

P(C, S, R,W,F) = P(F | R)P(W | S, R)P(S | C)P(R | C)P(C)
Bayesian Networks: Inference

e To do inference in Bayesian networks one has to marginalize over variables.
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e For example: P(X1) =2y, ...> x, P(X1,...,Xq).
e If we have Boolean arguments the sum has O(2%) terms. This is inefficient!
e Generally, marginalization is a NP-hard problem.

e If Bayesian Network is a tree: Sum-Product Algorithm (a special case being Belief Propaga-
tion).

e If Bayesian Network is “close” to a tree: Junction Tree Algorithm.

e Otherwise: approximate methods (variational approximation, MCMC etc.)

Sum-Product Algorithm

e Idea: sum of products is difficult to compute. Product of sums is easy to compute, if sums
have been re-arranged smartly.

e Example: disconnected Bayesian network with d vertices, computing P(X}).

— sum of products: P(X1) =} x, ... > x, P(X1)... P(Xq).

~ product of sums: P(X;) = P(X1) (X, P(X2)) ... (zxd P(Xd)> — P(X).
e Sum-Product Algorithm works if the Bayesian Network is directed tree.

e For details, see e.g., Bishop (2006).

Sum-Product Algorithm
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IO

P(A,B,C,D) = P(A| D)P(B | D)P(C | D)P(D)

Task: compute P(D) =3, 3"z 3 P(A, B,C, D).

P(AID) PBID) | | P(CID)

DO

e Factor graph is composed of vertices (ellipses) and factors (squares), describing the factors of
the joint probability.

P(A,B,C,D) = P(A| D)P(B| D)P(C | D)P



e The Sum-Product Algorithm re-arranges the product (check!):

P(D) (Z P(A D)) (Z P(B | D)> <Z P(C] D)> P(D)
A B C
ZZZP(A,B,C,D). (2)

A B C

Observations

e Bayesian network forms a partial order of the vertices. To find (one) total ordering of vertices:
remove a vertex with no outgoing edges (zero out-degree) from the network and output the

vertex. Iterate until the network is empty. (This way you can also check that the network is
DAG.)

e If all variables are Boolean, storing a full Bayesian network of d vertices — or full joint
distribution — as a look-up table takes O(29) bytes.

e If the highest number of incoming edges (in-degree) is k, then storing a Bayesian network of
d vertices as a look-up table takes O(d2¥) bytes.

e When computing marginals, disconnected parts of the network do not contribute.

e Conditional independence is “easy” to see.

Bayesian Network: Classification

P(C)
Bayes’ rule inverts the arc:

. _plx1C)P(C)
PC1X)- p(x)

Alpaydin
(2004) Ch 3 / slides
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Naive Bayes’ Classifier

3.7 Alpaydin (2004).

e X’ are conditionally independent given C.

e P(X,C)=P(z' |O)P(2%| O)...P(z%| C)P(O).
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Equivalently:

N

e Plate is used as a shorthand notation for repetition. The number of repetitions is in the
bottom right corner.

e Gray nodes denote observed variables.

9.3 Finding the Structure of the Network
Finding the Structure of the Network
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e Often, the network structure is given by an expert.
e In probabilistic modeling, the network structure defines the structure of the model.
e Finding an optimal Bayesian network structure is NP-hard

e Idea: Go through all possible network structures M and compute the likelihood of data X
given the network structure P(X | M).

e Choose the network complexity appropriately.

e Choose network that, for a given network complexity, gives the best likelihood.

e The Bayesian approach: choose structure M that maximizes P(M | X) oc P(X | M)P(M),
where P(M) is a prior probability for network structure M (more complex networks should
have smaller prior probability).

Finding a Network

e Full Bayesian network of d vertices and d(d — 1)/2 edges describes the training set fully and
the test set probably poorly.

e As before, in finding the network structure, we must control the complexity so that the the
model generalizes.

e Usually one must resort to approximate solutions to find the network structure (e.g., DEAL
package in R).

e A feasible exact algorithm exists for up to d = 32 variables, with a running time of o(d?2%~2).

e See Silander et al. (2006) A Simple Optimal Approach for Finding the Globally Optimal
Bayesian Network Structure. In Proc 22nd UAIL (pdf)

Finding a Network
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t Sky AirTemp  Humidity ~ Wind  Water  Forecast ‘ EnjoySport
1 | Sunny Warm Normal  Strong Warm Same 1
2 | Sunny Warm High Strong  Warm Same 1
3 | Rainy Cold High Strong Warm  Change 0
4 | Sunny Warm High Strong  Cool  Change 1

http://b-course.hiit.fi/bene

Network found by Bene at

10 Probabilistic Inference
10.1 Bernoulli Process

Boys or Girls?

Bernoulli Process

e The world average probability that a newborn child is a boy (X = 1) is about § = 0.512
[probability of a girl (X = 0) is then 1 — 6 = 0.488].

Bernoulli process:
PX=z|0)=0*1-0)"" , ze{0,1}.

e Assume we observe the genders of N newborn children, X = {z'} ;. What is the sex ratio?

Joint distribution: P(z!,...,2N,0) = P(z' | 0)... P(zN | 0)P(6).

e Notice we must fix some prior for 6, P(0).

84


http://b-course.hiit.fi/bene

Figure 1: Sex ratio by country population aged below 15. Blue represents more women, red
more men than the world average of 1.06 males/female. Image from Wikimedia Commons, author
Dbachmann, GFDLv1.2.



Equivalently:

10.2 Posterior Probabilities

Comparing Models

e The likelihood ratio (Bayes factor) is defined by

BF(03;0,) =
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e If we believe before seeing any data that the probability of model 0; is P(f;) and of model
05 is P(62) then the ratio of their posterior probabilities is given by
P(0, | X) _ P(6s)

P, [x) ~ Py < P00

e This ratio allows us to compare our degrees of beliefs into two models.

e Posterior probability density allows us to compare our degrees of beliefs between infinite
number of models after observing the data.

Discrete vs. Continuous Random Variables

e The Bernoulli parameter 6 is a real number in [0, 1].
e Previously we considered binary (0/1) random variables.

e Generalization to multinomial random variables that can have values 1,2,..., K is straight-
forward.

e Generalization to continuous random variable: divide the interval [0,1] to K equally sized
intervals of width A9 = 1/K. Define probability density p() such that the probability of 6
being in interval S; = [(i — 1)A0,iA0], i € {1,...,K}, is P(0 € S;) = p(0')Af, where ¢’ is

some point in S;.

o At limit A — O:

Ep@) Lf(0)] = D PO)f(0) — Eyp) [£(6)] =/d<9p(9)f(9)-
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o p(©)

/

\
D

A

e P(Oe[(i—1)A0,iA0)]) = p(8')AS.
o At limit A8 — O:

Ep) [f(0)] =) _P(0)f(6) — Ey) Lf(8)] Z/dep(@f(@)-

Estimating the Sex Ratio

e Tagk: estimate the Bernoulli parameter 6, given N observations of the genders of newborns
in an unnamed country.

e Assume the “true” Bernoulli parameter to be estimated in the unnamed country is § = 0.55,
the global average being 51.2%.

e Posterior probability density after seeing N newborns in X = {z!}¥;:
p(X | 0)p(0)

P(QIX) = 2?(7)(

)
x pO]] [eﬂft (1- 9)1—9“].

t=1



Estimating the Sex Ratio
What is our degree of belief in the gender ratio, before seeing any data (prior probability density

p(0))?
e Very agnostic view: p(0) = 1 (flat prior).
e Something similar than elsewhere (empirical prior).

e Conspiracy theory prior: all newborns are almost all boys or all girls (boundary prior).

— flat prior (P=0.55)
- - - empirical prior (P=0.78)
------ boundary prior (P=0.51)

0

“True” 6 = 0.55 is shown by the red dotted line. The densities have been scaled to have a maximum of one.
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Estimating the Sex Ratio

0

—— flat prior (P=0.55) §
- - - empirical prior (P=0.78) | -
----- boundary prior (P=0.51) |
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
0
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N=

1

—— flat prior (P=0.30)
- - - empirical prior (P=0.75)
...... boundary prior (P=0.07)
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N=

2

—— flat prior (P=0.57)
- - - empirical prior (P=0.78)
...... boundary prior (P=0.55)
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3

—— flat prior (P=0.76)
- - - empirical prior (P=0.81)
...... boundary prior (P=0.79)
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N=

4

—— flat prior (P=0.59)
- - - empirical prior (P=0.78)
...... boundary prior (P=0.58)
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8

—— flat prior (P=0.83)
- - - empirical prior (P=0.84)
...... boundary prior (P=0.85)
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N=

16

— flat prior (P=0.47)

empirical prior (P=0.75)
boundary prior (P=0.45)
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32

— flat prior (P=0.72)

empirical prior (P=0.83)
boundary prior (P=0.71)
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64

— flat prior (P=0.86)

empirical prior (P=0.89)
boundary prior (P=0.85)
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N=128

— flat prior (P=0.91)

empirical prior (P=0.93)
boundary prior (P=0.90)
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N=256

— flat prior (P=0.80)

empirical prior (P=0.87)
boundary prior (P=0.80)
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N=512

flat prior (P=0.59)
empirical prior (P=0.70)
boundary prior (P=0.59)

0.0
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N=1024

— flat prior (P=0.36)

empirical prior (P=0.45)
boundary prior (P=0.36)

102




N=2048

— flat prior (P=0.42)

empirical prior (P=0.49)
boundary prior (P=0.42)

0.0

0.2 0.4 0.6 0.8
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N=4096

—— flat prior (P=0.12)
- - - empirical prior (P=0.14)
...... boundary prior (P=0.11)

0.0 0.2 0.4 0.6 0.8

Observations

e With few data points the results are strongly dependent on the prior assumptions (inductive
bias).
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e As the number of data points grow, the results converge to the same answer.

e The conspiracy theory fades out quickly as we notice that there are both male and female
babies.

e The only zero posterior probability is on hypothesis § = 0 and 6 = 1.
o It takes quite a lot observations to pin the result down to a reasonable accuracy.
e The posterior probability can be very small number. Therefore, we usually work with logs of

probabilities.

11 Estimating Parameters

11.1 Estimates from Posterior

Predictions from the Posterior

The posterior represents our best knowledge.

Predictor for new data point:

p( | X) = By p(z | 0)] = / d6p(x | 9)p(0 | X).

The calculation of the integral may be infeasible.

Solution: estimate 8 by 6 and use the predictor

p(x | X) = p(a | 0).

Estimations from the Posterior

Definition 12 (Maximum Likelihood Estimate).

Onir = argmgmxlogp(?( | 6).

Definition 13 (Maximum a Posteriori Estimate).
Oprap = argmeaxlogp(ﬁ | X).

(With flat prior MAP Estimate reduces to the ML Estimate.)

105



Maximum a Posteriori Estimate (N=8)

— flat prior (P=0.83)
- -~ empirical prior (P=0.84)
...... boundary prior (P=0.85)

Bernoulli Density
e Two states, x € {0, 1}, one parameter 6 € [0, 1].

P(X=z|0)=0"(1—-0)"".

N
P(x[0) =6~ (1 -0
t=1
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L=1logP(X|0) = leog@—i—(N—th)log(l—G).
t

oL i 1 —

Multinomial Density

e K states, x € {1,..., K}, K real parameters 6; > 0 with constraint Zle O = 1.

e One observation is an integer k in {1,..., K'} and it is represented by x; = d;.
K
P(x=i|o)=]]o>
k=1
N K
pxo)=T]1]o:"
t=1k=1
N K
L=logP(X|0)=> ) ajlogb
t=1 k=1
oL 1 ’
ai‘gk—OijML—fzxk

Gaussian Density

e A real number z is Gaussian (normal) distributed with mean y and variance o2 or z ~

N(u,o?) if its density function is

p(a | 1,0%) = ——— exp (—(x_u)2>.

L =log P(X | p,0%)
Zivzl (wt - “)2

202

N
= —Elog(27r) — Nlogo —
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11.2 Bias and Variance

Bias and Variance

e Setup: unknown parameter 6 is estimated by d(X') based on a sample X'.
e Example: estimate o2 by d = s°.

e Bias: by(d) = E'[d] — 6.
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o Variance: E [(d —-F [d])ﬂ

e Mean square error of the estimator r(d, 0):

r(d.6) = E|(d-0)]
= (Eld]-0)’+E|(d- Ed)]

= Bias? + Variance.

variance

y4 AN
/

<
X -

d |
XA

I
|
E[d] ©

/ \
\ . /
bias

Figure 4.1 of Alpaydin (2004).

Bias and Variance

Estimator is unbiased if bg(d) = 0.

Assume X is sampled from a Gaussian distribution.

Estimate 02 by s?: s? = 4+ 3, (2! — m)2.

‘We obtain:

Eyaluor) [s°] = =7

2 2

s® is not unbiased estimator, but %s is:

52 is however asymptotically unbiased (that is, bias vanishes when N — oo).
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Bayes’ Estimator

e Bayes’ estimator: éBayes = Eyx) 0] = [ d96p(0 | X).

e Example: 2' ~ N(0,02),t € {1,...,N}, and 6 ~ N(u,0?), where y, 02 and o3 are known
constants. Task: estimate 6.

> (xt _9)2>7

1
p(X|0) = —S—-exp|—
10) (2mo2)N/2 ( 202

p(0)

e It can be shown that p(f | X') is Gaussian distributed with

. N/o? 1/0?
HBayes = Ep(G\X) [9] = N/O'(z) i 1/0’2m N/U% + 1/0—2'u'
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11.3 Conclusion

About Estimators
e Point estimates collapse information contained in the posterior distribution into one point.
e Advantages of point estimates:

— Computations are easier: no need to do the integral.
— Point estimate may be more interpretable.

— Point estimates may be good enough. (If the model is approximate anyway it may make
no sense to compute the integral exactly.)

e Alternative to point estimates: do the integral analytically or using approximate methods
(MCMC, variational methods etc.).

e One should always use test set to validate the results. The best estimate is the one performing
best in the validation/test set.

Conclusion

e Next lecture: More about Model Selection (Alpaydin (2004) Ch 4)

e Problem session on 5 October.

12 Official Business

12.1 Newsgroup opinnot.tik.t613050
Otax Newsgroup opinnot.tik.t613050

e The course has an Otax newsgroup lopinnot.tik.t613050
e Suitable topics for the newsgroup include:

— Questions, comments and discussion about the topics of the course.
— Organization of the course.
— Announcements by the course staff.
— Other discussion related to the course.
e The advantage of posting to the newsgroup instead of sending us email is that everyone can
see the question and participate to the discussion. Therefore, you should consider posting

your question or comment to the newsgroup if you have a question or comment that could
benefit also other participants of the course.

e See http://www.cis.hut.fi/Opinnot/T-61.3050/0tax
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12.2 Term Project
Term Project: Web Spam Detection

e You have to pass both the examination and the term project (exercise work) to pass the
course.

e The term project will be graded and it will affect the total grade you will get of the course.
e Deadlines:

— 23 November 2007: predictions for the test set and a preliminary version of your project
report.

— 30 November 2007: a presentation about your solution (for some of you).
— 2 January 2008: The final report.

e See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/project

Term Project: Web Spam Detection

e Classification task (see the course web site for details).

e You can work either alone or in groups of two (preferred).

e Both members of the group get the same grade for the term project.
e There is a non-serious competition:

— In November, we will publish an unlabeled test set.

— Your task is to make predictions on the test set and preliminary draft of the report and
submit them by email by 23 November.

— Some of you are asked to describe shortly your approach on 30 November problem
session.

e The final report is due 2 January 2008.

e The web spam detection can be as difficult as you want: you should use some basic methods
you understand and not to try to duplicate complicates methods introduced in research
articles.

Term Project: Web Spam Detection

e Search engines (Google, Yahoo Search, MSN Search etc.) classify a web page more relevant
more relevant pages link to it.

e A good place in search results is financially valuable (it brings visitors).
e Web spam: a page crafted to increase search engine rating of affiliated pages (or itself).

— Creation of extraneous pages which link to each other and target page (link stuffing).
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— Content may be engineered to appear relevant to popular searches (keyword stuffing).

3 ONLINE DEGREE SEARCH, ACCREDITED DISTAMCE LEARNING UNIVERSITY., BEST CULINARY ARTS SCHOOLS - Mic... [2][E)&]
Ik

File Edt Wiew Favorites Tools Help o
- A s, ¥
- Al - L= i £ o - -
O Back ﬂ .ﬂ g | g Search 1. Favorites £ =L d".—i .4“';
Address @C:'|,src'|,main'l,scratch'l,t-ntoula'l,contentSpam'l,paper\,psn-FinaI'l,2DUE|228.html b ﬂ Go Links **
~

Accredited distance learning
university online degree search.

accredited distance learning university,best culinary arts schools

Of online degree search management college , none distance test education test
mformation ? Sometunes online college nursing education accredited distance learning
umversity, these technical management certificate! Request college credits online
online degree search? Composition.

distance learning doctorate degree language learning

Yellow online degree search accredited distance education programs - an college
aboard credits both accredited college degrees through correspondence courses , of
networking protfessional study , since online education programs , or education on-line
vartous accredited distance learning university distance learning bachelor degree ! Hers
earn degree online ! You computer engineering technology degree . The engimneering
degree online ! Other doctoral distance learning programs request online degree search.

university courses online,accounting degrees online

Any online degree search computer science degree via mternet thewr learning strategies |
home distance learning degrees pharmacy what accredited distance learming university

1 1" 1 1" . - 11 b

1 ca 1" 1

2] Done 4 My Computer

Figure 1: An example spam page; although it contains popular
keywords, the overall content is useless to a human user.

Figure from Ntoulas et al. (2006) Detecting spam web pages through content analysis. In Proc 15th WWW.

Term Project: Web Spam Detection

e Look at the data first. Look for simple correlations, structures etc.
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e It may be useful to browse through articles discussing web spam (hint: http://scholar.
google.com/).

e Probably feature selection is important (some features are correlated, some do not really
contain information about the class).

e However: use methods that you understand, do not try to duplicate very complex methods
discussed in some articles.

e More important than the best possible classification result by a complex method is that
you have a principled approach and you understand what you are doing (and that Antti
understands your report, t0o0).

13 Parametric Methods
13.1 Reminders
From Discrete to Continuous Random Variables
e Example: Bernoulli probability 6 € [0, 1] — infinite number of hypothesis (one for every ).
e Probability density p(0): Pla <6 <b) = f; dop(6).
o Sum rule: P(X)=>, P(X,Y) — p(X)= [dYp(X,Y).
o Ezpectation: Ep(x) [f(X)] =y P(X)f(X) — Eyx) [f(X)] = [ dXp(X)f(X).
e Normalization: Yy P(X) =1— [dXp(X)=1.
Estimating the Sex Ratio

e What is our degree of belief in the gender ratio, before seeing any data (prior probability
density p(0))?

e What is our degree of belief in the gender ratio, after seeing data X (posterior probability
density p(0 | X))?

p(0 [ &) o< p(O)p(X | 0).
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— flat prior (P=0.55)
- - - empirical prior (P=0.78)
------ boundary prior (P=0.51)

0

“True” 6 = 0.55 is shown by the red dotted line. The densities have been scaled to have a maximum of one.

Predictions from the Posterior Probability Density
e Task: predict probability of 2N*!, given N observations in X'.
e Marginalizations:
— p(X,0) = [daNHlp(aN T X 0) = p(X | 0)p(h).

— p(X) = [dfp(X,0) = [ dOp(X | 6)p(h).
— p(aV LX) = fd@p(a:N“,X,G) = fdﬁp(a:NH | 0)p(X | 0)p(6).
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e Posterior: p(8 | X) = p(X,60)/p(X).

e Predictor for new data point: p(zV 1 | X) = p(azV L, X)/p(X) = [ dOp(z™V T | 0)p(X,0)/p(X) =
[ dp(N | 0)p(0 | ).

N

Joint distribution (X = {xt}ivzl): pN X, 0) = p(aN T 0)p(X | 0)p(0).

13.2 Estimators

Point Estimators

e The posterior p(f | X) represents our best knowledge.
e Predictor for new data point: p(aN T | X) = [dop(zV T | 0)p(0 | X).

e The calculation of the integral may be infeasible.
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e Estimate 6 by 6 (or posterior by p(f | X) ~ 6(6 — 0)) and use the predictor
pN* | X) = p(@ T | 6).

Estimators from the Posterior
Definition 14 (Maximum Likelihood Estimate).
Onir = argmaaxlogp(X | 6).

Definition 15 (Maximum a Posteriori Estimate).

Orrap = argmaaxlogp(ﬁ | X).

Maximum a Posteriori Estimate (N=8)

—— flat prior (P=0.83)
- - - empirical prior (P=0.84)
------ boundary prior (P=0.85)
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Gaussian Density

e A real number z is Gaussian (normal) distributed with mean p and variance o

N(u,o?) if its density function is

p(a | p0%) = ﬂ% exp (— ey )2)-

L =log P(X | p,0?)

N
= —Elog(%r) — Nlogo —

m:LZN CL‘t
ML : N iz
{ s = %Zi\lzl (=" 7m)2
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p(x|p=0,0"=1)
Bayes’ Estimator
e Bayes’ estimator: éBayes = Eyx) 0] = [ d96p(0 | X).

e Example: 2t ~ N(0,03),t € {1,...,N}, and 6 ~ N(pu,0?), where p, 0 and o3 are known
constants. Task: estimate 6.

1
p(X|0) = —Ssexp| 75"
(X19) (2ma2)N/2 ( 202

p(0)




e It can be shown that p(f | X') is Gaussian distributed with

N/o? 1/0?
= 2 g+ 2 2 M-
N/og+1/o N/og+1/o

éBayes = Ep(B\X) [9]
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13.3 Bias and Variance
Bias and Variance

e Setup: unknown parameter 6 is estimated by d(X’) based on a sample X

e Example: estimate o2 by d = s°.

e Bias: bg(d) = E'[d] — 6.

Variance: E [(d -F [d])ﬂ .

e Mean square error of the estimator r(d, 0):

r(d,0) = E|d-0)]
— (Eld]-0)’+E|(d- Ed)]

= Bias? + Variance.

variance

y4 AN
N /

% -

d |
XA

|
|
Eld] ©

/ \
AN . /
bias

Figure 4.1 of Alpaydin (2004).

Bias and Variance

e Estimator is unbiased if by(d) = 0.
e Assume X is sampled from a Gaussian distribution.

e Estimate 02 by s* s> =+, (2! — m)2.
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e We obtain:

e s? is not unbiased estimator, but 62 = %32 is:

e 52 is however asymptotically unbiased (that is, bias vanishes when N — o).

Example: Lighthouse

PlyIX)
2
L

- mean

Vo : median V1]
! ——- y=2 b 29
T T T T T T o =&

0 50 100 150 200 250 . . . ; 1

T
-2 0 2 4 6
vy

See Problem Set
4/2007, problem 3.

About Estimators

e Point estimates collapse information contained in the posterior distribution into one point.
e Advantages of point estimates:

— Computations are easier: no need to do the integral.
— Point estimate may be more interpretable.
— Point estimates may be good enough. (If the model is approximate anyway it may make

no sense to compute the integral exactly.)

e Alternative to point estimates: do the integral analytically or using approximate methods
(MCMC, variational methods etc.).

e One should always use test set to validate the results. The best estimate is the one performing
best in the validation/test set.
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14 Classification and Regression

14.1 Parametric Classification and Regression

Parametric Classification and Regression

e Task: estimation of p(r | z, X) (classification or regression), given data X = {(=z,7)}}¥ ;.

e Generative modeling (likelihood-based approach): Marginalize: p(r™+1 | 2Nt x) = [dop(rN+1 | 2NFL, 0)p(6
where p(6 | X) o< p(6) [T, p(zt, 7 | §). Example: Bayes Classifier as solved in the follow-
ing slides. Discriminative modeling (discriminant-based approach): x does not depend on our
model § ( is a covariate, we do not model it): p(r¥ 1 | 2NTL X)) = [ddp(rN+L | 2N 0)pa(6 | X),
where pgy(0 | X) o p(0) Hi\il p(rt | z,0). Example: Bayesian regression.
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14.2 Parametric Classification

Parametric Classification
e Bayes Classifier: p(C; | x) x p(z | C;)P(C}).
e Discriminant function: g;(z) = logp(x | C;) + log P(C}).
e Assume p(z | C;) are Gaussian:

N2
p(a | Cis i 02) = —— eXP(—M)-

2
2 20
27 o,

)

The discriminant function becomes:

2

1 — M
gi(x) = —3 log 2w — log o — @2';” + log P(C;).
o*

(2

Sample X = {(z, v} ;; 2t € R, r! € {0,1}5. vl =1 if 2! € G}, rl = 0 otherwise.

P =

e Maximum Likelihood (ML) estimates:

~ rt xtrt
P(Cl): Z]i]—l y MMy = Zt Ttla
t'i

2 Zt (xt - mi)2 T;?
v Do rf .

Discriminant becomes:

1 €T — ms 2 .
gi(x) = —§log 2m — log s; — (221) + log P(C;).
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Parametric Classification

Likelihoods

04 T T T T T T T T

o
w
T

e
—
T

Posteriors with equal priors

1 T T T T T T

e
oS
T

=
[\
T

Figure 4.2 of Alpaydin (2004).

P(C1) = P(C2) , of =03

Parametric Classification
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Likelihoods

o
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e
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Posteriors with equal priors

1 T T T T T

=
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T
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0
-10 -4 -2 0 2 4 6 8
Figure 4.3 of Alpaydin (2004).

P(C1) = P(Cs) , of #05.
14.3 Parametric Regression
Parametric Regression: Bayesian Regression
e Estimator: r ~ g(z | 6).
o p(r|z,0) ~N(g(x|0),0%).
o £(0] X) =log[[;L, p(a’,r") = log [TiL, p(r' | ') + log [ ;L p(a*).
L(0] X) = const — Nlogv2ra? — SN | [rt — g(z' | )] /(202).

EO|X) =132, [ — gt | 0)]".

Maximizing £(6 | X') or minimizing E(6 | X') is equivalent to ML estimate of 6.
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Example: g(x | wo,...,w) = Zf:o w;z®. (polynomial regression)
Square error: E(f | X) = %Zi\il [rt—g(a! | 0)]2.

Relative square error:
N 2
Dim1 [rt —g(a" | 0)]

Sy It =7

Ersg =

R22 R2 =1- ERSE-
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< E[RIx]=wx+w,

E[RIx*]

p(rlx*)

<Y

xX*

Figure 4.4 of Alpaydin (2004).

15 Model Selection

15.1 Bias/Variance Dilemma

Bias and Variance
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El(r g(x xJ E[r E[r | x]) | J (E[r | x]- g(x))

noise Squared error

E|Elr 1x]- () 1x|= (Elr 1x]- Ex[g®)])} + Ex|(@(x)- Ex[a(x)]) |

bias variance

19
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
Estimating Bias and Variance
M samples X={x;;, r'}, i=1,...M
are used to fit g;(x), i =1,....M
Bias*(g) = %z alx')- rlxe)F
t
Variance(g) Z Z [gl( ) ( )]2
g(x) = Mzt:gi(x)
20

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Bias/Variance Dilemma
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e Example: g;(z) = 2 has no variance and high bias, g;(x) = >_,7!/N has lower bias with
variance.

e Bias/Variance dilemma: as we increase complexity,

— bias decreases (a better fit to data) and

— variance increases (fit varies more with data).

(a) Function and data (b) Order 1

=)

0

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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251 Best fit “min error”

05k et T T e - variance

Order

23
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Polynomial Regression

(a) Data and fitted polynomials

(b) Error vs polynomial order

Best fit, “elbow”

05 1 1 1 1 1 1 ]

24
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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15.2 Model Selection Procedures

Cross-validation: most robust if there is enough data.

Structural risk minimization (SRM): used, for example, in support vector machines (SVM).
Bayesian model selection: use prior and Bayes’ formula.

Minimum description length (MDL): can be viewed as MAP estimate.

Regularization: add penalty term for complex models (can be obtained, for example, from
prior).

Latter four methods do not strictly require validation set (at least if implicit modeling as-
sumptions are satisfied, such as that in Bayesian model selection the data is from the model
family; it is always a good idea to use a test set) and latter three are related.

There is no single best way for small amounts of data (your prior assumptions matter).

Cross-validation

0.5

Separate data into training and validation sets.

Learn using training set.

Use error on validation set to select a model.

You need a test set also if you want an unbiased estimate of error on new data.

Question: what is a sufficient size for the validation set?

(b) Error vs polynomial order

2 3 4 5 6 1

Figure 4.7 of Alpaydin (2004).

135



Structural Risk Minimization (SRM)

e According to the PAC theory, with probability 1 — 9,

VC(H) (log % + 1) —log ¢
N

Ergst < ETpaIN +

where N is the size of the training data, VC(H) is the VC-dimension of the hypothesis class
and Eppgr is the expected error on new data and Eprary is the error on the training set,
respectively.

e SRM: Choose hypothesis class (for example, the degree of a polynomial) such that the bound
on Erpsr is minimized.

e Often used to train the Support Vector Machines (SVM).

e (Vapnik (1995) contains more discussion of the SRM inductive principle; it won’t be discussed
in this course in more detail.)

Bayesian Model Selection

e Define prior probability over models, p(model).

p(data | model)p(model)

1 —
p(model | data) p(data)

e Equivalent to regularization, when prior favors simpler models.

e MAP: choose model which maximizes

L = log p(data | model) + log p(model)

Regularization

e Augment the cost by a term which penalizes more complex models: E(0 | X) — E'(0 | X) =
E(0| X)+ X\ x complexity.

e Example: in Bayesian linear regression, define a Gaussian prior for the model parameters wy,
wy: p(wo) ~ N(0,1/A), p(wy) ~ N(0,1/A). The old ML function reads (if the error has an

unit variance)
N

EML(«9|X):—%Z[rt—g(xt|0)]2—|—...

t=1

The MAP estimate gives an additional term
1
Larap(O | X) = L (6] X) = 52 (wg +wi).

This is an example of regularization (the prior favours models with small wy, wy).
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Minimum Description Length (MDL)

e Information theory: the optimal (shortest expected coding length) code for an event with
probability p is — log, p bits.

e MAP estimate finds a model that minimizes

—L = —log, p(data | model) — log, p(model)

e —log, p(model): number of bits it takes to describe the model.
e —log, p(data | model): number of bits it takes to describe the data, if the model is known.
e —L: the description length of the data.

e MAP estimate can be seen as finding a shortest description of the data (that is, the best
compression of the data).

15.3 Conclusion
Conclusion

e Next lecture: Alpaydin (2004) Ch 5.

16 Model Selection

16.1 Summary

e (ross-validation: most robust if there is enough data.

Related:

— Bayesian model selection: use prior and Bayes’ formula.

— Regularization: add penalty term for complex models (can be obtained, for example,
from prior).

— Minimum description length (MDL): can be viewed as MAP estimate. [Basic idea good
to know, details not required in this course.]

Structural risk minimization (SRM): used, for example, in support vector machines (SVM).
[Not required to know in this course.]

The latter do not strictly require a validation set.

There is no single best way for small amounts of data (your prior assumptions matter).
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16.2 Cross-validation

Cross-validation

0.5

Separate data into training and validation sets.

Learn using training set.

Use error on validation set to select a model.

You need a test set also if you want an unbiased estimate of error on new data.

Question: what is a sufficient size for the validation set?

(b) Error vs polynomial order

2 3 4 5 6

Figure 4.7 of Alpaydin (2004).

Cross-validation

Assumption: training data X = {(r!,z")}~, has been sampled iid from some (usually un-
known) distribution F, (rf,z!) ~ F.

In cross-validation, training data is split in random in training set of size N —n and validation
set of size n. Effectively then also the validation set is sampled iid from F.

Classifier h(z) is trained using the training set.

Generalization error £: probability of misclassification for a new data point (r,z) ~ F,

E = Ep[I(r # h(z))].

Fraction of misclassified items in the validation set, Ey ar;p, can be used as an estimate of
the generalization error £.
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e Fy Arrp is an unbiased estimator of £.

e The variance of the estimator Eyarrp is Var(Eyarip) = E(1 —&)/n < 1/(2y/n).

Cross-validation
o Classifier h(z) is trained using the training set.

e Fraction of misclassified items in the validation set, Ey arrp, can be used as an estimate of
the generalization error £.

e If we select model that has the smallest Ey arrp it is no longer unbiased estimate of the
generalization error.

e To get an unbiased estimate of the generalization error we must split the data into three parts
(training, validation and test sets).
16.3 Bayesian Model Selection
Bayesian Model Selection

e Define prior probability over models, p(model).

p(data | model)p(model)
p(data)

p(model | data) =

e Equivalent to regularization, when prior favors simpler models.
e MAP: choose model which maximizes

L = log p(data | model) + log p(model)

e (Notice: we again take logs of probabilities for computational convenience; log of posterior
has the same maximum as the original posterior. Evidence p(data) is constant with respect
to the model, we can therefore drop it.)

Regularization

e Augment the cost by a term which penalizes more complex models: E(6 | X) — E'(0 | X) =
E(0 | X)+ X\ x complexity.

e Example 1, Bayesian linear regression: define a Gaussian prior for the model parameters
0 = (wo,w1): p(wg) ~ N(0,1/X), p(wy) ~ N(0,1/X). The old ML function reads (if the error
has an unit variance)

,CMLQIX

2
r —wo—wlxt} + ...

MHZ

t:l

The MAP estimate gives an additional term
1
ﬁMAP(Q ‘ X) = [,ML(Q ’ X) — 5)\ (w% —i—w%) .

This is an example of regularization (the prior favours models with small wg, wy).
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e Example 2, Akaike Information Criterion (AIC): Penalize for more parameters and choose
model that maximizes:

LO]X)=Lyr(0]X)— M,
where M is the number of adjustable parameters in the model.

e Example 3, Bayesian Information Criterion (BIC): Penalize for more parameters and choose
model which maximizes:

1
L0 X)=Lur(0| X) - 5MlogN,

where M is the number of adjustable parameters in the model and N is the size of the sample
X.

e AIC and BIC have some theoretical justification, however, they are very approximate. They
are useful because of their simplicity. They tend to favour (too) simple models.

® Weird intro: http://www.cs.cmu.edu/~zhuxj/courseproject/aicbic/

Regression Using Regularization

e Do Bayesian regression with ¢? = 1 with the similar data as in the 2nd lecture, use MAP
solution with Gaussian prior over parameters.

—Lyap =
1 2 1
3 Z [y' — g(z" | w)]" + QA@T@.
t=1
5 .
g(z |w) = Zwixz.
=0
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degree 5 polynomial with regulator

Regression Using Regularization

Do Bayesian regression with o2 = 1 with the same data as in the 2nd lecture, use ML solutions
and AIC and BIC regularization:

k | Errain  Erest | —Larc  —LBic

0 0.580  0.541 3.03 3.00

1 0.077  0.294 2.26 2.21

2 0.076  0.275 3.26 3.18 N

3 0.057  0.057 4.19 g09 N=To M=kt1l, —Lae =5 Erraiv + M,
4 0.046  0.562 5.16 5.02

5 0.035  4.637 6.12 5.96

6 0 108 7.00 6.81
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~Lprc = 5 Brraiv + 3Mlog N, g(x | wo, ..., wy) = Zf:o wiz', Brraiv = =% Lyur = x PO [ —g(a" | w)}Q.

1.5

1 --- sin(X/m)
—— degree 1 polynomial

1.0

-1.0

-1.0 -0.5 0.0 0.5 1.0

Minimum Description Length (MDL)

e Minimum Description Length (MDL): a good model is such that it can be used to give the
data the shortest description.

e Kolmogorov complexity: shortest description of the data.

o Idea:
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Model can be described using L(M) bits.
Data can be described using L(D | M) bits, when the model is known.
Total description length L = L(M) + L(D | M) (approx. Kolmogorov complexity).

— Occam’s razor: prefer the shortest description/hypothesis, choose model with smallest
L.

e The data could in principle be compressed to L bits.

e (In model selection we do not usually need explicit compression, just the description lengths.)

Minimum Description Length (MDL)
e MAP estimate finds a model that minimizes

—L = —log, p(data | model) — log, p(model)

e —log, p(model): number of bits it takes to describe the model.
e —log, p(data | model): number of bits it takes to describe the data, if the model is known.
e —L: the description length of the data.

e MAP estimate can be seen as finding a shortest description of the data (that is, the best
compression of the data).

Minimum Description Length (MDL)

e Information theory: the optimal (shortest expected coding length) code for an event with
probability p is — log, p bits.

e Example (Huffman coding; in model selection we do not usually need to construct the coding):

— Let the probabilities of four letters be P(4) = 3, P(B) = 1, P(C) = %, P(D) =

Optimal coding: A — 0, B — 10, C — 110, D — 111.
For example, ADAB would be coded as 0111010 (7 bits).
— Expected coding length L = % x 1+ i X 2+ % x 3+ % x 3 = 1.75 bits per number.

“Compression ratio” 1.75/2 = 0.875 as compared to the naive coding of each letter with
2 bits (e.g., A=00, B=01, C =10, D = 11).

Minimum Description Length (MDL)

e An integer in {0,...,n} can be expressed using log, (n + 1) bits.

e Example: To express an integer in {0,...,15} using binary numbers you need logy 16 = 4
bits.

e Usually we do not need to find explicit coding in model selection, knowing the coding length
is enough.
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Minimum Description Length (MDL)

e Data: an ordered sequence D of N binary numbers.
e Model 1: Code the sequence as such.

— Coding length of the model L(M;) = 0 bits.
— Coding length of the data L(D | M;) = N bits.
— Total coding length Ly = L(M;) + L(D | M) = N bits.

e Model 2: Use the frequency of ones for better coding.

— The model is the number of ones n; which is a integer in [0, N]. It can be expressed
using L(Ms) = logy (N + 1) bits.

N
— There are < n ) possible binary sequences of length N having n; ones. A sequence
1
. N . :
can be expressed using L(D | M3) = log, n bits when n; is known.
1

— Total coding length

N .
Ly = L(Ms) + L(D | Ma) = logy (N + 1) + log, < - > bits.

Minimum Description Length (MDL)

e Example 1: D = 0111010010, N = 10.

— L; =10 bits. (Choose 1.)

10
— Ly =logy (10 4+ 1) + log, <

5 ) = 3.4+ 8.0 =114 bits.

e Example 2: D = (0001000010, N = 10.

— Ly = 10 bits.
10

— Ly =logy (10 4+ 1) + log, < 9

> = 3.4+ 5.5 = 8.9 bits. (Choose 2.)

e Example 3: D = 0000000000, N = 10.
— Ly = 10 bits.

10
— Ly =logy (10 4+ 1) + log, (

0 ) = 3.4+ 0 = 3.4 bits. (Choose 2.)
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Structural Risk Minimization (SRM)

e According to the PAC theory, with probability 1 — 4,

VC(H) (1og o+ 1) —log?
N )

Ergst < ETpaAIN +

where N is the size of the training data, VC(H) is the VC-dimension of the hypothesis class
and Erggr is the expected error on new data and Frrarn is the error on the training set,
respectively.

e SRM: Choose hypothesis class (for example, the degree of a polynomial) such that the bound
on Erper is minimized.

e Often used to train the Support Vector Machines (SVM).

e (Vapnik (1995) contains more discussion of the SRM inductive principle; it won’t be discussed
in this course in more detail.)

17 Multivariate Methods

Remainder of the lecture on the blackboard.

For slides see Alpaydin’s site: http://www.cmpe.boun.edu.tr/~ethem/i2ml/slides/v1-1/
12ml-chapb-vi-1.pdf
18 Multivariate Methods

18.1 Bayes Classifier
Bayes Classifier

e Data are real vectors.
e Idea: vectors are from class-specific multivariate normal distributions.

e Full model: covariance matrix has O(Kd?) parameters.
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From Figure 5.3 of Alpaydin (2004).

Bayes Classifier

e Data are real vectors.
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e Idea: vectors are from class-specific multivariate normal distributions.

e Full model: O(Kd?) parameters in the covariance matrix.

From Figure 5.3 of Alpaydin (2004).
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Bayes Classifier

e Idea: the means are class-specific, covariance matrix ¥ is common.

e O(d?) parameters in the covariance matrix.

Figure 5.4: Covariances may be arbitary but shared
by both classes. From: E. Alpaydin. 2004.
Introduction to Machine Learning. © The MIT Press.

Bayes Classifier

e Idea: the means are class-specific, covariance matrix ¥ is common and diagonal ( Naive Bayes).
e ( parameters in the covariance matrix.

e Discriminant: g;(x) = —1 Z?Zl (25 — mij)Q/S? +log P(Cy).
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Figure 5.5: All classes have equal, diagonal /
covariance matrices but variances are not equal.
From: E. Alpaydin. 2004. Introduction to Machine d

Learning. © The MIT Press.

Bayes Classifier

e Idea: the means are class-specific, covariance matrix ¥ is common and proportional to unit
matrix ¥ = o21.

e 1 parameter in the covariance matrix.
e Discriminant: g;(x) = — ||x — my]|*.

e Nearest mean classifier. Each mean is a prototype.
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Figure 5.6: All classes have equal, diagonal
covariance matrices of equal variances on both
dimensions. From: E. Alpaydin. 2004. Introduction
to Machine Learning. © The MIT Press.

18.2 Discrete Variables

Discrete Features
Most straightforward using Naive Bayes (replace Gaussian with Bernoulli):
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features: p, =plx =1|C,)
if X; are (Naive Baye

d X ; (1—x )
p(x1C)=]]p)0-p,)
j=1
the discriminant is
gi(x) = log p(x | Ci)"' log P(Ci)
= Y Ix, log p, +(1-x,)log (1-p,
J
Estimated parameters lal-j :Z‘
4
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

18.3 Multivariate Regression

Multivariate Regression
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t t
roo= g(x | Wo,wl,...,wd)+ g
Multivariate linear model

Wy + W, X; + WoXs + o+ W, X

EWwWy, Wy, Wy | X) = Z[r —W, — W,X

Multivariate polynomlal model:
Define new higher-order variables
Z1=Xyy Zo=Xoy Z3=X1%y Z4=Xo°, Zs=X; X,
and use the linear model in this new z spa
(basis functions, kernel trick, SVM: Chapte

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

19 Dimensionality Reduction

19.1 Subset Selection
Why Reduce Dimensionality?
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Reduces time complexity: Less cor
Reduces space complexity: Less pa
Saves the cost of observing the fea
Simpler models are more robust o:
More interpretable; simpler explan

Data visualization (structure, grou
if plotted in 2 or 3 dimensions

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Feature Selection vs. Extraction
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Choosing k<d im
ignoring the remaining d - k
Subset selection algorithms
Project the
original x;, i =1,...,d dimensions
new k<d dimensions, z;, j=1,...

Principal components analysis
discriminant analysis (LDA), fac

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Subset Selection
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There are 24 subsets of d features

Forward search: Add the best featu
Set of features F initially @.
At each iteration, find the best new fea
Jj=argmin, E( Fu Xx;)
Add x;to F if E(FuU Xx;) <E(F)

Hill-climbing O(d?) algorithm

Backward search: Start with all feat
one at a time, if possible.

Floating search (Add k, remove I)

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Subset Selection

e Toy data set consists of 100 10-dimensional vectors from two classes (1 and 0).

e First two dimensions mﬁ and :cg: drawn from Gaussian with unit variance and mean of 1 or
-1 for the classes 1 and 0, respectively.

e Remaining eight dimensions: drawn from Gaussian with zero mean and unit variance, that
is, they contain no information of the class.

e Optimal classifier: If x1 + x2 is positive the class is 1, otherwise the class is 0.

e Use nearest mean classifier.
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e Split data in random into training set of 30+30 items and validation set of 20+20 items.

Subset Selection

Features Evarip
0 0.500
1 0.175
1,2 0.100
1,2,4 0.100
. 1,2,4,5 0.100
Forward selection: 1.2.4.5.3 0.075
1,2,4,5,3,8 0.050
1,2,4,5,4,8,6 0.075
1,2,4,5,4,8,6,7 0.075
1,2,4,5,4,8,6,7,10 0.100
1,2,4,5,4,8,6,7,10,9 0.150

Features EvaLip
9,10,4,6,7,8,3,5,2,1 0.150
10,4,6,7,8,3,5,2,1 0.100
4,6,7,8,3,5,2,1 0.075
6,7,8,3,5,2,1 0.075
. 7,8,3,5,2,1 0.075
Backward selection: 8.3.52 1 0.050
3,5,2,1 0.075
52,1 0.100
2,1 0.100
1 0.175
0 0.500

Optimal solution would be features 1, 2!

19.2 Principal Component Analysis (PCA)
Principal Component Analysis (PCA)

e PCA finds low-dimensional linear subspace such that when x is projected there information
loss (here defined as variance) is minimized.

e [Finds directions of maximal variance.

e Projection pursuit: find direction J such that some measure (here variance Var(wlx)) is
maximized.

e Equivalent to finding eigenvalues and -vectors of covariance or correlation matrix.

e Can also be derived probabilistically (see Tipping ME, Bishop CM (1999) Mixtures of Prob-
abilistic Principal Component Analyzers. Neural Computation 11: 443-482); probabilistic
interpretation is important in deriving discrete variants.
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Principal Component Analysis (PCA)

Figure 6.1: Principal components analysis centers
the sample and then rotates the axes to line up wit
the directions of highest variance. If the variance o
z9 1S too small, it can be ignored and we have
dimensionality reduction from two to one. From:
E. Alpaydin. 2004. Introduction to Machine
Learning. © The MIT Press.

Principal Component Analysis (PCA)
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= TOYl.pca <- princomp{TOY1[,1:1@7)
= summary(TOY1.pcal
Importance of components:

Standard deviation

Proportion of Variance
Cumulative Proportion

Standard deviation

Proportion of Variance
Cumulative Proportion

1
2
a

8
8

Comp.1
L73185919 1.1681823 1.
2637625 B.1201141 8.
2637625 B.3B3IBVEY B,
Comp .9

Comp. &

83517208 9.78446118
.A6139384 9.05416463

Comp.2

Comp.3
1206599 1.8989518 1.01793823 0.964164923 B, 86408744
1185481 9.1062992 @.05120295 Q. Q8182375 A, 06578642
4944168 Q.6007160 B.69191899 A.77374274 B.839440917

Comp .18
a.71496201
a.04499236

Comp .4

L00A84301 9.05508764 1.00000000

Principal Component Analysis (PCA)
= TO¥1l.pca =- princomp(TOY1[,1:187)
= summary{ T0Y1.pcal
Importance of components:

Previous 10-dimensional toy example:

Stondard deviation
Proportion of Varionce @

Cumulative Proportion

Standard deviation
Proportion of Variance @

Cumulative Proportion

Principal Component Analysis (PCA)
= TOY¥1l.pca%loadings

Loadings:
Comp. 1

X1 -0.581

X2 -0.77%

X3

X4

X& @.135

XB a.189

X9 -B.131

X&

X9

X1a

1

a

a8

a

Comp.5

Comp.1
.731@919 1.1681823 1.1206598 1.9989518 1.81793
L2637625 9.1201141 ©.1105481 @.1062992 @.009120
2637625 B 3E3IEVEV O.4944168 0.0007160 B.60191
Comp.1@
LB3517208 B, FE446118 A,71496201
.BE130384 B.05416463 A.044099236
L0BBEA301 B, 95508764 1.00000000

Comp .8

Comp.2 Comp.3 Comp.4 Comp.5 Comp.& Comp.?

-9.
-8.

166
199

.162
.B55
.252
596
175
168

2.221

-8.218

2.668

3.235
g.272

-8.382

2.496

-9.
3.
3.

-9.

431
194
258
385

.682
338
155

Principal Component Analysis (PCA)

d.188
-9.208

2.121
-9.384
-9.554
-9.148
-9.318

3.532
2.228
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161
352
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239

461
. 209
.BBS

a
-8

(R ]

i
[

488
353

A2E
346
361
.145
333

. 267

Comp.2

Comp .6
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Comp

Comp.3

i

Comp .4

Comp.8 Comp.9 Comp.1@

-8.
-8.
-8.
181
. 813
411

187
172
277

125

8.174
-8.495
8.211
8.238

a. 388

a.718

-a.

a.
-8.
-a.

=
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233
219
623

323
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411
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TO¥1l.pc «<- predict(TOY1l.pca) -4 -2 0 2

egscplot{TO¥l.pc[,1:2],type="n",

xlab="first principal component",

ylab="second principal component"}
text({TO¥1.pc[,1:2],1labels=as.character{TOY1[,"Class"]}2}

first principal component

Wos & v oW

Example: Optdigits
e OPTDIGITS data set contains 5620 instances of digitized handwritten digits in range 0-9.

e Each digit is a R% vector: 8 x 8 = 64 pixels, 16 grayscales.

Principal Component Analysis (PCA)
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(a) Scree graph for Optdigits
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™
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Eigenvectors
(b) Propaortion of variance explained
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S
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Optdigits after PCA
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First Eigenvector
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19.3 Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDAA)
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Find a low-dimensional
space such that when x
is projected, classes
are well-separated.

e
-~

Find w that maximizes )\
_(m —-m,) |
Jw)= ST+ S5 _»

w!x'r!
_ ZTZ - S = Zt (w
[

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V
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Remaining Lectures

e 6 Nov: Dimensionality Reduction & Clustering (Aplaydin Ch 6&7)

13 Nov: Clustering & Algorithms in Data Analysis (PDF chapter)

20 Nov: Assessing Algorithms & Decision Trees (Alpaydin Ch 14&9)

27 Nov: Machine Learning @ Google /TBA (additionally, Google recruitment talk in after-
noon in T1 at 16 o’clock, see http://www.cis.hut.fi/googletalk07/)
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4 Dec: Decision Trees & Linear Discrimination (Alpaydin Ch 10)

(7 Dec: last problem session.)

e 11 Dec: Recap

The plan is preliminary (may still change)

About the Text Book

e This course has Alpaydin (2004) as a text book.

e The lecture slides (neither mine nor the ones on the Alpaydin’s site) are not meant to be a
replacement for the text book.

e It is important also to read the book chapters.

e Library has some reading room copies (they are planning to order some more). If nothing
else, you should probably at least copy some key chapters.

20 Dimensionality Reduction
20.1 Principal Component Analysis (PCA)
Principal Component Analysis (PCA)

e PCA finds low-dimensional linear subspace such that when x is projected there information
loss (here defined as variance) is minimized.

e Finds directions of maximal variance.

e Projection pursuit: find direction w such that some measure (here variance Var(w?x)) is
maximized.

e Equivalent to finding eigenvalues and -vectors of covariance or correlation matrix.

Principal Component Analysis (PCA)
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Figure 6.1: Principal components analysis centers
the sample and then rotates the axes to line up wit
the directions of highest variance. If the variance o
zo 1S too small, it can be ignored and we have
dimensionality reduction from two to one. From:
E. Alpaydin. 2004. Introduction to Machine
Learning. © The MIT Press.

Principal Component Analysis (PCA)
e More formally: data X = {x'}¥, x* € R%.
e Center data: y' = x' — m, where m = >, x'/N.

e Two options:
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— Use covariance matrix S = >, yy? /N.

— Use correlation matrix R, where R;; = Si;/1/SiiSj;-

e Diagonalize S (or R) using Singular Value Decomposition (SVD): CTSC = D, where C is an
orthogonal (rotation) matrix satisfying CCT = CTC = 1 and D is a diagonal matrix whose
diagonal elements are the eigenvalues A\; > ... > A\g > 0.

e ith column of C' is the ith eigenvector.

e Project data vectors y’ to principal components z = CTy? (equivalently y* = Cz!).

Principal Component Analysis (PCA)

e Observation: covariance matrix of {z'}YY, is a diagonal matrix D whose diagonal elements
are the variances.

S, = ZZZT/N:ZCTnyC’/N
t t

c’ <Z ny/N> C=C"sC =D,
t

where the diagonal elements of D are the variances D;; = crgi.

2

e Eigenvalues )\; < variances o7;.
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Figure 6.1: Principal components analysis centers

the sample and then rotates the axes to line up with

the directions of highest variance. If the variance on

<2

IS too small, it can be ignored and we have

dimensionality reduction from two to one. From:

E.

Alpaydin. 2004. Introduction to Machine

Learning. © The MIT Press.

Principal Component Analysis (PCA)

Idea: in the PC space (z space), k first principal components explain the data well enough,
where k < d.

“Well enough” means here that the reconstruction error is small enough. More formally:

Project the data vectors y* into R* using 2t = W7Ty?, where W € R%* is a matrix containing
the first k columns of C. (“W <- C[,1:k]”). 2 is a representation of y* in k dimensions.

Project z! back to y! space:
y=wz =ww'hy'

What is the average reconstruction error £ = 3", (3" — yt)T (y' —y')/N?
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Principal Component Analysis (PCA)

e What is the average reconstruction error £ =Y, (y* — yt)T (y' —y')/N?

& = T(E[y )(y \l))

(B
= (w2 o] (w07 )
(

T (WwTeDCTWw” ) Ty (CDCT) Ty (WTCDCTW)

= § i,
i=k+1

where we have used the fact that S = CDCT = E [ny] and the cyclic property of the trace,
Tr(AB) = Tr(BA).

Principal Component Analysis (PCA)

e Result: PCA is a linear projection of data from R? into R such that the average reconstruc-

tion error £ = FE [(y -y (y - y)} is minimized.

e Proportion of Variance (PoV) Explained: PoV = Zle i/ Zle Ai. Some rules of thumb to
find a good k: PoV = 0.9, or PoV curve has an elbow.

e Dimension reduction: it may be sufficient to use z! instead of X! to train a classifier etc.
o Visualization: plotting the data to 2! using k = 2 (first thing to do with new data).

e Data compression: instead of storing the full data vectors y'’ it may be sufficient to store only
z' and then reconstruct the original data using y* = Wz!, if necessary.

Example: Optdigits
e OPTDIGITS data set contains 5620 instances of digitized handwritten digits in range 0-9.

e Each digit is a R% vector: 8 x 8 = 64 pixels, 16 grayscales.
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Example: Optdigits
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Optdigits after PCA
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Example: Fossils

e Large European land mammals: 124 fossil find sites (dated 23—2 million years old), 139 taxa

e Reconstruction of site vectors given PCA taxon representation for different k: y = Wz =
WWTy or x = WW7T(x —m)+m.
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Taxa

Cenozoic Large Land Mammals Taxa - Proportion of Variance Explained

fossil sites

-a 2 o 2

first principal component

X (reconstructed data with k=2) X (reconstructed data with k=52)
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20.2 Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA)

e PCA is unsupervised method (class information is not usually used).

e Linear Discriminant Analysis (LDA) is supervised method for dimensionality reduction in
classification problems.

e As PCA, LDA can be accomplished with standard matrix algebra (eigenvalue decompositions
etc.). This makes it relatively simple and useful.

e PCA is a good general purpose dimensionality reduction method, LDA is a good alternative if
we want to optimize the separability of classes in a specific classification task, and are happy
with dimensionality of less than the number of classes (k < K).

Linear Discriminant Analysis (LDA)
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Find a low-dimensional
space such that when x
is projected, classes
are well-separated.

Find w that maximizes )\
_(m —-m,)

Jw)= ST+ S5 o
w!x'r!

:th S si=2

[

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V

e
-~

m,

Linear Discriminant Analysis (LDA)

e More formally: data X = {(r!,x!)}Y,, where r! is one if x! is in class i, zero otherwise, and
t d
x" € R%

e Within-class scatter: Sy = Zfil S;, where S; = >, rf (xt — ml) (xt — mi)T.
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Between-class scatter: Sp = Zfil N; (m; —m) (m; — m)”, where N; = Sorh (rank(Sp) <
K)

k =1: find w € R? that maximizes Fisher’s discriminant

wlSpw
J(w) = wTSmw’

K >k > 1: find W € R?* that maximizes Fisher’s discriminant

W]

TW) = rrs, |

The projection from R? to R” is given by z = W7 (x — m).
Find W € R9* that maximizes Fisher’s discriminant

_wTSspw|

JW)= 125" 1
(W) WT Sy W]|

Write V' = S%2W € R¥>* where 5%2 is a matrix such that 5%25%2 = Sw: J(V) =
VTS Pspsy v/ [vTv ],

Determinant is a product of eigenvalues. To maximize J(V') V must contain the k largest
eigenvectors of S;Vl/QSBSV_VU2 (like in PCA!): VTSQ,1/2SBSV_V1/2V =D& WSI/_V1/2SV_V1/ZSBS;V1/QS%2W =
D& WTS'SpW = D.

= LDA is the k largest eigenvector decomposition of S‘;}S B (like PCA is of covariance
matrix).

At most K — 1 non-zero eigenvalues, that is, one should choose k < K.
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21 Clustering

21.1 Introduction

Mixture densities

o p(x) =Y p(x | Ci)p(Cy)

e Classification: labels r® are known in training data. Task: predict r for new data vectors x
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t

e Clustering: data is unlabeled, that is, r* are unknown. Task: assign a cluster label r for new

data vectors x.

e Gaussian mixture model:

From Figure 5.3 of Alpaydin (2004).
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: X =1xX,r},
Classes C; i=1,...,K C

p(x)zipm@p(@ :

Wherep(x|ci)~~7v(ﬂi,zi) W
D = {P (Cj)! Hi, Zi}Kizl d
p(Ci): Ztrjt m; = Ztrit}t‘t
N 2.
> rf(x‘r —mi)(xt —mi)T
S, ==
20

Lecture Notes for E ALPAYDIN 2004 Introduction to Machine Learning © The MIT I
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21.2 K-means Clustering

k-means Clustering

e The simplest Bayesian classifier was nearest mean classifier: classify a data vector to class
which has a nearest mean.

e k-means clustering: find k prototype vectors m; (“means”) which best represent data.

e Error function:

N
E{miYy | X) = minfx’ —m;[[*.
t=1

e Task: find prototype vectors m; such that error £({m;}¥_, | X) is minimized.

e No direct probabilistic interpretation. Can be viewed as approximation of the Bayesian nearest
mean classifier where data vector belongs to a class/cluster with probability 0 or 1 only.

k-means Clustering

e The vectors are assigned to the nearest means.

e In R: cl <- kmeans(t(X),centers=3)

k-means (k=2) Cenozoic Large Land Mammals (k=3) Cenozoic Large Land Mammals (cluster prototypes)

120

1.0
I
%

y
05
fossil sites
fossil sites.

00
. ﬁ%ﬂ,w

-0.5
I

« cluster 1
« cluster 2
« cluster3

-1.0

-0.5 0.0 05 1.0 15 20 40 60 80 100 120 20 40 60 80 100 120

X taxa taxa

k-means Clustering

e Compression: a real vector (image etc.) can be represented with a number in {1,...,k}.

e Dimensionality reduction: one can use cluster indexes instead of the real vectors to train a
classifier etc.

o Interpretation of the data: clusters have often a meaning. Taxa from various time periods,
customer segments, etc.

o Labeling of data: cluster indexes may be used as class labels.
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k-means Clustering

Original image

[ 8
Bishop (2006).

o Figure 9.3 of

Data set is the set of pixels.

Each pixel is a vector in three-dimensional RGB space.

e K-means is applied to the data set of pixels of an image.

The compressed representation is then the prototype vectors, and cluster index for each pixel.

k-means Clustering

e Lloyd’s algorithm: the most famous algorithm to minimize the k-means cost function. Easy
to understand and implement.

e Sensitive to initialization: should be run on several random initializations and choose the
result with the smallest cost.

e In practice one should consider some more advanced method (type help(kmeans) in R for
some suggestions).
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Initialize m;,i=1,...,k, for example, to k£ random !
Repeat

For all &t ¢ X
1 if || — m;|| = min, |2} — m||

bf —
0 otherwise

For all m;,i=1,.

m; — ) bix t/Zt b;

Until m,; converge

Figure 7.3: k-means algorithm. From: E. Alpaydin.
2004. Introduction to Machine Learning. © The MIT

Press.

k-means Clustering

Initialize m;, ¢ = 1,..., k, randomly.
repeat
for allt € {1,...,N} do {E step}

bl —

{1 , i:argminint—miH
1

0 , otherwise

end for
for alli € {1,...,k} do {M step}

b
S0

end for
until the error £({m;}*_, | X) does not change
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k-means Clustering

Figure 9.1 of

Bishop (2006)

Observations:
e Iteration cannot increase the error £({m;}%_ | | X).
e There are finite number, kY, of possible clusterings.

e It follows that the algorithm always stops after a finite time. (It can take no more than kv
steps.)

e Usually k-means is however relatively fast. “In practice the number of iterations is generally
much less than the number of points.” (buda & Hart & Stork, 2000)

o Worst-case running time with really bad data and really bad initialization is however 22(VN)

— luckily this usually does not happen in real life (pavid A, Vassilivitskii S (2006) How slow is the k-means
method? In Proc 22nd SCG.)

Observations:
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e The result can in the worst case be really bad.
e Example:

— Four data vectors (N = 4) from R? in &: x' = (0,0,...,0)", x> = (1,0,...,0)T,
x3 = (0,1,..., )T and x* = (1,1,..., 1)7T.

— Optimal clustering into two (k = 2) is given by the prototype vectors m; = (0.5,0,...,0)7
and my = (0.5,1,...,1), error being £({m;}¥_, | X) = 1.

— Lloyd’s algorithm can however converge also to m; = (0,0.5,...,0.5)7 and my =
(1,0.5,...,0.5)T, error being £({m;}¥_, | X) = d — 1. (Check that iteration stops
here!)

k-means Clustering

e Example: cluster taxa into k = 6 clusters 1000 times with Lloyd’s algorithm.

The error £({m;}¥_, | X) is different for different runs!

e You should try several random initializations, and choose the solution with smallest error.

® TFor a cool initialization see /Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful Seeding,

Error (1000 runs, k=6) Cenozoic Large Land Mammals (k=6) Cenozoic Large Land Mammals (cluster prototypes)
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21.3 EM Algorithm
EM Algorithm

e FExpectation-Mazximization algorithm (EM): soft cluster assignments

e Probabilistic interpretation

EM Algorithm
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Figure 9.8 of

Bishop (2006)

e EM algorithm is like k-means, except cluster assignments are “soft”: each data point is a
member of a given cluster with certain probability.

o bl e {0,1} — nt €0,1].

EM Algorithm

e Find maximum likelihood solution of the mixture model £ = log Hi\; 1 p(x" | 6), where the
parameters 0 are u;, ¥; and m; = P(G;).

e Maximum likelihood solution is found by the EM algorithm (which is essentially generalization
of the Lloyd’s algorithm to soft cluster memberships)

e Idea: iteratively find the membership weights of each data vector in clusters, and the param-
eter values. Continue until convergence.

e End result is intuitive.
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EM Algorithm
Initialize m; and m;, i = 1,..., k, randomly.
repeat
for allt € {1,...,N} do {E step}

. mexp [—ﬁ“xt—miHQ]
h'i —

> i exp [~ [|xt — my| ]
end for
for all i € {1,...,k} do {M step}
> hix!
2 h

X hi
et

N

m; <«

Ur

end for
until convergence

EM Algorithm

e For derivation, see Alpaydin (2004), section 7.4 (pages 139-144); for an alternative derivation,
see Bishop (2006), section 9.4 (pages 450-455). A sketch of follows.

e Task: find an ML solution of a likelihood function given by p(X | 6) = , p(X,Z | 9).
Zlogp(xt |0) > Zlogp(xt | 0) — ZKL(h§ | p(z' | x',0))
t t t
= D> hilogp(x',z' | 6)+ > H(hY),
ti t

where we have used the Kullback-Leibler (KL) divergence K L(q(i) || p(?)) = >, q(i) log (¢(2)/p(%)).
KL divergence is always non-negative and it vanishes only when the distributions ¢ and p are

equal. The entropy is given by H(q(i)) = — >, q(i) log q(4).
e FEzxpectation step (E Step): find h! by minimizing the KL divergence.

e Mazimization step (M Step): find 6 by maximizing the expectation.

184



901(31 enew

of Bishop (2006)

22 Clustering

22.1 k-means Clustering

k-means Clustering

LLOYDS(X k) {Input: X, data set; k, number of clusters. Qutput: {m;}¥_;, cluster prototypes.}
Initialize m;, i = 1,..., k, appropriately for example, in random.
repeat

for allt € {1,...,N} do {E step}

bt 1, i:argminintfmiH
¢ 0 , otherwise
end for
for all i € {1,...,k} do {M step}
£t
m; — Zt blx
> bl

end for
until the error £({m;}f_; | X) does not change
return {mi}le

k-means Clustering
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Figure 9.1 of

Bishop (2006)

Observations:
e Tteration cannot increase the error £({m;}%_ | | X).
e There are finite number, kY, of possible clusterings.

e It follows that the algorithm always stops after a finite time. (It can take no more than AV
steps.)

e Usually k-means is however relatively fast. “In practice the number of iterations is generally
much less than the number of points.” (buda & Hart & Stork, 2000)

o Worst-case running time with really bad data and really bad initialization is however 22(VN)

— luckily this usually does not happen in real life (pavid A, Vassilivitskii S (2006) How slow is the k-means
method? In Proc 22nd SCG.)

Observations:

e The result can in the worst case be really bad.
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e Example:
— Four data vectors (N = 4) from R? in &: x' = (0,0,...,0)7, x> = (1,0,...,0)T,
x3=(0,1,..., )T and x* = (1,1,...,1)T.

— Optimal clustering into two (k = 2) is given by the prototype vectors m; = (0.5,0,...,0)7
and my = (0.5,1,...,1)T, error being £({m;}¥_, | X) = 1.

— Lloyd’s algorithm can however converge also to m; = (0,0.5,...,0.5)7 and my =
(1,0.5,...,0.5)T, error being £({m;}¥_, | X) = d — 1. (Check that iteration stops
here!)

k-means Clustering

e Example: cluster taxa into k = 6 clusters 1000 times with Lloyd’s algorithm.

The error £({m;}*_; | X) is different for different runs!

e You should try several random initializations, and choose the solution with smallest error.

® For a cool initialization see Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful Seeding.

Error (1000 runs, k=6) Cenozoic Large Land Mammals (k=6) Cenozoic Large Land Mammals (cluster prototypes)
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22.2 Greedy algorithms
Greedy algorithm

e Task: solve argming £(0 | X).
e 0<E(A|X) <0

e Assume that the cost/error £(f | X) can be evaluated in polynomial time O(N*), given an
instance of parameters 6 and a data set X', where IV is the size of the data set and k is some
constant.

e Often, no polynomial time algorithm to minimize the cost is known.

e Assume that for each instance parameter values 6 there exists a candidate set C'(6) such that

9eC0).
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e Assume arg mingccg) £(6' | &) can be solved in polynomial time.

GREEDY (&,C,e,X) {Input: &, cost function; C, candidate set; e > 0, convergence cutoff; X,
data set. Output: Instance of parameter values 6.}

Initialize 6 appropriately, for example, in random.

repeat

0 in £ | X
T80 1Y)

until the change in £(f | X') is no more than
return 0

e Examples of greedy algorithms:

— Forward and backward selection.
— Lloyd’s algorithm.

— Optimizing a cost function using gradient descent and line search.

e Each step (except the last) reduces the cost by more than e.

e Each step can be done in polynomial time.

e The algorithm stops after a finite number of steps (at least if € > 0).
e Difficult parts:

— What is a good initialization?
— What is a good candidate set C'(0)?

e 0 is a global optimum if § = argming E(0 | X).
e 0 is a local optimum if 6 = arg ming.ccg) (0" | X).

e Algorithm always finds a local optimum, but not necessarily a global optimum. (Interesting
sidenote: greedoid.)

e Denote £ = ming 5(9 | X), Oarc = GREEDY(E,C,G,X) and 4. = E(HALG ’ X)
o 1 <a < ooisan approrimation ratio if E4rq < a€™* is always satisfied for all X.

e 1 < a < ooisan expected approximation ratio if E [Earc] < a€* is always satisfied for all X
(expectation is over instances of the algorithm).

e Observation: if approximation ratio exists, then the algorithm always finds the zero cost
solution if such a solution exists for a given data set.

e Sometimes the approximation ratio can be proven; often one can only run algorithm several
times and observe the distribution of costs.

e For kmeans with approximation ratio a = O(log k) and references see |arthur D, Vassilivitskii S (2006)
k-means+-+: The Advantages of Careful Seeding.
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e We can usually easily say that the running time of one step is polynomial.

e Often, the number of steps the algorithm takes is also polynomial, hence the algorithm is
often polynomial (at least in practice).

e Proving the number of steps required until convergence is often quite difficult, however. Again,
the easiest is to run algorithm several times and observe the distribution of the number of
steps.

e Does the definition of the cost function make sense in your application? Should you use some
other cost, for example, some utility?

e There may be several solutions with small cost. Do these solutions have similar parameters,
for example, prototype vectors (interpretation of the results)?

e How efficient is the optimization step involving C'(¢)? Could you find better C(0)?
e If there exists a zero-cost solution, does your algorithm find it?

e Is there an approximation ratio?

e Can you say anything about number of steps required?

e What is the empirical distribution of the error £41¢ and the number of steps taken, in your
typical application?

22.3 EM Algorithm
EM Algorithm

e Expectation-Maximization algorithm (EM): greedy algorithm that finds soft cluster assign-
ments

e Probabilistic interpretation, that is, we are maximizing a likelihood.

EM Algorithm
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Figure 9.8 of

Bishop (2006)

e EM algorithm is like k-means, except cluster assignments are “soft”: each data point is a
member of a given cluster with certain probability.

o bl e {0,1} — nt €0,1].

EM Algorithm

e Find maximum likelihood solution of the mixture model £ = log Hi\; 1 p(x" | 6), where the
parameters 0 are u;, ¥; and m; = P(G;).

e Maximum likelihood solution is found by the EM algorithm (which is essentially generalization
of the Lloyd’s algorithm to soft cluster memberships)

e Idea: iteratively find the membership weights of each data vector in clusters, and the param-
eter values. Continue until convergence.

e End result is intuitive.
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EM Algorithm

EM(X,k) {Input: X, data set; k, number of mixture components. Output: {m;}5 ;, mixture components.}
Initialize m;, i = 1,..., k, for example using some kmeans algorithm.
repeat

for allt € {1,...,N} do {E step}

1 t 2
exp |~z |[x" —mi|

ht
>, exp [~ ks [Ixt — my|[7]

7

end for
for all i € {1,...,k} do {M step}

tt
2 h

end for
until convergence
return {mi}le

EM Algorithm

e For derivation, see Alpaydin (2004), section 7.4 (pages 139-144); for an alternative derivation,
see Bishop (2006), section 9.4 (pages 450-455). A sketch follows.

e Task: find an ML solution of a likelihood function given by p(X | 6) = , p(X,Z | 9).
> logp(x'|6) > > logp(x' | 6) =Y KL(h || p(z' | x',6))
t t t
= > > hlogp(x',z' | 0)+ > H(hY),
t i t

where we have used the Kullback-Leibler (KL) divergence K L(q(i) || p(?)) = >_, q(i)log (¢(7)/p(%)).
KL divergence is always non-negative and it vanishes only when the distributions ¢ and p are

equal. The entropy is given by H(q(i)) = — >, q(i) log q(4).
e Ezxpectation step (E Step): find h! by minimizing the KL divergence.

e Mazimization step (M Step): find 6 by maximizing the expectation.
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Figure 9.14
of Bishop (2006)

23 Decision Trees

23.1 Introduction

Decision Trees

193



Wag

W

{0 .TI

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press

e Each internal node tests an attribute.
e Each branch corresponds to set of attribute values.
e Each leaf node assigns a classification (classification tree) or a real number (regression tree).

e The tree is usually learned using a greedy algorithm built around I D3, such as C4.5. (The
problem of finding optimal tree is generally NP-hard.)
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e Advantages of trees:

— Learning and classification is fast.
— Trees are accurate in many domains.

— Trees are easy to interpret as sets of decision rules.

e Often, trees should be used as a benchmark before more complicated algorithms are at-
tempted.

® For alternative discussion, see Mitchell (1997), Ch 3.

23.2 Classification Trees
Example Data from Mitchell (1997)

Day  Outlook Temperature Humidity ~Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13  Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Example: Final Decision Tree
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Outlook

unny Overcast Rain

Humidity Yes Wind

High Normal Srong

NO Yes NoO

Figure 3.1 of Mitchell (1997).

ID3 algorithm for discrete attributes
ID3(X) {Input: X = {(r*,x")}L,, data set with binary attributes r* € {—1,41} and a vector of discrete variables
x‘. Output: T, classification tree.}
Create root node for T'
If all items in X" are positive (negative), return a single-node tree with label “47 (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do
Let X, be subset of X’ that have value v for A
if X, is empty then
Below the root of T', add a leaf node with most common label in X’
else
Below the root of T, add subtree ID3(X)
end if
end for
return T’

Entropy
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e X is a sample of training examples.

p+ is the proportion of positive and p_ = 1 — p4 is the proportion of negative samples in X

Entropy measures impurity of X.

Entropy(X) is the expected number of bits needed to encode class (+1 or —1) of randomly
drawn member of X (under the optimal, shortest-length code).

Information theory: the optimal (shortest expected coding length) code for an event with
probability p is —log, p bits.

Therefore, expected number of bits to encode +1 or —1 of a random member of X is

Py (—loggpy) +p— (—logyp-).

Entropy(X) = —p4 logy py — p- logy p—

—-p*log,(p)—(1-p)*log,(1-p)

entropy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9.2: Entropy function for a two-class problem.
From: E. Alpaydin. 2004. Introduction to Machine
Learning. © The MIT Press.
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Information Gain

e Gain(X, A) is the expected reduction in entropy due to sorting on A.

Gain(X, A) = Entropy(X') — Z ||2;}||Entropy(2\,’v).

vEvalues(A)

e For ID3: attribute A that has the highest gain classifies the examples X “best”.

Selecting the Next Attribute

Which attribute is the best classifier?

S [9+,5-] S [9+,5-]

E =0.940 E=0.940

Humidity Wind
High Normal Weak Stro
[3+,4-] [6+,1-] [6+,2-] [3
E =0.985 E =0.592 E=0.811 E

Gain (S, Humidity ) Gain (S, Wind)

940 - (7/14).985 - (7/14).592 940 - (8/14).811 - (6/14)1

151 048

Humidity provides greater information gain than Wind, relative to the target classification. E stands for entropy
and S for collection of examples. Figure 3.3 of Mitchell (1997).

Example: Final Decision Tree
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Outlook

unny

Humidity

High Normal

/ \

NO Yes

The final decision tree. Figure 3.1 of Mitchell (1997).

Variations of ID3
e Alternative impurity measures:

— Entropy: —p4 logy p — p—logyp—.
— Gini index: 2pyp_.

Overcast

Yes

— Misclassification error: 1 — max (py,p—).

— All vanish for p; € {0,1} and have a maximum at p; =p_ = 1/2.

Rain

Wind

Srong

NO

e Continuous or ordered variables: sort z!, for some attribute A and find the best split x4 < w

VS. T4 > w.

Rule Extraction from Trees
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C4.5Rules
(Quinlan, 1993)

Yes

Yes

0.8 0.6 0.4 0.3

F (age>38.5) AND (years-in-job>

: IF (age>38.5) AND (years-in-job=
R3: IF (age=38.5) AND (job-type="'A’)
F (age<38.5) AND (job-type='B’)

F ( )

R5: age<38.5) AND (job-type='C’)

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Observations of ID3
e Inductive bias:

— Preference on short trees.

— Preference on trees with high information gain near root.

e Vanilla ID3 classifies the training data perfectly.
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e Hence, in presence of noise, vanilla ID3 overfits.

Pruning

e How to avoid overfitting?

— Prepruning: stop growing when data split is not statistically significant. For example:
stop tree construction when node is smaller than a given limit, or impurity of a node is

below a given limit 6;.

— Postpruning: grow the whole tree, then prune subtrees which overfit on the pruning

(faster)

(validation) set. (more accurate)

Split data into training and pruning (validation) sets.

1. Evaluate impact on pruning set of pruning each possible node (plus those below it).

2. Greedily remove the one that most improves the pruning set accuracy.

[}

e Do until further pruning is harmful:

e Produces smallest version of most accurate subtree.
[ ]

23.3 Regression Trees

Examples: Predicting woody cover in African savannas

e Task: woody cover (% of surface covered by trees) as a function of precipitation (MAP), soil
characteristics (texture, total nitrogen total and phosphorus, and nitrogen mineralization),

fire and herbivory regimes.

e Result: MAP is the most important factor.

Wi

i

\\\§
iy

f MAP-

Figure 4 | The distril ('stable’) and di
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (>784 mm MAP); cross-hatched
areas show the transition between stable and unstable savannas (516—
784mm MAP); grey areas that are not hatched show the stable savannas
(<516 mm MAP).

Fire return
1.54% W >105yr
(=29
Sand (%)
<90.3 >90.3 31.5%
=27
9.03% 33.1% o )
(n=107) (n=8)

Figure 3 | ion tree showing ips between
woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained ~45.2% of the variance in woody cover, which is significantly
more than a random tree (P < 0.001). Of this, 31% was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.

Alternative: rule postpruning (commonly used, for example, C'4.5).

1004

Woody cover (%)

T T T T T
0 200 400 600 800 1,000 1,200

MAP (mm)

Figure 1| Change in woody cover of African savannas as a function of
MAP. Maximum tree cover is represented by using a 99th quantile piecc
wise linear regression. The regression analysis identifies the breakpoint (t
rainfall at which maximum tree cover is attained) in the interval

650 = 134 mm MAP (between 516 and 784 mm; see Methods). Trees are
typically absent below 101 mm MAP. The equation for the line quantifyi
the upper bound on tree cover between 101 and 650 mm MAP is
Cover(%) = 0.14(MAP) — 14.2. Data are from 854 sites across Africa.

From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846-849.
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Regression Trees

e Error at node m:
1 x reaches node m

0 otherwise

b(3) = {

1 t _ Et bm(Xt)rt
= 3y 27 o) o) o = ST

m

e After splitting:

by (%) = 1 x reaches node m and branch j
mJ 0 otherwise

1 t Zt bmj(Xt)Tt
Em = gm m'(x )+ Gmj = :
= i 2 2 (1 )b I S b )
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Yes No
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Implementations

e There are many implementations, with sophisticated pruning methods.

203



= Library({rpart)
= rpart{Hipparion ~ .,0D[,taxal)}
M= 124

nodel}, split, n, loss, yval, (yprob)
* denotes terminal node

1} root 1724 32 @ (@.74193548 @.25806452)
2Y Amphimachairodus=8 188 19 & (0.824807407 0.17597593)
4} Choerolophodon=8 96 13 @ (@.86458333 ©.13541667)
B) Ursus=8 76 6 @ (0.97185263 @.078%473r7) *
9) Ursus=1 280 7 @ (0.65000000 ©.35000000)
18) Cervus=1 13 2 @ (0.824615385 ©.15384615) *
19% Cervus=8 7 2 1 (0.285714729 8.71428571) *
5} Choerolophodon=1 12 & @ (@.50000000 @.50000008) *
33 Amphimachairodus=1 16 3 1 (@.1E8750000 B.81250008) *

Machine Learning Guest Lectures on 27 November
10-11 Juha Vesanto (Xtract): Data Mining in Practice How to make succesfull analytics/data mining

in an industry/corporate environment. Principles and a case study.

11-12 Hannu Helminen (Google): Machine Learning Methods in Web Search Google is using
machine learning methods in the presence of erroneous user queries and documents of low quality. Differences
between a traditional information retrieval corpora and the web, and implications of these differences for improving
queries and modeling the web are discussed. Inferring meaning from context and using this additional context for

query expansion improves the quality of search results.

See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/guestlecture
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Let’s talk.

Google is coming to campus to talk
about Engineering opportunities.
Join us to find out how we work, play
and change the world.

Helsinki University of Technology
Lecture Hall: T1

TKK Computer Science Building
Konemiehentie 2, Espoo

27th November 2007
4.15pm

Please visit www.google.com/jobs/students to view our complete list of
job opportunities and learn more about Google, our work and our culture.

See
http://www.cis.hut.fi/googletalk07/
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24 Decision Trees

24.1 Classification Trees

Decision Trees

Wapy

W

10 X

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press

e FEach internal node tests an attribute.

e Each branch corresponds to set of attribute values.
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e Each leaf node assigns a classification (classification tree) or a real number (regression tree).

e The tree is usually learned using a greedy algorithm built around I D3, such as C4.5. (The
problem of finding optimal tree is generally NP-hard.)

e Advantages of trees:

— Learning and classification is fast.
— Trees are accurate in many domains.

— Trees are easy to interpret as sets of decision rules.

e Often, trees should be used as a benchmark before more complicated algorithms are at-
tempted.

® For alternative discussion, see Mitchell (1997), Ch 3.

ID3 algorithm for discrete attributes
ID3(X) {Input: X = {(r%,x")}L,, data set with binary attributes r* € {—1,+1} and a vector of discrete variables
x!. Output: T, classification tree.}
Create root node for T'
If all items in X" are positive (negative), return a single-node tree with label “+” (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do
Let X, be subset of X that have value v for A
if X, is empty then
Below the root of T', add a leaf node with most common label in X
else
Below the root of T, add subtree ID3(X,)
end if
end for
return T’

Variations of ID3

e Impurity measures:

Entropy: —pylogy py+ — p—logyp—.
— Gini index: 2pyp—.

Misclassification error: 1 — max (py,p—).

All vanish for p; € {0,1} and have a maximum at p, = p_ = 1/2.

e Continuous or ordered variables: sort 2!, for some attribute A and find the best split z4 < w
VS. A > W.

Rule Extraction from Trees
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C4.5Rules
(Quinlan, 1993)

Yes

Yes

0.8 0.6 0.4 0.3

F (age>38.5) AND (years-in-job>

: IF (age>38.5) AND (years-in-job=
R3: IF (age=38.5) AND (job-type="'A’)
F (age<38.5) AND (job-type='B’)

F ( )

R5: age<38.5) AND (job-type='C’)

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Observations of ID3
e Inductive bias:

— Preference on short trees.

— Preference on trees with high information gain near root.

e Vanilla ID3 classifies the training data perfectly.
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e Hence, in presence of noise, vanilla ID3 overfits.

Pruning

e How to avoid overfitting?

— Prepruning: stop growing when data split is not statistically significant. For example:
stop tree construction when node is smaller than a given limit, or impurity of a node is
below a given limit 0;. (faster)

— Postpruning: grow the whole tree, then prune subtrees which overfit on the pruning
(validation) set. (more accurate)

e Split data into training and pruning (validation) sets.

e Do until further pruning is harmful:
1. Evaluate impact on pruning set of pruning each possible node (plus those below it).
2. Greedily remove the one that most improves the pruning set accuracy.

e Produces smallest version of most accurate subtree.

e Alternative: rule postpruning (commonly used, for example, C4.5).

24.2 Regression Trees

Examples: Predicting woody cover in African savannas

e Task: woody cover (% of surface covered by trees) as a function of precipitation (MAP), soil
characteristics (texture, total nitrogen total and phosphorus, and nitrogen mineralization),
fire and herbivory regimes.

e Result: MAP is the most important factor.

100
-
sty ]
80|
e € 60
TS g
Gl :
| >
AR 5
1 § 40
“u:‘UH“-‘- . Fire return
b
1.54% 105yr >105yr 20
=29 Sand (%)
<90.3 >90.3 31.5%
9.03% 33.1% =27 0
e (n=107) n=8) T T T T T T T
0 200 400 600 800 1,000 1200
Figure 3 | ion tree showing ips between MAP (mm)

f MAP-

Figure 4 | The distril ('stable’) and di
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (>784 mm MAP); cross-hatched
areas show the transition between stable and unstable savannas (516—
784mm MAP); grey areas that are not hatched show the stable savannas
(<516 mm MAP).

woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained ~45.2% of the variance in woody cover, which is significantly
more than a random tree (P < 0.001). Of this, 31% was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.

Figure 1| Change in woody cover of African savannas as a function of
MAP. Maximum tree cover is represented by using a 99th quantile piecc
wise linear regression. The regression analysis identifies the breakpoint (t
rainfall at which maximum tree cover is attained) in the interval

650 = 134 mm MAP (between 516 and 784 mm; see Methods). Trees are
typically absent below 101 mm MAP. The equation for the line quantifyi
the upper bound on tree cover between 101 and 650 mm MAP is
Cover(%) = 0.14(MAP) — 14.2. Data are from 854 sites across Africa.

From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846-849.
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Regression Trees

e Error at node m:
1 x reaches node m

0 otherwise

b(3) = {

1 t _ Et bm(Xt)rt
= 3y 27 o) o) o = ST

m

e After splitting:

by (%) = 1 x reaches node m and branch j
mJ 0 otherwise

1 t Zt bmj(Xt)Tt
Em = gm m'(x )+ Gmj = :
= i 2 2 (1 )b I S b )
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Implementations

e There are many implementations, with sophisticated pruning methods.
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= Library({rpart)
= rpart{Hipparion ~ .,0D[,taxal)}
= 124

nodel}, split, n, loss, yval, (yprob)
* denotes terminal node

1} root 1724 32 @ (@.74193548 @.25806452)
2Y Amphimachairodus=8 188 19 & (0.824807407 0.17597593)
4} Choerolophodon=8 96 13 @ (@.86458333 ©.13541667)
B) Ursus=8 76 6 @ (0.97185263 @.078%473r7) *
9) Ursus=1 280 7 @ (0.65000000 ©.35000000)
18) Cervus=1 13 2 @ (0.824615385 ©.15384615) *
19% Cervus=8 7 2 1 (0.285714729 8.71428571) *
5} Choerolophodon=1 12 & @ (@.50000000 @.50000008) *
33 Amphimachairodus=1 16 3 1 (@.1E8750000 B.81250008) *

25 Linear Discrimination

25.1 Naive Bayes Classifier (Again)

Linear Discrimination

e Source material:

— Alpaydin (2004) Ch 10, or

— A new chapter by Mitchell (September 2005), “Generative and Discriminative Classifiers:
Naive Bayes and Logistic Regression”, available as PDF at http://www.cs.cmu.edu/
~tom/NewChapters.html

Naive Bayes Classifier

e Idea: the means are class-specific, covariance matrix ¥ is common and diagonal ( Naive Bayes).
e ( parameters in the covariance matrix.

e Discriminant is linear: g;(x) = WiTx + w;p, where w; = Y71y and wiy = —%uiTE_lui +
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Figure 5.5: All classes have equal, diagonal
covariance matrices but variances are not equal.
From: E. Alpaydin. 2004. Introduction to Machine
Learning. © The MIT Press.

Naive Bayes Classifier
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accuracy of linear discriminator

1.0

Naive Bayes

0.6

accuracy

0.4

0.2

)

Accuracy of discriminator “class 1 if x < w, class 2 if z > w”.

Naive Bayes Classifier
o X ={(r',x)}N,, rt €{0,1}, x! € R%
e Naive Bayes assumption: P(x! | rt) = H;;i:1 Pzt | rh).

e Using Bayes rule,
P(T ‘ X) — P(T) H?:l P('rl ’ T) )
Zse{o,l} P(s) H?:l P(z; | s)

e Discriminant is linear: g;(x) = log P(r; = 1 | x) + const. = w!x + w;p, where w; = 3!y,
and w;o = —%M?E_lﬂi + log P(Cl)
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e Observation: P 11%)
r=1|x

1 =w' .

Ogl—P(r:1|x) WX+ Wy

25.2 Logistic Regression

Logistic Regression

e Logit: logit(p) = log (ﬁ).
e Sigmoid: sigmoid(t) = logit™!(t) = 1/(1 +e7%).

e Derivative of sigmoid: sigmoid’(t) = sigmoid(t) (1 — sigmoid(t)).

Sigmoid (Logistic) Function
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1. Calculate g(x) = w"x + w, and choose
2. Calculate y = sigmoid(w”x + w, Jand

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Cost Function for Logistic Regression

[ ]
n

P(R|X,W)=]]PC" %', W)
t=1

218



L — ¢ PRIX,W) _ r logy — 1—r)log(1—yt)),

Mz

t=1

where y' = P(rt = 1| x) = sigmoid(w'x + wy).
e Task: find W = (w,wp) such that £ is minimized.

e No EM algorithm. Use gradient ascent.

Gradient Ascent

GRADASC(L(0), 6°) {Input: L£(8), cost function; #°, initial parameters. Output: 6, a local
minimum of £.}
0 —0°{0,0° c R4}
t—1
repeat
for alli e {1,...,d} do
AO; — 0L(0)/00;
end for
for alli e {1,...,d} do
0; < 0; — 0y AD;
end for
t—t+1
until convergence
return 0

Gradient Ascent

e The function GRADASC always converges if > oo, m = 00 and Y o, 7?2 < oo, where 17, > 0
for all ¢, for example, 1, = 1/t.

e The function GRADASC often converges also for constant small enough n; = n > 0.
e GRADASC is inefficient.

e Usually one should use a more sophisticated gradient ascent algorithm, such as conjugate
gradient, from some numerical library (e.g., in R type help(optim)).
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Convergence of GRADASC

o
S
Lo
0 _
o~ o
D - ]
Lo
L
o
2
I I I I I
-2.0 -1.5 -1.0 -0.5 0.0
0

Minimizing £(0) = (61 + 62)* + (62 — 1)?, using 6° = (0,0)7.
Gradient Ascent

e Logistic regression may converge to w — 0o (see right), especially when data is high dimen-
sional and sparse. This causes problems.

e Solution: minimize regularized cost £L — L + %)\ (w% + WTW).
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Figure 10.7: For a univariate two-class problem
(shown with ‘o’ and ‘x' ), the evolution of the line
wx + wg and the sigmoid output after 10, 100, and
1,000 iterations over the sample. From: E. Alpaydin.
2004. Introduction to Machine Learning. © The MIT

Press.

Generalized Linear Models
e Logistic regression is a special case of Generalized Linear Models (GLM)

— logit is a link function.
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e Many respectable numerical packages contain GLM implementation which includes logistic
regression (e.g., in R help(glm)). You should probably use these in real life applications
instead of programming one on your own.

25.3 Logistic Regression vs. Naive Bayes

Naive Bayes Classifier

class 1
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accuracy of linear discriminator
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Accuracy of discriminator “class 1 if x < w, class 2 if z > w”.

Naive Bayes vs. Logistic Regression

e Naive Bayes classifier estimates parameters of P(r) and P(x | r) (means, covariances, etc.).
(generative classifier, because we can generate the data points, given parameters)

e Logistic regression directly estimates the parameters of P(r | x). (discriminative classifier,
because we can directly discriminate wrt. 7, given x; no generative model for p(x) is needed)

e If Naive Bayes assumptions hold (data from multivariate Gaussians with diagonal covariate
matrix) and the number of training examples is very large, Naive Bayes and logistic regression
give identical classification.

e The differences:
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— If data is not Gaussian etc. (that is, NB assumptions do not hold), logistic regression
often gives better result (at least for large amounts of data).

— Logistic regression needs more data. Naive Bayes needs N = O(logd) samples, while
10giStiC regreSSiOIl needs N == O(d) Ng & Jordan (2002) On Discriminative vs. Generative Classifiers: A

Comparison of Logistic Regression and Naive Bayes. In Proc NIPS 14..

e Generative classifier: more bias, less variance. There is a model for P(x). This is good if
there is little data and/or the model for x is correct enough.

e Discriminative classifier: less bias, more variance. There is no model for P(x), it is estimated
directly from data. This is good if the NB model for x is wrong and/or there is enough data.

25.4 Floating Point Numbers
IEEE Floating Point Arithmetics

e The floating point numbers are stored in three parts in binary:

— fraction (f = 52 bits in double precision)
— exponent (e = 11 bits in double precision)
— sign (1 bit)
e This includes the following types of numbers:
— normalized numbers (normal non-zero numbers)
zero (£0)
infinities (£o00)
— NaN

denormalized numbers (+ something very small or very large)

sign  exponent fraction
| 1l |
L ] [ L ]
e+f f

The three fields in an IEEE 754 float.

Image by Charles Esson, GFDL.

Numerical Computation: Computing Sums and Products

e Sometimes it is enough to use + and * operators to compute sums and products. According
to R: 3.14*42=131.88; 3.14+42+5=50.14.

e Sometimes it is not. According to R: 3.14e-200*%42e-201*1e300=0; 1e-400*1e400=NaN; le-
164+1-1=0.

e In probabilistic modeling it is typical to. ..

— Have numbers of different orders of magnitudes, including very small numbers.
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— Do sums and products with them.

e Important numbers (examples from the R floating point implementation in Mac OS X,
help(.Machine)):

— Smallest positive floating point number e (machine epsilon) for which 1+ € # 1: 2.2 x
10716
— The largest finite floating point number: 1.7 x 10308,

— The smallest positive floating point number: 2.2 x 107308,

Numerical Computation: Representing Numbers

e In many practical applications, 2.2 x 1073% is too large for representing intermediate proba-
bilities.

Solution: store numbers as logs.

Probabilities are usually always positive. (Generally, software should however be written so
that to work consistently also with zero probabilities.)

e R is consistent also for zero probabilities: log(0)=-Inf; exp(-Inf)=0.

Other software may behave differently. Read the documentation and test.

Numerical Computation: Computing Products

e Task: compute the product y =[]\ ;.
e 1e-200%1e-200*1e300=0 (wrong!).
e Solution: use logs.

logy = >, log z;.

log(1e-200)+log(1e-200)+log(1e300)=log(1le-100) (correct).

Division: log(z/y) = logz — logy. Product with negatives.

Numerical Computation: Computing Sums
e Task: compute sum y =y ' | ;.
e exp(-1000)+exp(-999)=0 (wrong!).
e Solution: scale numbers appropriately before doing the sum.
e logy =logxpyax + log (Z?:l exp (logz; — logxprax)), where log xpr4x = max; log ;.

e -999+log(exp(-1)+exp(0))=-998.6 (correct).

e Something like this: safesum <- function(x) { xmax <- max(x) ; xmax-log(sum(exp(x-xmax)))) }
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Numerical Computation: Example

P(x | C;)P(C;) _ likelihood x prior

( ‘ ) Zi{:l P(X | Ck)P(Ck) evidence

Store numbers as logs and denote: a[i] = log P(x | C;), b[i] = log P(C}).
safesum <- function(x) { xmax <- max(x); xmax+log(sum(exp(x-xmax)))) }
evidence <- safesum(a+b)
posterior <- sum(c(ali],b[{]-evidence))

exp(posterior) #P(C; | x)

26 Announcements

26.1 Examination
e To pass the course you must pass the examination and the term project.
e Grading:

— Examination grade F € [0,1] (0 smallest passed grade)

Term project grade 7" € [0, 1] (0 smallest passed grade)

Problem session grade P € [0, 1]
— Course grade min(5,floor(4E + 2T + P))

Examination

e Currently scheduled at 19 Dec & 2 Feb & 15 May (check the times and locations from the
examination schedule!)

You must sign in to the examination at least one week in advance using WWWTopi

Calculator (with memory erased) is allowed

No other extra material is allowed.

4-6 problems (to pass you have to get about half of the points)

Reading List

e The examination is based on the topics covered in the lectures

e See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/examination
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26.2 Course Feedback
Course Feedback

e Please give course feedback at http://www.cs.hut.fi/Opinnot/Palaute/kurssipalaute-en.
html

e (Open until 7 January 2008)

27 Summary of the Course

27.1 Summary of the Course
Objectives
e After this course, the student should. ..

1. be able to apply the basic methods to real world data;
2. understand the basic principles of the methods; and

3. have necessary prerequisites to understand and apply new concepts and methods that
build on the topics covered in the course.

e The topic is difficult (and interdisciplinary, involving at least computer science, mathematics,
computational modeling and statistics)

Learning Tasks

e Supervised learning

— classification

— regression
e Unsupervised learning
— clustering etc.

e Reinforcement learning [not in this course]

Concept Learning

e Task: classify a previously unseen instance into positive or negative
e Hypothesis class ‘H
e Learning: use positive and negative examples to prune out the hypothesis

e If none of the hypothesis in the hypothesis class is correct we might end up with no consistent
hypothesis.
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Inductive bias: we must restrict the allowed hypothesis to be able to generalize (predict classes
of new instances).

The choice of a hypothesis space is called model selection.
Underfitting: the hypothesis space is too simple.
Owerfitting: the hypothesis space is too complex.

VC dimension can be used to measure the complexity of the hypothesis space.
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Figure 2.2 of Alpaydin (2004).

Regression with Noise

e Classification is the prediction of a 0-1 class, given attributes.
e Regression is the prediction of a real number, given

e Usually, we want to minimize a quadratic error function,
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E(g|X)= (r' —g(x

||Mz

Dimensions of a Supervised Learner
Model

g(x[0)
Loss Function

1 N

Optimization Procedure
0 — argmeinE(H | X).

Polynomial Regressors
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Model Selection and Generalization

- testset Y --- testset
—— training set N —— training set

error
error

model complexity training set size

e empirical error = error on training set
e generalization error = error on test set
e We see empirical error, but want to minimize the error on new data.

e Training vs. validation vs. test sets

K-Fold Cross-Validation
e How to use the training/validation data most efficiently?

CV(X,A,K){Input: X, data X = {(r!,2")}¥,; A, classification algorithm; K, number of folds.
Output: &, error measure. }
Partition & in random into K roughly equally sized parts X;.
for allie {1,...,K} do
Train A using X \ X; as a training set.
Let &; be the error of A in &; (for example, the fraction of incorrectly labeled items).
end for
£ — YiL, || &/ 1X|
return £{& can be used as a validation set error in model selection.}

Rules of Probability

e In presence of noise, we have to use probabilities.

e In principle, you can derive everything in probabilistic inference from the basic axiom, in-
cluding the sum and product rules.
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Rules of Probability
e P(E,F)= P(F,E): probability of both F and F' happening.

P(E) =) pP(E,F) (sum rule, marginalization)
P(E,F)= P(F | E)P(E) (product rule, conditional probability)
Consequence: P(F' | E)=P(E | F)P(F)/P(F) (Bayes’ formula)

We say E and F' are independent if P(E,F) = P(E)P(F) (for all E and F).

We say E and F are conditionally independent given G if P(E,F | G) = P(E | G)P(F | G),
or equivalently P(E | F,G) = P(E | G).
Bayes’ Rule

Px[C)P(Ci) _ P(x|C)P(Ci)
P(x) Sy P(x | Ck)P(Cy)

P(Ci|x) =

o P(Cy)>0and S5, P(Cy) = 1.

e Naive Bayes Classifier: choose C) where k = arg maxy P(Cy | x).

Classifier Using Probabilistic Model
e First compute posterior class probability P(C' | x).
e Choose class C' with the largest posterior probability.

e Another option: Choose class which minimizes risk (or maximizes utility), if the loss of
misclassification is not a constant.

e A class for uncertainty: reject-option
Bayesian Networks
Bayesian network is a directed acyclic graph (DAG) that describes a joint distribution over the
vertices X1,...,Xy such that
d
P(Xy,...,Xq) = [[ P(Xi | parents(X;)),
i=1

where parents(X;) are the set of vertices from which there is an edge to Xj.

H H P(A,B,C)=P(A|C)P(B|C)P(C). (A and B are conditionally

independent given C.)
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Equivalently:

N

e Plate is used as a shorthand notation for repetition. The number of repetitions is in the
bottom right corner.

e Gray nodes denote observed variables.

Estimating the Sex Ratio

e What is our degree of belief in the gender ratio, before seeing any data (prior probability
density p(6))?
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e What is our degree of belief in the gender ratio, after seeing data X (posterior probability
density p(0 | X))?
p(0 | X) o< p(0)p(X | 0).

N=0

— flat prior (P=0.55)
- - - empirical prior (P=0.78)
------ boundary prior (P=0.51)

0

“True” 6 = 0.55 is shown by the red dotted line. The densities have been scaled to have a maximum of one.

Estimating the Sex Ratio
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N=

0

— flat prior (P=0.55)

empirical prior (P=0.78)
boundary prior (P=0.51)
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N=

1

—— flat prior (P=0.30)
- - - empirical prior (P=0.75)
...... boundary prior (P=0.07)
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N=

2

—— flat prior (P=0.57)
- - - empirical prior (P=0.78)
...... boundary prior (P=0.55)
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3

—— flat prior (P=0.76)
- - - empirical prior (P=0.81)
...... boundary prior (P=0.79)
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N=

4

—— flat prior (P=0.59)
- - - empirical prior (P=0.78)
...... boundary prior (P=0.58)

246




8

—— flat prior (P=0.83)
- - - empirical prior (P=0.84)
...... boundary prior (P=0.85)
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N=

16

— flat prior (P=0.47)

empirical prior (P=0.75)
boundary prior (P=0.45)
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32

— flat prior (P=0.72)

empirical prior (P=0.83)
boundary prior (P=0.71)
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64

— flat prior (P=0.86)

empirical prior (P=0.89)
boundary prior (P=0.85)
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N=128

— flat prior (P=0.91)

empirical prior (P=0.93)
boundary prior (P=0.90)
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N=256

— flat prior (P=0.80)

empirical prior (P=0.87)
boundary prior (P=0.80)
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N=512

flat prior (P=0.59)
empirical prior (P=0.70)
boundary prior (P=0.59)

0.0
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N=1024

— flat prior (P=0.36)

empirical prior (P=0.45)
boundary prior (P=0.36)
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N=2048

— flat prior (P=0.42)

empirical prior (P=0.49)
boundary prior (P=0.42)

0.0

0.2 0.4 0.6 0.8
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N=4096

—— flat prior (P=0.12)
- - - empirical prior (P=0.14)
...... boundary prior (P=0.11)

0.0 0.2 0.4 0.6 0.8

Predictions from the Posterior Probability Density

N+1

e Task: predict probability of x , given N observations in X.
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e Marginalizations:
- p(X,0) = fd;vN+1p(xN+1,X,0) =p(X | 0)p(6).

— p(X) = [dOp(X,0) = [ dOp(X | 0)p(0).
— p(aV LX) = fd&p(:cNH,X,G) = fdﬂp(:zrj\”rl | 0)p(X | 0)p(0).

e Posterior: p(6 | X) = p(X,80)/p(X).

e Predictor for new data point: p(zV*1 | X) = p(azV L, X)/p(X) = [ dOp(z™V T | 0)p(X,0)/p(X) =
[ dop(a™ | 0)p(0 | ).

N

Joint distribution (X = {xt}i\rzl)i p(ENFL X, 0) = p(aN | 0)p(X | 0)p(6).

Point Estimators
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The posterior p(f | X) represents our best knowledge.

Predictor for new data point: p(zN 1 | X) = [dfp(aNTL | 0)p(0 | X).

The calculation of the integral may be infeasible.

Estimate 6 by 0 (or posterior by p(6 | X) ~ §( — 0)) and use the predictor

pa | X) = p(@H | 6).

Estimators from the Posterior

Definition 16 (Maximum Likelihood Estimate).

Ot = argmeaxlogp(X | 0).

Definition 17 (Maximum a Posteriori Estimate).

Opap = argmeaxlogp(ﬁ | X).
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Maximum a Posteriori Estimate (N=8)

— flat prior (P=0.83)
- -~ empirical prior (P=0.84)
...... boundary prior (P=0.85)
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(a) Function and data (b) Order 1
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22
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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251 Best fit “min error”

05k et T T e - variance

Order

23
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Polynomial Regression

(a) Data and fitted polynomials

(b) Error vs polynomial order

Best fit, “elbow”

05 1 1 1 1 1 1 ]

24
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Naive Bayes Classifier
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e Idea: the means are class-specific, covariance matrix 3 is common and diagonal ( Naive Bayes).
e d parameters in the covariance matrix.

e Discriminant is linear: g¢;(x) = WZTX + wjo, where w; = Y7 y; and wy = —%uiTZfl,ui +

log P(C3).

0

Figure 5.5: All classes have equal, diagonal /

covariance matrices but variances are not equal.
From: E. Alpaydin. 2004. Introduction to Machine d N
Learning. © The MIT Press.

e Cross-validation: most robust if there is enough data.

e Structural risk minimization (SRM): used, for example, in support vector machines (SVM).
e Bayesian model selection: use prior and Bayes’ formula.

e Minimum description length (MDL): can be viewed as MAP estimate.

e Regularization: add penalty term for complex models (can be obtained, for example, from
prior).

e Latter four methods do not strictly require validation set (at least if implicit modeling as-
sumptions are satisfied, such as that in Bayesian model selection the data is from the model
family; it is always a good idea to use a test set) and latter three are related.

e There is no single best way for small amounts of data (your prior assumptions matter).

Subset Selection
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There are 24 subsets of d features

Forward search: Add the best featu
Set of features F initially @.
At each iteration, find the best new fea
Jj=argmin, E( Fu Xx;)
Add x;to F if E(FuU Xx;) <E(F)

Hill-climbing O(d?) algorithm

Backward search: Start with all feat
one at a time, if possible.

Floating search (Add k, remove I)

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Principal Component Analysis (PCA)

e Observation: covariance matrix of {z'}, is a diagonal matrix D whose diagonal elements
are the variances.

S, = ZZZT/N:ZCTnyC/N
t t

= c7 <Z ny/N> c=0c"sc =D,
t

where the diagonal elements of D are the variances D;; = Jgi.

e Eigenvalues \; < variances o7.
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=

1

Figure 6.1: Principal components analysis centers
the sample and then rotates the axes to line up with
the directions of highest variance. If the variance on
zo IS too small, it can be ignored and we have
dimensionality reduction from two to one. From:

E. Alpaydin. 2004. Introduction to Machine
Learning. © The MIT Press.

Example: Fossils
e Large European land mammals: 124 fossil find sites (dated 23-2 million years old), 139 taxa

e Reconstruction of site vectors given PCA taxon representation for different k: y = Wz =
WWTly, or x = WWT(x — m) + m.
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Taxa

Cenozoic Large Land Mammals Taxa - Proportion of Variance Explained

fossil sites

X (reconstructed data with k=2)

100 120
I I

80
I

fossil sites
fossil sites
fossil sites

20 40 60 80 100 120 20 40 60 80 100 120

Linear Discriminant Analysis (LDA)

e PCA is unsupervised method (class information is not usually used).

e Linear Discriminant Analysis (LDA) is supervised method for dimensionality reduction in
classification problems.

e As PCA, LDA can be accomplished with standard matrix algebra (eigenvalue decompositions
etc.). This makes it relatively simple and useful.

e PCA is a good general purpose dimensionality reduction method, LDA is a good alternative if
we want to optimize the separability of classes in a specific classification task, and are happy
with dimensionality of less than the number of classes (k < K).

Linear Discriminant Analysis (LDA)
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Find a low-dimensional
space such that when x
is projected, classes
are well-separated.

Find w that maximizes )\
_(m -m,) |

J(w)= ST+ S5 _
w'x'r!

_ th:trt ST = Zt(w

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V

e
-~

m,

k-means Clustering

LLOYDS(X,k) {Input: X, data set; k, number of clusters. Output: {m;}r_,, cluster prototypes.}

Initialize m;, i = 1,..., k, appropriately for example, in random.
repeat
for allt e {1,..., N} do {E step}
b { 1 = arg min, [[x* —my|
therw



end for
for all i € {1,...,k} do {M step}

> bixt

m; <—

2 b

end for
until the error £({m;}%_; | X) does not change
return {m;}} ,

k-means Clustering

2t (®)
L]
0 LI &
Sge, L Figure 9.1 of
L59.°
o
-2
2 -2 0 2
2
0
J o
-2 -2
-2 0 2 -2 0 2

Bishop (2006)

k-means Clustering

e Example: cluster taxa into k = 6 clusters 1000 times with Lloyd’s algorithm.
e The error £({m;}¥_| | X) is different for different runs!

e You should try several random initializations, and choose the solution with smallest error.
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® TFor a cool initialization see Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful Seeding,

Error (1000 runs, k=6) Cenozoic Large Land Mammals (k=6) Cenozoic Large Land Mammals (cluster prototypes)
T il o
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Decision Trees
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ID3 algorithm for discrete attributes
ID3(X) {Input: X = {(r’,x")}L,, data set with binary attributes r* € {—1,+1} and a vector of discrete variables
x'. Output: T, classification tree.}
Create root node for T’
If all items in X" are positive (negative), return a single-node tree with label “+” (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do
Let X, be subset of X that have value v for A
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if X, is empty then
Below the root of T', add a leaf node with most common label in X
else
Below the root of T, add subtree ID3(X)
end if
end for
return T’
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Cost Function for Logistic Regression
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P(R|X,W)=]]P0" ' W)
t=1

N

L=—-logP(R| X, W) ==Y (rflogy’ — (1—r")log (1 —y")),
t=1

where y' = P(rt =1 | x) = sigmoid(w’x + wy).
e Task: find W = (w, wp) such that £ is minimized.
e No EM etc. algorithm. Use gradient ascent.

Gradient Ascent

e Logistic regression may converge to w — oo (see right), especially when data is high dimen-
sional and sparse. This causes problems.

e Solution: minimize regularized cost £L — L + %)\ (w% + WTW).
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Figure 10.7: For a univariate two-class problem
(shown with ‘o’ and ‘x' ), the evolution of the line
wx + wg and the sigmoid output after 10, 100, and
1,000 iterations over the sample. From: E. Alpaydin.
2004. Introduction to Machine Learning. © The MIT

Press.

The End
(Some overflow slides follow.)
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28 Overflow

28.1 Optimization Algorithms

Algorithms in Machine Learning

e Many (most?) machine learning algorithms problems can be stated as optimization problem:
“Find parameters 6 such that the cost £(6) is minimized.”

e Earlier in the course:

— Some optimization problems can be solved in polynomial time (e.g., PCA)

— In some optimization problems (typically they are NP-hard) one must use approximation
algorithms, such as greedy search. (e.g., Lloyd’s algorithm in kmeans clustering).

e [ssues to take into account:

— What is the time and memory complexity?

How is data accessed (for large data sets, serial access is fastest)

Does the algorithm find a reasonable solution (is there approximation ratio?)

— Could there be a better greedy optimization step?

Is your algorithm numerically robust? (That is, does it work consistently and give
accurate results for every possible input.)

e Making numerically robust algorithms is difficult
e The first rule in numerical computation: always use robust numerical libraries when possible

e Of methods with essentially similar performance, choose the simplest/easiest to understand.

28.2 Computing Sums and Products
IEEE Floating Point Arithmetics

e The floating point numbers are stored in three parts in binary:

— fraction (f = 52 bits in double precision)
— exponent (e = 11 bits in double precision)

— sign (1 bit)
e This includes the following types of numbers:

— normalized numbers (normal non-zero numbers)
zero (£0)

infinities (£00)

— NaN

denormalized numbers (+ something very small or very large)
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sign  exponent fraction
| 1l |

e+f f
The three fields in an IEEE 754 float.

Image by Charles Esson, GFDL.

Numerical Computation: Computing Sums and Products

e Sometimes it is enough to use + and * operators to compute sums and products. According
to R: 3.14*42=131.88; 3.144+42+5=50.14.

e Sometimes it is not. According to R: 3.14e-200%42¢-201*1e300=0; 1e-400*1e400=NaN; le-
16+1-1=0.

e In probabilistic modeling it is typical to. ..

— Have numbers of different orders of magnitudes, including very small numbers.
— Do sums and products with them.

e Important numbers (examples from the R floating point implementation in Mac OS X,
help(.Machine)):

— Smallest positive floating point number e (machine epsilon) for which 1+ € # 1: 2.2 x
1016

— The largest finite floating point number: 1.7 x 10308,
— The smallest positive floating point number: 2.2 x 107308,

Numerical Computation: Representing Numbers

e In many practical applications, 2.2 x 107308

bilities.

is too large for representing intermediate proba-

e Solution: store numbers as logs.

e Probabilities are usually always positive. (Generally, software should however be written so
that to work consistently also with zero probabilities.)

e R is consistent also for zero probabilities: log(0)=-Inf; exp(-Inf)=0.
e Other software may behave differently. Read the documentation and test.
Numerical Computation: Computing Products

e Task: compute the product y =[] ;.
e 1¢-200*1e-200*1e300=0 (wrong!).

e Solution: use logs.
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o logy => ", loguw.
e log(1e-200)+log(le-200)+log(1e300)=log(1le-100) (correct).

e Division: log(z/y) = logx — logy. Product with negatives.

Numerical Computation: Computing Sums
e Task: compute sum y =y = | ;.
e cxp(-1000)+exp(-999)=0 (wrong!).
e Solution: scale numbers appropriately before doing the sum.
o logy =logzyax + log (3.7, exp (logx; — logzprax)), where log xarax = max; log ;.

e -999+log(exp(-1)+exp(0))=-998.6 (correct).

e Something like this: safesum <- function(x) { xmax <- max(x) ; xmax+log(sum(exp(x-xmax)))) }

Numerical Computation: Example

P(x | C;)P(C;) _ likelihood x prior
K P(x | Cy)P(Cy) evidence

P(Ci | x) =
Store numbers as logs and denote: a[i] = log P(x | C;), bli] = log P(C}).
safesum <- function(x) { xmax <- max(x); xmax+log(sum(exp(x-xmax)))) }
evidence <- safesum(a+b)
posterior <- sum(c(a[i],b[i],~evidence))

exp(posterior) #P(C; | x)

28.3 Validation and Cross-Validation

Evaluating Classification Algorithms

e Questions:

— What is the performance of a classification algorithm on unseen data?

— Which of the two (or more) classification algorithms is better?

e Our results are conditioned on the data set. (In fact, for all algorithms there exists data sets
for which it would perform excellently or poorly, No Free Lunch Theorem, Wolpert 1995.)

e Limited amount of training/validation data makes it difficult

— Choose the model complexity.

— Evaluate the results.
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K-Fold Cross-Validation
e How to use the training/validation data most efficiently?

CV(X,A,K){Input: X, data X = {(r!,2")}; A, classification algorithm; K, number of folds.
Output: &, error measure. }
Partition A in random into K roughly equally sized parts AX;.
for allie {1,...,K} do
Train A using X \ A; as a training set.
Let &; be the error of A in &; (for example, the fraction of incorrectly labeled items).
end for
£ YK, %6/ |x]
return £{€ can be used as a validation set error in model selection.}
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