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1 Course Bureaucracy

1.1 General Information

People and Locations

• People:

– Kai Puolamäki, PhD, lecturing researcher, lecturer.

– Antti Ukkonen, MSc, course assistant.

• Please see the course web site at http://www.cis.hut.fi/Opinnot/T-61.3050/2007/ for
current information.

• If you want to send email related to the course please use the email alias t613050@james.hut.fi
(not personal addresses).

• Lectures: in T1 on Tuesdays at 10–12 (11 September to 11 December 2007, no lecture on 30
October).

• Problem sessions: in T1 on Fridays at 10–12 (from 14 September to 7 December, no problem
session on 26 October; problem sessions not every week).

Participating

• To participate to this course you need to be a registered student at TKK (that is, you need
a student number).

• You must sign in to course using WebTOPI, https://webtopi.tkk.fi/ Please sign in today,
if you have not already done it.

• You will need to have an addresses of form 12345X@students.hut.fi, where 12345X is your
student number (for exam results, exercise work feedback etc.). Check that this address works
(if not, you should contact the student registry and update your email address there!).

Prerequisites

• To participate to this course you need to have the following prerequisite knowledge:

– basic mathematics and probability courses (Mat-1.1010, Mat-1.1020, Mat-1.1031/1032
and Mat-1.2600/2620; or equivalent);

– basics of programming (T-106.1200/1203/1206/1207 or equivalent); and

– data structures and algorithms (T-106.1220/1223 or equivalent).

• If you lack this prerequisite knowledge we strongly encourage you to take the above mentioned
courses before participating to this course!

• You should be able to complete the problems in the prerequisite knowledge test (problem 1)
for the first problem session next Friday (see the instructions in the problem sheet).
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How to Pass the Course

• You will get 5 cr for passing this course.

• Requirements for passing the course:

– Pass the exercise work. The exercise work should be submitted by 2 January 2008. More
instructions will appear in a few weeks time.

– Pass the examination. You can participate to the examination after passing the exercise
work (exception: you can participate to the December examination before passing the
exercise work; you’ll then pass the course if you pass the exercise work).

• Optional, but useful:

– Lectures.

– Problem sessions.

– Reading the book and other material.

About Exercise Work

• Detailed instructions for the exercise work will be announced within a couple of weeks.

• The exercise work will include a data analysis challenge.

• The final report, which should describe the methods you have used and your results, should
be submitted at 2 January 2008, at latest.

• You can submit the results of the data analysis challenge by 1 December 2007.

• You must pass the exercise work to pass the course. You will get an increase to your grade
if your report is well done. You get some extra points if you additionally perform well in the
data analysis challenge.

About Examination

• The examinations are currently scheduled as follows:

– In B at 16–19 on 19 December 2007.

– In * at 10–13 on 2 February 2008.

– In T1 at 13–16 on 15 May 2008.

• Check the exam schedule later, times may still change!

• You must pass the exercise work before participating to the examination (exception: you can
participate to the December examination before passing the exercise work; you’ll then pass
the course if you pass the exercise work).

• You must sign in to the examination at least one week in advance using WebTOPI, https:
//webtopi.tkk.fi/
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• The examination will be based on the parts of the Alpaydin’s book discussed in the lectures,
plus on the PDF chapter to be distributed from the course web site.

• Lectures, problem sessions and doing the exercise work help.

How to Get a Grade

• You need to pass both the exercise work and the examination to pass the course.

• You will get a grade of 1–5 based mainly on the examination. You can increase your grade
by. . .

– Participating to the problem sessions diligently.

– Solving the exercise work well.

– Submitting a good answer by 1 December 2007 to the data analysis challenge of the
exercise work.

Literature

• The course follows a subset of the book: Alpaydin, 2004. Introduction to Machine Learning.
The MIT Press.

• Additionally, there will also be a PDF chapter on algorithmics (complexity of problems, local
minima etc.) to be distributed from the course web site.

• The lecture slides are available for download from the course web site. I have also given Edita
a permission to print them on request.

• You might also find the material — especially the errata and slides — at the Alpaydin’s web
site (see the link at the course web site) useful.

1.2 Relation to Old Courses

Relation to the Old Courses

• The CIS course reform: more weight on the principles of machine learning, less weight to the
neural networks beginning Autumn 2007.

• In curriculum and for the purposes of the degree requirements, this course replaces the old
course T-61.3030 (and T-61.261) Principles of Neural Computing.

• However, the contents of this course have little overlap with the old course T-61.3030 Princi-
ples of Neural Computing.

Relation to the Old Courses
See http://www.cis.hut.fi/Opinnot/T-61.3050/oldcourses
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Old course (before Autumn 2007) New course
T-61.3030 Principles of Neural Computing T-61.3050 Machine Learning: Basic Principles
T-61.5030 Advanced Course in Neural Computing T-61.5130 Machine Learning and Neural Networks
T-61.5040 Learning Models and Methods T-61.5140 Machine Learning: Advanced Probabilistic Methods

Table 1: Correspondences in degree requirements.

Old course (before Autumn 2007) New course

T-61.5040 Learning Models and Methods
T-61.3050 Machine Learning: Basic Principles
T-61.5140 Machine Learning: Advanced Probabilistic Methods

T-61.3030 Principles of Neural Computing
T-61.5130 Machine Learning and Neural Networks

T-61.5030 Advanced Course in Neural Computing

Table 2: Approximate topical correspondeces.

1.3 Contents of the Course

Very Preliminary Plan of the Topics

• Supervised learning, Bayesian decision theory, probability distributions and parametric meth-
ods, multivariate methods, clustering (mostly Alpaydin’s chapters 1–7 and appendix A)

• Algorithmic issues in machine learning, such as hardness of problems, approximation tech-
niques and their features (such as local minima), time and memory complexity in data analysis
(separate PDF chapter to be distributed from the course web site)

• Nonparametric methods (Alpaydin 8.1–8.2), linear discrimination (Alpaydin 10.1–10.8), as-
sessing and comparing classification algorithms (Alpaydin’s chapter 14)

• I’ll try to keep the Alpaydin’s ordering of topics, and emphasize principles rather than to go
through all possible algorithms and methods.

What You Should Know After the Course

• After this course, you should. . .

– be able to apply the basic methods to real world data;

– understand the basic principles of the methods; and

– have necessary prerequisites to understand and apply new concepts and methods that
build on the topics covered in the course.

• This course does not include:

– all possible machine learning methods; or

– all possible applications of machine learning.

2 Chapter 1: Introduction

2.1 Examples of Machine Learning Applications

What is Machine Learning?
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Definition 1. Machine learning is programming computers to optimize a performance criterion
using example data or past experience. (Alpaydin)

?

Examples of Applications

• Associations (basket analysis)

• Supervised learning

– Classification

– Regression

• Unsupervised learning

• Reinforcement learning (not in this course)

Association rules

• Example: sales data

– rows: customer transactions (millions)

– columns: products bought (thousands)

• Question: Can you find something interesting of this?

Association rule
“80% of customers who buy beer and sausage buy also mustard.” Or: P (mustard | beer, sausage) =
0.8.

• Accuracy (conditional probability): 0.8

• Frequency or support (fraction of clients who bought mustard, beer and sausage): 0.3

Classification

• Example: data on credit card applicants

• Question: Should a client be granted a credit card?

• Differentiate between low-risk (+) and high-risk (-) customers using their income and savings.

Discriminant
IF income> θ1 AND savings> θ2 THEN low-risk ELSE high-risk.
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Real credit-screening data from UCI Machine Learning Repository.

Classification

• Classification: predict something (variate, Y ), given something else (covariate, X). Or: try
to estimate P (Y | X).

• Speech recognition: temporal dependency. Predict words, given the speech signal.

• Character recognition (OCR): different handwriting styles.

• Medical diagnosis: from symptoms to diagnosis.
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• Eye movement analysis: is the user interested in the text she is reading?

• . . .

Classification

• The Internet search engines use machine learning to give the best search results, given a
query.

• Fundamental problem in information retrieval: given a query (“machine learning”), list rele-
vant documents (web sites related to “machine learning”).

Classification Task

5

Is the user interested in text she is reading?

• Training data: set of 
titles of scientific 
papers, measure eye 
movement trajectory, 
ask about relevance of 
titles afterwards

• Task: predict relevance 
for new titles, given 
eye movement 
trajectory, that is, 
estimate p(relevance|
eye movements).

• Textual content not 
taken into account at 
all!

Puolamäki, Salojärvi, Savia, 
Simola, Kaski. SIGIR’05.

How eye movements could be 
used in information retrieval

[movie, link]
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Classification

• Example: eye movement measurements during information search (ongoing research by the
lecturer and his friends during 2003–2007, see http://www.cis.hut.fi/projects/mi/proact)

• Question 1: Is the user interested in text she is reading?

• Question 2: What is the user interested in?

• This is a classification problem: predict relevance of a viewed document or true interest of
the user, given the eye movement trajectory.

• The problem is (was) quite difficult to solve.

Classification

• Eye movements are measured in a controlled experiment.

• A sentence (title of a scientific article) is partitioned into words.

• Most discriminative word-specific features were used (one or many fixations, total fixation
duration, reading behaviour).

• The title relevance was predicted using a discriminative machine learning models.

12
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6

• Eye movements are measured 
in a controlled experiment

• A sentence (title) is 
partitioned into words

• We used the most 
discriminative word-specific 
fixation-based features such 
as:

- one or many fixations

- total fixation duration

- reading behavior

• Title relevance is predicted by 
discriminative modeling (one 
of our research topics)

Is the user interested in text she is reading?

The Minimum Error Minimax Probability Machine

Sphere−Packing Bounds for Convolutional Codes

Quantum State Transfer Between Matter and Light

PAC−Bayesian Stochastic Model Selection

Pictorial and Conceptual Representation of Glimpsed Pictures

Blink and Shrink: The Effect of the Attentional Blink on Spatial Processing

13



Classification

11

What is the user interested in?

Classification

• For this to work, there must be a link between the relevance of a word to a topic of the user’s
interest and eye movements related to it.

• This link can be learned and used on new topics.

• There is a link between relevance of a word and eye 
movements related to it.

• There is data for which the relevance and eye movements are 
known (but for different topics).

• The link is independent of actual topic.

• The link can be learned and used on new topics.

12

What is the user interested in?

Figure 2: Sample plot of saccades (lines) and fixations (dots) on a document (on the left) and term weights
inferred from eye movements on all documents in the Dinosaurs category (on the right). The magnitude of the
inferred weight is shown by the thickness of the underlining. The words which do not appear in the dictionary
are shown in light grey.

following we will use precision to refer to the average
precision defined above.

Baseline models. To show that including the eye
movements in the model really is beneficial in the doc-
ument relevancy prediction task we compare the result
of the model using all 26 eye movement and text fea-
tures to a model that uses only the 4 text features.
Both models are trained as was described in Section
5.1. The only difference is in the feature sets. In Table
2 the text features only model is denoted by Wtext(4).
The average precision for this model is 29.63%.

The expected precision of a uniformly random ranking
is 3.69% for 4 positive examples out of 244 documents
(the Natural disasters category) and 6.10% for 10 pos-
itive examples (all other categories). These results are
significantly worse than our other results because there
is an imbalance in the proportion of positive exam-
ples in the training (about half are positive) and test
sets (only 10 out of 244 are positive) which the ran-
dom model does not take into account. We have con-
trolled this bias by comparing two models Wtext(4)
and Wi(26) (see below) which differ only in that in
latter also the eye movements have been taken into
account

The upper expected limit of performance is given by
the ideal weights, denoted by SVM in the results in
Table 2.

Models with combined features. The non-linear
regression model Wi(26) uses both the eye movement
and the term features and the number of projection
directions in the KPLS regression equals the number
of features. It has average precision of 39.82%. The
result is significantly better than that of the text fea-
tures only model (P < 0.01, Fisher Sign Test). This
is quite a strong result considering the complexity of
the task.

We tested also two other non-linear models, labelled
Wi(39) and Wi(52), with the number of projection
directions exceeding the number of features. They
have similar overall performance. The linear regres-
sion model Wi has a bit lower precision on average.
The topicwise results are shown in Table 2.

It is interesting to observe that the some search topics
achieve a higher precision with the linear regression
model than with non-linear one. Despite these results
it is apparent that the non-linear approach outper-
forms the linear one across all selections of the number
of feature directions.

It is striking that the eye movement models perform
worse than the text features only baseline model in
some categories. One possible reason for that is that
some users have read through most of some documents
instead of just finding enough evidence to judge the
relevance, perhaps because they were interested in the
topic. This kind of reading behaviour would not em-
phasise the interesting words and would make it im-
possible to learn the regressor.

Eye movements combined with explicit rele-
vance feedback and text content. Our initial
assumption was that combining eye movements with
the explicit relevancy feedback improves overall per-
formance. Comparing SVMi and SVM-2Ki results in
the Table 2 shows that this is not true for all search
topics. Nevertheless, the overall precision is improved
by combining the two sources of information.

7 DISCUSSION

We addressed the extremely hard task of constructing
a query in an information retrieval task, given nei-
ther an explicit query nor explicit relevance feedback.
Only eye movement measurements for a small set of
viewed snippets, and the text content of the snippets

Regression

• Regression is classification where the variate Y is a continuous variable.

• The principles in classification and regression are the same, methods differ.

• Example: fuel consumption of cars.

14



• Y : fuel consumption.

• X: car attributes.

• Y = G(X | θ)

– G(): a model.

– θ: model parameters.

15
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auto-mpg data set from UCI Machine Learning Repository.

Uses of Supervised Learning

• Prediction of future cases: Use the rule to predict the output for future inputs.

• Knowledge extraction: The rule is easy to understand.

• Compression: The rule is simpler than the data it explains.

• Outlier detection: Exceptions that are not covered by the rule, for example, fraud.

Unsupervised Learning

• In supervised learning, an imaginary “supervisor” tells us in the training phase what is the
correct variate (Y ), given the covariate (X). We then try to predict P (Y | X) without the
supervisor.

• Unsupervised learning is like supervised learning, except there is no supervisor telling us the
Y . We try to predict P (X). (In supervised learning we really do not care about P (X).)

• Another view: unsupervised learning is like supervised learning, except the covariate Y is
fixed, in which case we try to predict P (Y | X) = P (Y ).

• Again, the principles are the same, but the methods differ.

• Example: clustering (grouping similar instances together)

• Example: probabilistic modeling (find the most likely model to describe the data, given some
prior family of models)

Clustering

• Example: European land mammals.

• Question: Can we find ecological communities?

• Question: What explains the communities?

• The 50 × 50 km map grids were grouped into clusters. Map grids within a cluster should
occupy similar mammals.

Heikinheimo et al. (2007) Biogeography of European land mammals. . . J Biogeogr.
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possibly because herbivore distributions are most directly

influenced by the maritime–continental climate gradient.

The species with the highest grid cell incidence give more

coherent clusters than other groups (Fig. 1). Those with an

incidence of 10–20% give coherence values approaching those

of all species and small mammals, but higher incidence values

give lower coherence, perhaps because the species with the

highest incidence are few and widespread. The subset of species

‘at risk’ gives spatially the least coherent clusters found in this

study, even less coherent than seen for large mammals (Fig. 1).

The regional divisions identified by the clusterings show

significant differences in the values of basic climate variables

and elevation (Table 4). All cluster pairs in the ‘all species’

clustering seen in Fig. 3 differ significantly in at least two

environmental variables, and most cluster pairs differ in all of

the variables (Table 4a,b). For almost all groupings tempera-

ture is the variable for which the cluster pairs have the most

significant differences (Table 4c). For precipitation, the num-

ber of significant differences is also high. For all environmental

variables the set ‘species at risk’ has the smallest number of

significantly different cluster pairs, while the species set with

the largest number of significant differences is different for

each considered variable. However, more important than these

relatively minor differences is the high overall percentage of

significant differences. The results of the anova tests complete

with P-values for all of the species groupings are provided as

Table S3 in the supplementary material.

DISCUSSION

We find that Europe can be divided into coherent subregions

based on the distributions of mammal species. We also find a

high degree of geographical coherence displayed by the

clusters, and consistency in the basic spatial pattern among

non-overlapping subsets of the data and despite changes in the

number of clusters. These observations, in combination with

the environmental contrast observed between the clusters and

the concordance of the geographical cluster pattern with the

EnS environmental stratification strongly suggest that the

clusters represent real biological units rather than arbitrary

constructs generated by the clustering algorithms. We take

this to indicate that, even in present-day Europe with its

long history of intensive human presence, the main con-

trols on mammalian metacommunity distributions remain

Figure 3 The k-means clustering of the
mammal data cells in 12 clusters with the ‘all
species’ set. The clustering is the best out of
100 clustering runs in terms of squared error.
The cells are projected on to the map with the
Mollweide (equal-area) NAD27 projection.

Clustering of European mammals

Journal of Biogeography 7
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd

Clustering

• Endangered species appear to have least spatial coherence.

18



• The clustering can be explained mostly by temperature and precipitation.

• Somewhat surprisingly the natural factors seem to explain the mammalian metacommunity
distributions, despite a long history of intensive human presence.

19



Small mammals Large mammals

Present 10% Present 20% Present 30%

Herbivora CarnivoraOmnivora

Not at riskAt risk

 
All Species 

Figure 4 The k-means clusterings of the mammal data cells into 12 clusters with respect to the species sets: all species, small mammals, large
mammals, herbivora, omnivora, carnivora, at risk, not at risk, present 10%, present 20% and present 30%. The clusterings are the best out of
100 clustering runs in terms of squared error. Presentation as in Fig. 2.

H. Heikinheimo et al.

8 Journal of Biogeography
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd
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Other Applications of Machine Learning

• Bioinformatics

• . . .

Reinforcement Learning

• Learning a policy: A sequence of output.

• No supervised output but delayed reward.

• Credit assignment problem.

• Game playing.

• Robot in a maze.

• Multiple agents, partial observability. . .

• Example: our search engine is showing an user documents. The user tells us if the shown
document is interesting. Tradeoff:

– Exploitation: show the user documents that we think might interest her most (immediate
reward).

– Exploration: show the user uninteresting documents with which we would learn more of
her interests (delayed reward).

• Not covered in this course.

2.2 What is Machine Learning?

What is Machine Learning?

Definition 2. Machine learning is programming computers to optimize a performance criterion
using example data or past experience. (Alpaydin)

• Machine learning is using computers to analyze data.

• The data is noisy, there are measurement errors etc.

• We usually do not observe all factors that would be needed for certainty: we must resort to
statistics.

• What is “learning”? Often, we do not want just to describe the data we have, but be able to
predict of (yet) unseen data.

21



About Generalization

• Often, it would be quite easy to make a model that would describe already known data.

• It is more difficult to. . .

– Say something (predict) of yet unseen data (generalization).

– Make a good (not too complex and not too simple) description of known data.

• Prior knowledge is important.
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What is Machine Learning?

• How does machine learning relate to data mining?

• How does machine learning relate to statistics?

• How does machine learning relate to algorithms?

• How does machine learning relate to artificial intelligence, neural networks, . . . ?

Machine Learning and Data Mining

• Machine learning has (depending on the speaker) a strong overlap with data mining.

• Machine learning emphasizes statistical principles and methods.

• Data mining emphasizes algorithms which also work on large data volumes.

• Data miners may also have a modest goal of helping user to find something interesting of the
data, not attempting to make a model of the world.

22



Machine Learning and Statistics

• Modern statistics forms (with algorithms) the theoretical foundations of machine learning.

• In “traditional” statistics one typically tests single hypothesis of the data. Example: patients
with a new treatment had 80% recovery rate, while patients with the old treatment had 60%
recovery rate. Is the new treatment more effective than the old one?

Machine Learning and Algorithms

• Algorithms are needed to solve machine learning problems.

• In machine learning the algorithmic aspects (convergence, running times etc.) have not been
emphasized. This is however changing.

• Summary: there are lots of connections between machine learning and various disciplines.
The exact connections vary depending on whom you ask. The field is still developing.

2.3 Resources

Software

• There is lots of good software available. You will need some software to pass this course (for
example, exercise work). Some examples follow.

• R. An open source software for statistical computing and publication quality graphics. An
usable functional programming language. (Lecturer’s favourite.)

• Matlab. Matlab is a commercial software that is especially popular in signal processing. It is
too matrix-oriented for the lecturer’s taste. Quite a few people use it (including Alpaydin),
though. Matlab has an open source variant, GNU Octave.

• Weka. Open source Weka is a collection of machine learning algorithms for solving real-world
data mining problems. It is written in Java and runs on almost any platform. (Assistant
seems to like it.)

Datasets

• Often, finding a good data set one of the most difficult tasks in developing machine learning
methods.

• UCI Repository: http://www.ics.uci.edu/∼mlearn/MLRepository.html

• UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html

• Statlib: http://lib.stat.cmu.edu/

• Delve: http://www.cs.utoronto.ca/∼delve/
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Journals

• Journal of Machine Learning Research

• Machine Learning

• Neural Computation

• Neural Networks

• IEEE Transactions on Neural Networks

• IEEE Transactions on Pattern Analysis and Machine Intelligence

• Annals of Statistics

• Journal of the American Statistical Association

• . . .

Conferences

• International Conference on Machine Learning (ICML)

• European Conference on Machine Learning (ECML)

• Neural Information Processing Systems (NIPS)

• Uncertainty in Artificial Intelligence (UAI)

• Computational Learning Theory (COLT)

• International Joint Conference on Artificial Intelligence (IJCAI)

• International Conference on Neural Networks (Europe)

• . . .

Questions?

Next lecture

• Next Tuesday: Chapter 2 of Alpaydin (2004), “Supervised Learning”.

• Remember the problem session next Friday at 10 o’clock.
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2nd Lecture: Supervised Learning

3 Learning a Class from Examples

3.1 Introduction

Learning a Class from Examples

• What follows is some theory of classification into two classes.

• We assume there is no noise (results can be generalized to noise, though).

• What you should learn:

– Learning can be seen as pruning out possible hypothesis.

– Learning is generalization (we want to predict classes of new examples).

– Learning is impossible if the hypothesis space is too large (in other words: we need some
prior information, we need to select a model family)

– The complexity of the hypothesis space (model family) can be characterized using the
VC dimension.

– More complex model, bigger the training data needed.

Independent and Identically Distributed (iid) Data

• We assume that we have a training data X that contains N data points drawn independently
from the identical distribution.

• In other words: ordering of the data points does not matter.

• Usually a good approximation.

• Notable exception: time series.

• Example: today’s temperature is not independent of the yesterday’s temperature, in fact,
there is a strong correlation.

Outside temperature in Otaniemi from
http://outside.hut.fi/.
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xt r(xt)
t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1

Table 3: Aldo’s observed sport experiences in different weather conditions.

3.2 Aldo and Family Car

Does Aldo Enjoy Sport?

• Question: Does Aldo enjoy sport, given weather conditions?

• Assumption: we have sufficient information (6 weather attributes) that fully determine Aldo’s
enjoyment of sports (no “noise”, Aldo is deterministic).

Does Aldo Enjoy Sport?

• Hypothesis h is a function from weather attributes x to {0, 1}.

• Hypothesis class H is the chosen set of hypothesis.

• The goal of the learner is to find a hypothesis h ∈ H such that h(x) = r(x) for every possible
x.

• One possible hypothesis class in Aldo’s case is a vector of six weather attributes. For each
attribute, the hypothesis will be either:

– ?: any value is acceptable for this attribute.
– single value (e.g., “Warm”): required value for this attribute.
– ∅: no value is acceptable.

• If an instance x satisfies the constraints then h classifies this as a positive example, h(x) = 1.

• Example: Aldo enjoys the sport only on cold days with high humidity (independent of other
attributes), this would be represented with (?, Cold,High, ?, ?, ?).

Does Aldo Enjoy Sport?

Definition 3. Let h and g be hypothesis on X. h is more general than or equal to g (written
h � g) if and only if

∀x ∈ X : g(x) = 1⇒ h(x) = 1.

Examples:

• The most general hypothesis is represented by (?, ?, ?, ?, ?, ?) (every day is a positive example).

• The most specific hypothesis is represented by (∅, ∅, ∅, ∅, ∅, ∅) (no day is a positive example).

• h = (Sunny, ?, ?, ?, ?, ?) is more general than g = (Sunny, ?, ?, Strong, ?, ?), or h � g.
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Does Aldo Enjoy Sport?

Definition 4 (Consistent Hypothesis). A hypothesis h is consistent with a set of training examples
X if and only if h(x) = r(x) for each example (x, r) ∈ X .

Definition 5 (Version Space). The version space is the set of all hypothesis that are consistent
with the training examples.

Does Aldo Enjoy Sport?

• Question 1: What are the most general hypothesis that are consistent with the training data
(4 days of observation of Aldo)? (general boundary G)

• Question 2: What are the most specific hypothesis that are consistent with the training data?
(specific boundary S)

Theorem 6 (Version Space Representation Theorem). Let G and S the most general and most
specific hypothesis that are consistent with the training data. Then all hypothesis that are consistent
with the training data (version space) are given by

{h ∈ H | (∃s ∈ S) (∃g ∈ G) : g � h � s} .

Does Aldo Enjoy Sport?

AB

Learning a Class from Examples

Does Aldo Enjoy Sport?
All consistent hypothesis

G = {(Sunny , ?, ?, ?, ?, ?), (?, Warm, ?, ?, ?, ?)}

(Sunny , ?, ?, Strong , ?, ?) (Sunny , Warm, ?, ?, ?, ?) (?, Warm, ?, Strong , ?, ?)

S = {(Sunny , Warm, ?, Strong , ?, ?)}

Kai Puolamäki T-61.3050

xt r(xt)
t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1

See Mitchell (1997) and Candidate-Elimination algorithm for details.

Does Aldo Enjoy Sport?

• One of the consistent hypothesis could be the “truth”. For others we get some error:

Definition 7 (Error of Hypothesis).

E (h | X ) =
1
N

N∑
t=1

1
(
h(xt) 6= rt

)
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• Given enough training samples, we might be able to end up with only one consistent hypoth-
esis.

• Given enough training samples, we might end up with no consistent hypothesis if:

– If none of the hypothesis in the hypothesis class is correct. (For example, if Aldo would
enjoy sport only if (sky is sunny and wind is strong) or (sky is rainy and wind is light).)

– If there is noise (e.g., some positive examples are incorrectly observed as negative exam-
ples).

Does Aldo Enjoy Sport?

• If none of the hypothesis in the hypothesis class is correct we might end up with no consistent
hypothesis.

• “Solution”: include all possible hypothesis into the hypothesis class! In the Aldo’s case, there
are 226

= 1.8× 1019 possible hypothesis (number of boolean functions with 6 inputs).

• This does not work (even if we could compute): we could not say anything of the unseen
cases.

• Inductive bias: we must restrict the allowed hypothesis to be able to generalize (predict classes
of new instances).

• The selection of hypothesis space is called model selection.

• Underfitting: the hypothesis space is too simple.

• Overfitting: the hypothesis space is too complex.

A Family Car

• Question 1: Is car x a family car, given car properties?

• Question 2: What do people expect from a family car?

• Car properties: x = (price, engine power).

• Hypothesis: h(x) = 1 if car is a family car.

A Family Car
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Figure 2.1: Training set for the class of a “family

car.” Each data point corresponds to one example

car and the coordinates of the point indicate the

price and engine power of that car. ‘+’ denotes a

positive example of the class (a family car), and ‘−’

denotes a negative example (not a family car); it is

another type of car. From: E. Alpaydın. 2004.

Introduction to Machine Learning. c©The MIT Press.

6

Figure 2.1 of Alpaydin (2004).

X =
{
xt, rt

}N

t=1

r =
{

1 if x is positive
0 if x is negative

x =
(

x1

x2

)

A Family Car
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Figure 2.2: Example of a hypothesis class. The class

of family car is a rectangle in the price-engine power

space. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.
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Figure 2.2 of
Alpaydin (2004).

r(x) =


1 p1 ≤ price ≤ p2 ∧ e1 ≤ engine power ≤ e2

0 otherwise

A Family Car
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Figure 2.4: S is the most specific hypothesis and G is

the most general hypothesis. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.
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Figure 2.4 of Alpaydin (2004).

Error of h in X :

E(h | X ) =
1
N

N∑
t=1

1
(
h(xt) 6= rt

)
.

h ∈ H between S and G is consistent and make up the version space (error in X is zero). Notice
that if S and G are close the error on new data will be small!

• The hypothesis class H is the set of all rectangles.

• The cars between the most general (G) and most specific (S) hypothesis may be classified
incorrectly. C is the correct hypothesis.
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What did we learn from Aldo and Family Cars?

• We must choose some hypothesis to be able to predict anything (unless we observe all possible
data values). (model selection)

• This causes inductive bias (the choice of hypothesis space affects your results).

• All consistent hypothesis can be found between the most general and most specific hypothesis.

• There may be no consistent hypothesis due to too simple hypothesis space (underfitting) or
noise. These must be taken into account in practical applications.

3.3 PAC Learning and VC Dimension

Probably Approximately Correct (PAC) Learning

• How many training examples N should we have, such that with probability of at least 1− δ,
any consistent hypothesis h has error at most ε?

Probably Approximately Correct (PAC) Learning

Theorem 8. The probability that version space has no hypothesis with error greater than ε is at
most |H|e−εN .(Assume finite hypothesis class H.)

Proof. The probability that a hypothesis that has an error greater than ε is consistent with one
randomly drawn example is at most 1 − ε. Therefore, the probability that this hypothesis is
consistent with N independently drawn examples is at most (1 − ε)N . There are at most |H|
hypothesis that have an error greater than ε. The probability that there is at least one hypothesis
in the version space with an error greater than ε is at most |H|(1− ε)N ≤ |H|e−εN .

It follows that |H|e−εN ≤ δ, or N ≥ 1
ε (ln |H|+ ln (1/δ)).

Probably Approximately Correct (PAC) Learning

Theorem 9 (Probably Approximately Correct (PAC) Learning). We should have N training ex-
amples to have an probability of at least 1− δ that any consistent hypothesis h has error at most ε,
where

N ≥ 1
ε

(
ln |H|+ ln

1
δ

)
If we accept that the best hypothesis might have a non-zero training error (often case in practice)

the limit becomes

N ≥ 1
ε2

(
ln |H|+ ln

1
δ

)
,

where the obtained error will be with probability 1 − δ no more than E(hbest | X ) + ε, where
E(hbest | X ) is the error of the best hypothesis.
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Vapnik-Chervonekis (VC) Dimension

• N points can be labelled rt = 0/1 in 2N ways.

• H shatters N points if there exists h ∈ H consistent for all 2N labellings.

Definition 10 (VC Dimension). VC Dimension is the largest number N of points that can be
shattered by H.

x
� 2
�

x�
1�

Figure 2.5: An axis-aligned rectangle can shatter

four points. Only rectangles covering two points are

shown. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.

10

Rectangles can shatter four points, V C = 4. Figure 2.5 of Alpaydin (2004).

PAC Bound using VC Dimension
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Theorem 11. We should have N training examples to have an probability of at least 1 − δ that
any consistent h has error at most ε, where

N ≥ 1
ε

(
4 log2

2
δ

+ 8V C(H) log2

13
ε

)
.

• We can use the VC dimension instead of ln |H| as a measure of model complexity.

• Lesson: larger VC dimension, more complex model, more training samples are needed.

• (See Mitchell (1997), chapter 7, for details.)

What Did We Learn of PAC Learning and VC Dimension?

• Hypothesis class complexity (or model complexity) can be evaluated using the VC dimension.

• More complex model, more data you need to learn (learning is ability to describe the true
hypothesis with a given confidence).

• PAC bounds are extremely conservative, in practice (when we also have noise) we usually
need significantly smaller data sets.

4 Noise and Regression

4.1 Noise

Noise and Model Complexity

• Noise is unwanted anomaly of data.

• Because of the noise, we may never reach zero error.

• Noise may be caused by:

– Errors in measurements of input attributes or class labels.

– Unknown or ignored (hidden or latent) attributes.

• Noise is best treated probabilistically (next lectures).

• Why to use simpler model:

– simpler to use

– easier to train

– easier to explain

– generalizes better
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Figure 2.7: When there is noise, there is not a simple

boundary between the positive and negative

instances, and zero misclassification error may not be

possible with a simple hypothesis. A rectangle is a

simple hypothesis with four parameters defining the

corners. An arbitrary closed form can be drawn by

piecewise functions with a larger number of control

points. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.
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Figure 2.7 of Alpaydin (2004).

4.2 Regression

Regression
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Figure 2.9: Linear, second-order, and sixth-order

polynomials are fitted to the same set of points. The

highest order gives a perfect fit but given this much

data, it is very unlikely that the real curve is so

shaped. The second order seems better than the

linear fit in capturing the trend in the training data.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Figure 2.9 of Alpaydin (2004).

Regression

• Classification is the prediction of a 0–1 class, given attributes.

• Regression is the prediction of a real number, given attributes. (Usually with noise.)

• The training set is given by X =
{
xt, rt

}N

t=1
, where rt ∈ R.
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• We imagine that the rt are given by some function rt = f(xt, zt), where zt are some unknown
hidden variables.

• The role of hypothesis is taken by the model g(x). We would like to find a model such that
g(xt) ≈ rt for all items in the training set.

• Usually, we want to minimize a quadratic error function,

E(g | X ) =
1
N

N∑
t=1

(
rt − g(xt)

)2
.

Linear Regression

• The simplest case is linear regressor: g(x) = w0 + w1x.

• Optimization task: find w0 and w1 such that the error E(g | X ) = 1
N

∑N
t=1

(
rt − (w0 + w1xt)

)2
is minimized.

Analytic solution:

w1 =
∑

t xtrt − xrN∑
t (xt)2 −Nx2 ,

w0 = r − w1x,

where x =
∑

t x
t/N and r =

∑
t rt/N .

Linear Regression

• Toy data: we have generated 100 data points using sin(X/π) in interval [−1, 1], added with
Gaussian random noise.

• We randomly selected 7 data points to act as the training data (shown in black).

• Solution: g(x) = 0.12 + 1.37x.

• Error on training data: E(g | X ) = 0.0032.

• Error on the remaining 93 points: 0.21 (much larger than on training data!)
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Linear Basis Functions
We can generalize linear regression using k basis functions φi(x),

g(x) =
k∑

i=0

wiφi(x),

where usually φ0(x) = 1.

• A common choice: φi(x) = xi (polynomial basis).

• φi(xt) can be computed beforehand and wi can be solved using linear algebra.
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• In practice, there are lots of good software packages available that do the solving for you.

• Clearly, a high degree polynomial can represent a lower degree polynomial as a special case.

• Higher degree polynomial means larger hypothesis space or model family.

Polynomial Regressors
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• ETRAIN is the error in the training data. It decreases as model complexity increases.

• ETEST is the error on the remaining 93 data points (“test set”). It has minimum at k = 3.

k ETRAIN ETEST g(x | w0, . . . , wk) =
Pk

i=0 wiX
i

0 0.580 0.541 −0.14
1 0.077 0.294 +0.12 + 1.37X
2 0.076 0.275 +0.17 + 1.33X − 0.18X2

3 0.057 0.057 +0.17 + 2.22X − 0.35X2 − 2.00X3

4 0.046 0.562 +0.02 + 2.67X + 2.23X2 − 3.19X3 − 4.73X4

5 0.035 4.637 +0.21 + 3.28X − 2.70X2 − 11.88X3 + 5.24X4 + 15.82X5

6 0 106 −5.86 + 57X + 186X2 − 875X3 − 1490X4

+1634X5 + 2412X6

Table 4: Polynomial regressors.

N ETRAIN ETEST

7 0.0131 1.2187
10 0.0141 0.0821
15 0.0202 0.0761
20 0.0300 0.0511
25 0.0328 0.0507
30 0.0318 0.0573
35 0.0380 0.0494
40 0.0405 0.0484
45 0.0400 0.0476
50 0.0388 0.0473

Table 5: Effect of the size of the training data, k = 5.

Polynomial Regressors

Polynomial Regressors
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Polynomial of degree 5

4.3 Validation

Validation

• Error on training set:

– Decreases as model becomes more complex.

– Increases as number of data points grows.

• We want to minimize generalization error or error on test set:
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– Has a minimum at certain model complexity.

– Decreases and approaches training set error as number of data points grows.

• How to minimize error on test set when we have no access to test set?

Validation

• To estimate generalization error, we need data unseen during training. We split the data in
random as

– training set (50%)

– validation set (25%)

– test set (25%)

• Train models of different complexities on training set. Pick a model complexity that gives
smallest validation set error.

• Train model on combined training and validation set. Report test set error.

Validation

• We are given 20 points from our sinusoidal curve data set.

• Divide the data in random to training (10), validation (5) and test (5) sets.

• Train regressors of different complexities on training set:

k ET RAIN EV ALID
0 0.492 0.644
1 0.091 0.125
2 0.090 0.137
3 0.044 0.041
4 0.044 0.049
5 0.042 0.142
6 0.030 18.820
7 0.025 181.850
8 0.024 34.014

9 0 109

• Validation set error is minimized for the degree 3 polynomial (k = 3). Pick degree 3 polyno-
mial.

Validation

• Train degree 3 polynomial on 15 points (training+validation set) and report the results on
the test set:

k ETRAIN+V ALID ETEST

3 0.0378 0.0594

• If we would like to make predictions we should train on all 20 points (training+validation+test
set). We know that the error on new data points should be approximately at most 0.0594.

• Training with all 20 points in fact gives slightly smaller error (0.0557) on 80 newly sampled
data points.
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5 Conclusion

5.1 About Supervised Learning

Model Selection and Generalization

• Learning is ill-posed problem: data is not sufficient to find unique/correct solution.

• Inductive bias is needed; we need assumptions about the hypothesis class (model family) H.

• Generalization: how well model performs on new data.

• Overfitting: H more complex than C or f .

• Underfitting: H less complex than C or f .

• Triple trade-off (Diettrich 2003):

– complexity of H;

– amount of training data; and

– generalization error on new data.

Dimensions of a Supervised Learner

1. Model: g(x | θ).

2. Loss function: E (θ | X ) = 1
N

∑N
t=1 L

(
rt, g(xt | θ)

)
.

3. Optimization procedure: θ ← arg minθ E (θ | X ).

5.2 Better Basis Functions

Polynomial Basis
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Chebyshev Polynomials of the First Kind
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Chebyshev Polynomials of the First Kind

X

T
n((X

))

T0((X))
T1((X))
T2((X))
T3((X))
T4((X))
T5((X))

T0(X) = 1 T3(X) = 4X3 − 3X

T1(X) = X T4(X) = 8X4 − 8X2 + 1

T2(X) = 2X2 − 1 T5(X) = 16X5 − 20X3 + 5X

Chebyshev Polynomials of the First Kind

• Chebyshev Polynomials are orthogonal polynomials in X ∈ [−1, 1].

• Def.: Tn(cos θ) = cos nθ, n ∈ {0, 1, . . .}.

• Recurrence relation: Tn+2(x) = 2xTn+1(x)− Tn(x).

• Chebyshev Polynomials are useful in numerical analysis:

– max Tn(x) = +1, minTn(x) = −1. (Xn basis also satisfies this in X ∈ [−1, 1].)
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k ETRAIN ETEST g(x | w0, . . . , wk) =
Pk

i=0 wiTi(X)

0 0.580 0.541 −0.14T0(X)
1 0.077 0.294 +0.12T0(X) + 1.37T1(X)
2 0.076 0.275 +0.08T0(X) + 1.33T1(X)− 0.09T2(X)
3 0.057 0.057 −0.01T0(X) + 0.72T1(X)− 0.18T2(X)− 0.50T3(X)
4 0.046 0.562 −0.64T0(X) + 0.28T1(X)− 1.25T2(X)− 0.80T3(X)

−0.59T4(X)
5 0.035 4.637 +0.83T0(X) + 4.26T1(X) + 1.27T2(X) + 1.97T3(X)

+0.65T4(X) + 0.99T5(X)
6 0 106 +282.4T0(X) + 422.6T1(X) + 478.9T2(X) + 291.8T3(X)

+266.0T4(X) + 102.1T5(X) + 75.3T6(X)

Table 6: Chebyshev regressors; compare the magnitude of the terms to the Xn basis.

T0(X) = 1 T3(X) = 4X3 − 3X
T1(X) = X T4(X) = 8X4 − 8X2 + 1
T2(X) = 2X2 − 1 T5(X) = 16X5 − 20X3 + 5X

T6(X) = 32X6 − 48X4 + 18X2 − 1

Table 7: Chebyshev Polynomials of the First Kind.

– The maxima and minima are spread reasonably uniformly over [−1, 1]. (Comparing, in
Xn basis the maxima and minima are only in X = −1 and X = +1.)

– In least squares regression, the Chebyshev basis is analytically equivalent but numerically
much more robust than the commonly used Xn basis especially for larger (> 10) degrees.

T0(X) = 1; T1(X) = X; T2(X) = 2X2 − 1; T3(X) = 4X3 − 3X; T4(X) = 8X4 − 8X2 + 1;

T5(X) = 16X5 − 20X3 + 5X; . . .

Conclusion

• No problem session this week, next problem session on 28 September.

• This week’s problem sheet contains a small data analysis task (for 28 September). [Will be
in the web later today, hopefully.]

• Next lecture on 25 September: Bayesian Decision Theory, Alpaydin (2004) Ch 3.

6 Supervised Learning

6.1 Elements of a Learner

Dimensions of a Supervised Learner

Model
g(x | θ)

53

http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html


Loss Function

E (θ | X ) =
1
N

N∑
t=1

L
(
rt, g(xt | θ)

)
.

Optimization Procedure
θ ← arg min

θ
E (θ | X ).

6.2 Generalization

Model Selection and Generalization

model complexity

er
ro

r

test set
training set

training set size

er
ro

r

test set
training set

• empirical error = error on training set

• generalization error = error on test set

• We see empirical error, but want to minimize the error on new data.

Validation

Question 1
What is the correct model complexity?

Question 2
What is the generalization error?

• To answer the Question 1 divide the data into training and validation sets. Choose model
complexity that has the smallest error on the validation set.

• To answer the Question 2 divide the data into training and test sets. The generalization error
is approximately the error on the test set.
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• To answer both questions the data should be divided into training, validation and test sets.

• There are more efficient methods, such as cross-validation.

Model Selection and Generalization

• Learning is ill-posed problem: data is not sufficient to find unique/correct solution.

• Inductive bias is needed; we need assumptions about the hypothesis class (model family) H.

• Generalization: how well model performs on new data.

• Overfitting: H more complex than C or f .

• Underfitting: H less complex than C or f .

• Triple trade-off (Diettrich 2003):

– complexity of H;

– amount of training data; and

– generalization error on new data.

7 Bayesian Decision Theory

7.1 Probabilities

Basic of Probability

• You should know basics of probability (Mat-1.2600/2620 or Appendix A of Alpaydin (2004)).

• Probability can be interpreted as a frequency or degree of belief.

• Sample space S: the set of all possible outcomes.

• Event E ⊆ S: one possible set of outcomes.

• Probability measure P satisfies:

– P (S) = 1.

– 0 ≤ P (E) ≤ 1 for all E ⊆ S.

– E ⊆ S ∧ F ⊆ S ∧ E ∩ F = ∅ ⇒ P (E ∪ F ) = P (E) + P (F ).
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Rules of Probability

• Interpret E, F as random variables getting values of e, f (coin tossing example: E can get a
value of e ∈ {heads, tails}, F can get a value of coin landing in f ∈ {table,floor}).

• P (E,F ) = P (F,E): probability of both E and F happening.

• P (E) =
∑

F P (E,F ) (sum rule, marginalization)

• P (E,F ) = P (F | E)P (E) (product rule, conditional probability)

• Consequence: P (F | E) = P (E | F )P (F )/P (E) (Bayes’ formula)

• We say E and F are independent if P (E,F ) = P (E)P (F ) (for all e and f).

• We say E and F are conditionally independent given G if P (E,F | G) = P (E | G)P (F | G),
or equivalently P (E | F,G) = P (E | G).

Fruits in Boxes

• P (B = r, F = a) = nRA/n = 1/6.

• P (B = r) =
∑

x∈{a,o} P (B = r, F = x) = nRA/n + nRO/n = nR/n = 2/3.

• P (F = o | B = r) = nRO/nR = 3/4.

• P (B = r | F = o) = P (F = o | B = r)P (B = r)/P (F = o) = 3
4 ×

8
12 ×

12
7 = 6

7 .
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apples oranges Σ
red box nRA = 2 nRO = 6 nR = 8
blue box nBA = 3 nBO = 1 nB = 4

Σ nA = 5 nO = 7 n = 12

Table 8: Count of fruits in two boxes.

Fruits in Boxes

• B and F are random variables which can take two values (r or b; a or o, respectively).

• We computed probabilities of events of drawing one fruit in random such that the probability
of drawing each fruit is 1/12, independent of the box or type.

• We viewed the probabilities as frequencies.

• When all prior information (e.g., counts of the fruits in the boxes) is not known the probabil-
ities turn into degrees of belief (it may be still easier to think them as frequencies, though).

Estimating Probability

• In real life, estimating the probabilities of various events from a sample is difficult.

• For the purposes of today, we mostly assume that someone gives us the probabilities.

• Today we can estimate the probabilities with sample frequencies.

– Example: Someone is tossing a 0–1 coin that gives X = 1 with probability P (X = 1) = p
and X = 0 with probability P (X = 0) = 1 − p (Bernoulli distribution). We notice he
got n1 ones and n0 zeroes in a sample of N = n1 + n0 tosses. Based on this sample, we
can estimate p with p̂ = n1/N .

7.2 Classification

Using Probabilities Classification

• Someone is tossing a 0–1 coin that gives X = 1 (heads) with probability P (X = 1) = p and
X = 0 (tails) with probability P (X = 0) = 1− p (Bernoulli distribution).

• Task: make a classifier for the next toss.

• Prediction: Choose X = 1 (heads) if p ≥ 1/2, X = 0 (tails) otherwise.

Using Probabilities in Classification

• Task: classify a customer high risk (C = 1) or low risk (C = 0) based on her income (x1)
and savings (x2).

• Assume P (C | x1, x2) is known.
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Prediction:

choose
{

C = 1 if P (C = 1 | x1, x2) ≥ 1
2 ,

C = 0 otherwise.

or equivalently

choose
{

C = 1 if P (C = 1 | x1, x2) ≥ P (C = 0 | x1, x2),
C = 0 otherwise.

!"#$%&"'()$"*'+)&','-./012!3'4556'73$&)2%#$8)3'$)'90#:83"'!"0&383;'< =:"'97='>&"**'?@ABAC
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/01+-23

! 4-55'+'2.-#.-23)
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#2,):-3:8+-/9
0;/.1$'+/)5+1$)
.:'-+)83#)E" #2,)
*0F83;*

4-/0+-$-2#2.( <=)83#)E" >)!? @A4)*0F83;* >)!B
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Figure 1.1 of Alpaydin (2004).

Bayes’ Rule
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posterior =
likelihood× prior

evidence
,

or
P (C | x) =

P (x | C)× P (C)
P (x)

.

• The likelihood P (x | C = 1) is the probability that a high risk customer (C = 1) has the
associated observed value x. (This is usually easy to compute.)

• The prior probability P (C = 1) is the probability of observing C = 1 (before x is known).

• The evidence P (x) is the marginal probability that an observation x is seen, regardless of the
value of C. (This is usually difficult to compute directly.)

Using the sum and product rules we obtain:

• P (C = 0) + P (C = 1) = 1.

• P (C = 0 | x) + P (C = 1 | x) = 1.

• P (x) = P (x | C = 1)P (C = 1) + P (x | C = 0)P (C = 0).

Bayes’ Rule

P (Ci | x) =
P (x | Ci)P (Ci)

P (x)
=

P (x | Ci)P (Ci)∑K
k=1 P (x | Ck)P (Ck)

• P (Ck) ≥ 0 and
∑K

k=1 P (Ck) = 1.

• Naive Bayes Classifier: choose Ck where k = arg maxk P (Ck | x).

• A customer is associated with vector x such that P (x | C = 1) = 0.002 and P (x | C = 0) =
0.001.

• 20% of the customers are high risk (C = 1), we therefore set the prior probabilities to
P (C = 1) = 0.2 and P (C = 0) = 0.8.

• Inserting in equation we obtain P (C = 1 | x) = 0.33 and P (C = 0 | x) = 0.67, we therefore
classify the customer as low risk (C = 0).

7.3 Utility Theory

Risks and Losses

• Often, the cost of errors differs. For example, a wrong decision to grant credit may be much
more costly than a wrong decision not to grant credit.

• Decision theory: how to make optimal decisions, given all available information.

• At each time, you can choose one action αi.
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• Action αi causes loss λik when the state is Ck.

λ C = 0 C = 1
α0 = grant credit EUR 0 EUR 1000
α1 = don′t grant credit EUR 100 EUR 0

• Expected risk: R(αi | x) = E [λik] =
∑K

k=1 λikP (Ck | x).

• Choose αi where i = arg mini R(αi | x).

Risks and Losses

• 0/1 loss:

λik =
{

0 i = k
1 i 6= k

R(αi | x) =
K∑

k=1

λikP (Ck | x)

=
∑
k 6=i

P (Ck | x)

= 1− P (Ci | x).

For minimum risk, choose the most probable class.

Risks and Losses

• Assume mis-classification has a cost of 1 (0/1 loss).

• Assume (almost) certain classification (e.g., by a human expert) has a cost of λ.

• Define additional action reject αK+1 and loss by

λik =


0 i = k
λ i = K + 1
1 otherwise

.

• R(αK+1 | x) =
∑K

k=1 λP (Ck | x) = λ.

• R(αi | x) =
∑

k 6=i P (Ck | x) = 1− P (Ci | x).

Choose
{

Ck if k = arg maxk P (Ck | x) and P (Ck | x) ≥ 1− λ
reject otherwise
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Discriminant Functions

• Discriminant function: choose αi where i = arg maxk gk(x), where

gk(x) =


−R(αk | x)
P (Ck | x)

p(x | Ck)P (Ck)

• K decision regions R1, . . . , RK :

Ri =
{
x | i = arg max

k
gk(x)

}
.

x� 2
�

x�
1�

C�
1�

C�
3�

C�
2�

reject�

Figure 3.1: Example of decision regions and decision

boundaries. From: E. Alpaydın. 2004. Introduction

to Machine Learning. c©The MIT Press.

16

Figure 3.1 of Alpaydin (2004).
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Discriminant Functions

• Dichtotomizer (K = 2) vs. Polychotomizer (K > 2)

• g(x) = g1(x)− g2(x): choose C1 if g(x) ≥ 0, C2 otherwise.

• Log odds:

g(x) = log
P (C1 | x)
P (C2 | x)

.

Utility Theory

• In utility theory, one usually tries to maximize expected utility (instead of minimize risk).

• Utility of αi when state is k: Uik

EU(αi | x) = E [Uik] =
∑

k

UikP (Ck | x).

• Choose αi where i = arg maxi EU(αi | x).

• (Choosing Uik = δik log P (Ck | x) makes utility equal to information and leads to probabilistic
modeling.)

Utility Theory

• Utility of using x only is EU(x) = maxi EU(αi | x).

• Utility of using x and new feature z is EU(x, z) = maxi EU(αi | x, z).

• z is useful if EU(x, z) > EU(x).

• You should probably measure z if the expected gain in utility, EU(x, z)−EU(x) exceeds the
measurement costs.

Decision Theory in Court

• Classification problem guilty vs. not guilty.

• Typically, DNA evidence has small match probabilities. How should it be combined with
other evidence?

• Sentencing innocent should have a higher loss.

• R v. Denis John Adams.

Instructions to the Jury?
Suppose the match probability is 1 in 20 million. That means that in Britain (population about 60 million) there
will be on average about 2 or 3 people, and certainly no more than 6 or 7, whose DNA matches that found at the
crime scene, in addition to the accused. Now your job, as a member of the jury, is to decide on the basis of the
other evidence, whether or not you are satisfied that it is the person on trial who is guilty, rather than one of the few
other people with matching DNA. We don’t know anything about the other matching people. They are likely to be
distributed all across the country and may have been nowhere near the crime scene at the time of the crime. Others
may be ruled out as being the wrong sex or the wrong age group.
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xt r(xt)
t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1

Table 9: Aldo’s observed sport experiences in different weather conditions.

8 Bayesian Networks

8.1 Basics

Graphical Models

• Graphical models are diagrammatic representations of probability distributions.

• Advantages:

– The structure is more apparent in graphical representation.

– Properties of the model, such as conditional independence, are easy to see.

– Complex computations are reduced to graphical manipulations.

• Variations:

– Bayesian networks (belief networks, probabilistic networks) [today]

– Markov random fields

– Factor graphs

• Applications:

– Construction of probabilistic models

– Biological networks (see T-61.6070 Modeling of biological networks)

– . . .

Bayesian Networks

• How to efficiently represent joint probability distributions such as P (Sky, AirTemp, . . . , Forecast, EnjoySport)
(useful in computing Aldo’s sport preferences P (EnjoySport | Sky, . . . , Forecast))

Bayesian Networks
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Example 1:

C

A B

P (A,B, C) =P (A | C)P (B | C)P (C).
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Example 2:

B

A

C

P (A,B, C) =P (A | B,C)P (B | C)P (C).

Bayesian Networks
Bayesian network is a directed acyclic graph (DAG) that describes a joint distribution over the

vertices X1,. . . ,Xd such that

P (X1, . . . , Xd) =
d∏

i=1

P (Xi | parents(Xi)),

where parents(Xi) are the set of vertices from which there is an edge to Xi.

• Example 1: P (A,B, C) = P (A | C)P (B | C)P (C).

• Product rule: P (A,B, C) = P (A,B | C)P (C) = P (A | B,C)P (B | C)P (C).
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• Generally: P (X1, . . . , Xd) = P (Xd | X1, . . . , Xd−1) . . . P (X2 | X1)P (X1).

• Example 2: All joint distributions P (X1, . . . , Xd) can be represented by a graph with d(d−1)/2
edges.

8.2 Inference

Causes and Bayes’ Rule
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Figure 3.2 of Alpaydin (2004). P (W, R) = P (W | R)P (R)

Diagnostic inference: Knowing that grass is wet, what is the probability that rain is the cause?

P (R |W ) =
P (W | R)P (R)

P (W )

=
P (W | R)P (R)

P (W | R)P (R) + P (W |∼ R)P (∼ R)

=
0.9× 0.4

0.9× 0.4 + 0.2× 0.6
= 0.75
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Causal vs. Diagnostic Inference
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Bayesian Network: Causes
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Bayesian Networks: Local Structure
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Bayesian Networks: Inference

• P (C,S, R,W,F ) = P (F | R)P (W | R,S)P (R | C)P (S | C)P (C).

• P (C,F ) =
∑

S

∑
R

∑
W P (C,S, R,W,F ).

• P (F | C) = P (C,F )/P (C).

• More generally: To do inference in Bayesian networks one has to marginalize over variables.

• For example: P (X1) =
∑

X2
. . .
∑

Xd
P (X1, . . . , Xd).

• If we have Boolean arguments the sum has O(2d−1) terms. This is inefficient!

• Generally, marginalization is a NP-hard problem.

• If Bayesian Network is a tree: Sum-Product Algorithm

• If Bayesian Network is “close” to a tree: Junction Tree Algorithm

• Otherwise: approximate methods (variational approximation, MCMC etc.)

68



Sum-Product Algorithm

• Idea: sum of products is difficult to compute. Product of sums is easy to compute, if sums
have been re-arranged smartly.

• Example: disconnected Bayesian network with d vertices, computing P (X1).

– sum of products: P (X1) =
∑

X2
. . .
∑

Xd
P (X1) . . . P (Xd).

– product of sums: P (X1) = P (X1)
(∑

X2
P (X2)

)
. . .
(∑

Xd
P (Xd)

)
= P (X1).

• Sum-Product Algorithm works if the Bayesian Network is directed tree.

• For details, see e.g., Bishop (2006).

Sum-Product Algorithm

D

A B C

P (A,B, C, D) = P (A | D)P (B | D)P (C | D)P (D)

Task: compute P̃ (D) =
∑

A

∑
B

∑
C P (A,B, C, D).
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D

A B C

P(A|D)

A

P(B|D)

B

P(C|D)

C

P(D)

D

P (A,B, C, D) = P (A | D)P (B | D)P (C | D)P (D)

• Factor graph is composed of vertices (ellipses) and factors (squares), describing the factors of
the joint probability.

• The Sum-Product Algorithm re-arranges the product (check!):

P̃ (D) =

 X
A

P (A | D)

! X
B

P (B | D)

! X
C

P (C | D)

!
P (D)

=
X
A

X
B

X
C

P (A, B, C, D). (1)

Observations

• Bayesian network forms a partial order of the vertices. To find (one) total ordering of vertices:
remove a vertex with no outgoing edges (zero out-degree) from the network and output the
vertex. Iterate until the network is empty. (This way you can also check that the network is
DAG.)

• If all variables are Boolean, storing a full Bayesian network of d vertices — or full joint
distribution — as a look-up table takes O(2d) bytes.

• If the highest number of incoming edges (in-degree) is k, then storing a Bayesian network of
d vertices as a look-up table takes O(d2k+1) bytes.

• When computing marginals, disconnected parts of the network do not contribute.

• We can marginalize over unknown (hidden) variables.
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Bayesian Network: Classification
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Naive Bayes’ Classifier
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8.3 Finding a Network

Finding a Network

• Often, the network structure is given by an expert.

• In probabilistic modeling, the network structure defines the structure of the model.

• Finding an optimal Bayesian network structure is NP-hard (given some complexity criterion,
described in later lectures).

Finding a Network
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t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1

• Full Bayesian network of d vertices and d(d− 1)/2 edges describes the training set fully and
the test set probably poorly.

• As before, in finding the network structure, we must control the complexity so that the the
model generalizes.

• Usually one must resort to approximate solutions to find the network structure (e.g., deal
package in R).

• A feasible exact algorithm exists for up to d = 32 variables, with a running time of o(d22d−2).

• See Silander et al. (2006) A Simple Optimal Approach for Finding the Globally Optimal
Bayesian Network Structure. In Proc 22nd UAI. (pdf)

Finding a Network

Sky

Forecast

EnjoySport

AirTemp Humidity Wind

Water

Network found by Bene at
http://b-course.hiit.fi/bene

Conclusion

• Next lecture on 2 October: Parametric Methods, Alpaydin (2004) Ch 4.
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• Problem session on 28 September: last week’s (2/2007) and this week’s problem sheets
(3/2007).

9 Bayesian Networks

9.1 Reminders

Rules of Probability

• P (E,F ) = P (F,E): probability of both E and F happening.

• P (E) =
∑

F P (E,F ) (sum rule, marginalization)

• P (E,F ) = P (F | E)P (E) (product rule, conditional probability)

• Consequence: P (F | E) = P (E | F )P (F )/P (E) (Bayes’ formula)

• We say E and F are independent if P (E,F ) = P (E)P (F ) (for all E and F ).

• We say E and F are conditionally independent given G if P (E,F | G) = P (E | G)P (F | G),
or equivalently P (E | F,G) = P (E | G).

Bayesian Networks
Bayesian network is a directed acyclic graph (DAG) that describes a joint distribution over the

vertices X1,. . . ,Xd such that

P (X1, . . . , Xd) =
d∏

i=1

P (Xi | parents(Xi)),

where parents(Xi) are the set of vertices from which there is an edge to Xi.

C

A B
P (A,B, C) = P (A | C)P (B | C)P (C). (A and B are conditionally

independent given C.)

9.2 Inference

Inference in Bayesian Networks

• When structure of the Bayesian network and the probability factors are known, one usually
wants to do inference by computing conditional probabilities.

• This can be done with the help of the sum and product rules.
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• Example: probability of the cat being on roof if it is cloudy, P (F | C)?

Sprinkler� Rain�

Wet grass�

Cloudy�

P�(�R �| �C�)=0.8�

P�(�R �| ~�C�)=0.1�

P�(�S �| �C�)=0.1�

P�(�S �| ~�C�)=0.5�

P�(�C�)=0.5�

rooF�

P�(�F �| �R�)=0.1�

P�(�F �| ~�R�)=0.7�

P�(�W �| �R�,�S�)=0.95�

P�(�W �| �R�,~�S�)=0.90�

P�(�W �| ~�R�,�S�)=0.90�

P�(�W �| ~�R�,~�S�)=0.10�

Figure 3.5: Rain not only makes the grass wet but

also disturbs the cat who normally makes noise on

the roof. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.

20

Figure 3.5 of Alpaydin (2004).

Inference in Bayesian Networks

• Example: probability of the cat being on roof if it is cloudy, P (F | C)?

• S, R and W are unknown or hidden variables.

• F and C are observed variables. Conventionally, we denote the observed variables by gray
nodes (see figure on the right).

• We use the product rule P (F | C) = P (F,C)/P (C), where P (C) =
∑

F P (F,C).

• We must sum over or marginalize over hidden variables S, R and W : P (F,C) =
∑

S

∑
R

∑
W P (C,S, R,W,F ).
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P (F,C) =
P (C,S, R,W,F ) + P (C,−S, R,W,F )
+P (C,S,−R,W, F ) + P (C,−S,−R,W, F )
+P (C,S, R,−W,F ) + P (C,−S, R,−W,F )
+P (C,S,−R,−W,F ) + P (C,−S,−R,−W,F )

• We obtain similar formula for P (F,−C), P (−F,C) and P (−F,−C).

• Notice: we have used shorthand F to denote F = 1 and −F to denote F = 0.

• In principle, we know the numeric value of each joint distribution, hence we can compute the
probabilities.

• There are 25 terms in the sums.

• Generally: marginalization is NP-hard, the most staightforward approach would involve a
computation of O(2d) terms.

• We can often do better by smartly re-arranging the sums and products. Behold:

• Do the marginalization over W first: P (C,S, R, F ) =
∑

W P (F | R)P (W | S, R)P (S |
C)P (R | C)P (C) = P (F | R)

∑
W [P (W | S, R)]P (S | C)P (R | C)P (C) = P (F | R)P (S |

C)P (R | C)P (C).

• Now we can marginalize over S easily: P (C,R, F ) =
∑

S P (F | R)P (S | C)P (R | C)P (C) =
P (F | R)

∑
S [P (S | C)]P (R | C)P (C) = P (F | R)P (R | C)P (C).

• We must still marginalize over R: P (C,F ) = P (F | R)P (R | C)P (C) + P (F | −R)P (−R |
C)P (C) = 0.1× 0.8× 0.5 + 0.7× 0.2× 0.5 = 0.11.

• P (C,−F ) = P (−F | R)P (R | C)P (C) + P (−F | −R)P (−R | C)P (C) = 0.9 × 0.8 × 0.5 +
0.3× 0.2× 0.5 = 0.39.

• P (C) = P (C,F ) + P (C,−F ) = 0.5.

• P (F | C) = P (C,F )/P (C) = 0.22.

• P (−F | C) = P (C,−F )/P (C) = 0.78.
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rooF

Cloudy

Sprinkler Rain

Wet grass
P (C,S, R,W,F ) = P (F | R)P (W | S, R)P (S | C)P (R | C)P (C)

Bayesian Networks: Inference

• To do inference in Bayesian networks one has to marginalize over variables.
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• For example: P (X1) =
∑

X2
. . .
∑

Xd
P (X1, . . . , Xd).

• If we have Boolean arguments the sum has O(2d) terms. This is inefficient!

• Generally, marginalization is a NP-hard problem.

• If Bayesian Network is a tree: Sum-Product Algorithm (a special case being Belief Propaga-
tion).

• If Bayesian Network is “close” to a tree: Junction Tree Algorithm.

• Otherwise: approximate methods (variational approximation, MCMC etc.)

Sum-Product Algorithm

• Idea: sum of products is difficult to compute. Product of sums is easy to compute, if sums
have been re-arranged smartly.

• Example: disconnected Bayesian network with d vertices, computing P (X1).

– sum of products: P (X1) =
∑

X2
. . .
∑

Xd
P (X1) . . . P (Xd).

– product of sums: P (X1) = P (X1)
(∑

X2
P (X2)

)
. . .
(∑

Xd
P (Xd)

)
= P (X1).

• Sum-Product Algorithm works if the Bayesian Network is directed tree.

• For details, see e.g., Bishop (2006).

Sum-Product Algorithm
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D

A B C

P (A,B, C, D) = P (A | D)P (B | D)P (C | D)P (D)

Task: compute P̃ (D) =
∑

A

∑
B

∑
C P (A,B, C, D).

D

A B C

P(A|D)

A

P(B|D)

B

P(C|D)

C

P(D)

D

P (A,B, C, D) = P (A | D)P (B | D)P (C | D)P (D)

• Factor graph is composed of vertices (ellipses) and factors (squares), describing the factors of
the joint probability.
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• The Sum-Product Algorithm re-arranges the product (check!):

P̃ (D) =

 X
A

P (A | D)

! X
B

P (B | D)

! X
C

P (C | D)

!
P (D)

=
X
A

X
B

X
C

P (A, B, C, D). (2)

Observations

• Bayesian network forms a partial order of the vertices. To find (one) total ordering of vertices:
remove a vertex with no outgoing edges (zero out-degree) from the network and output the
vertex. Iterate until the network is empty. (This way you can also check that the network is
DAG.)

• If all variables are Boolean, storing a full Bayesian network of d vertices — or full joint
distribution — as a look-up table takes O(2d) bytes.

• If the highest number of incoming edges (in-degree) is k, then storing a Bayesian network of
d vertices as a look-up table takes O(d2k) bytes.

• When computing marginals, disconnected parts of the network do not contribute.

• Conditional independence is “easy” to see.

Bayesian Network: Classification
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Naive Bayes’ Classifier

C�

P�(�C�)�

p�(�x�
2 �

| �C�)�

x�
1�

p�(�x�
d �

| �C�)�p�(�x�
1 �

| �C�)�

x�
d�

x�
2�

Figure 3.7: Naive Bayes’ classifier is a Bayesian

network for classification assuming independent

inputs. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.

22

Figure
3.7 Alpaydin (2004).

• Xi are conditionally independent given C.

• P (X , C) = P (x1 | C)P (x2 | C) . . . P (xd | C)P (C).
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...

C

1 X NX
Equivalently:

N

C

X

• Plate is used as a shorthand notation for repetition. The number of repetitions is in the
bottom right corner.

• Gray nodes denote observed variables.

9.3 Finding the Structure of the Network

Finding the Structure of the Network
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• Often, the network structure is given by an expert.

• In probabilistic modeling, the network structure defines the structure of the model.

• Finding an optimal Bayesian network structure is NP-hard

• Idea: Go through all possible network structures M and compute the likelihood of data X
given the network structure P (X |M).

• Choose the network complexity appropriately.

• Choose network that, for a given network complexity, gives the best likelihood.

• The Bayesian approach: choose structure M that maximizes P (M | X ) ∝ P (X | M)P (M),
where P (M) is a prior probability for network structure M (more complex networks should
have smaller prior probability).

Finding a Network

• Full Bayesian network of d vertices and d(d− 1)/2 edges describes the training set fully and
the test set probably poorly.

• As before, in finding the network structure, we must control the complexity so that the the
model generalizes.

• Usually one must resort to approximate solutions to find the network structure (e.g., deal
package in R).

• A feasible exact algorithm exists for up to d = 32 variables, with a running time of o(d22d−2).

• See Silander et al. (2006) A Simple Optimal Approach for Finding the Globally Optimal
Bayesian Network Structure. In Proc 22nd UAI. (pdf)

Finding a Network
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t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1

Sky

Forecast

EnjoySport

AirTemp Humidity Wind

Water

Network found by Bene at
http://b-course.hiit.fi/bene

10 Probabilistic Inference

10.1 Bernoulli Process

Boys or Girls?

Bernoulli Process

• The world average probability that a newborn child is a boy (X = 1) is about θ = 0.512
[probability of a girl (X = 0) is then 1− θ = 0.488].

• Bernoulli process:
P (X = x | θ) = θx (1− θ)1−x , x ∈ {0, 1}.

• Assume we observe the genders of N newborn children, X = {xt}Nt=1. What is the sex ratio?

• Joint distribution: P (x1, . . . , xN , θ) = P (x1 | θ) . . . P (xN | θ)P (θ).

• Notice we must fix some prior for θ, P (θ).
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Figure 1: Sex ratio by country population aged below 15. Blue represents more women, red
more men than the world average of 1.06 males/female. Image from Wikimedia Commons, author
Dbachmann, GFDLv1.2.

...1 NX

θ

X 85



Equivalently:

N

θ

X

10.2 Posterior Probabilities

Comparing Models

• The likelihood ratio (Bayes factor) is defined by

BF (θ2; θ1) =
P (X | θ2)
P (X | θ1)
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• If we believe before seeing any data that the probability of model θ1 is P (θ1) and of model
θ2 is P (θ2) then the ratio of their posterior probabilities is given by

P (θ2 | X )
P (θ1 | X )

=
P (θ2)
P (θ1)

×BF (θ1; θ2)

• This ratio allows us to compare our degrees of beliefs into two models.

• Posterior probability density allows us to compare our degrees of beliefs between infinite
number of models after observing the data.

Discrete vs. Continuous Random Variables

• The Bernoulli parameter θ is a real number in [0, 1].

• Previously we considered binary (0/1) random variables.

• Generalization to multinomial random variables that can have values 1, 2, . . . ,K is straight-
forward.

• Generalization to continuous random variable: divide the interval [0, 1] to K equally sized
intervals of width ∆θ = 1/K. Define probability density p(θ) such that the probability of θ
being in interval Si = [(i − 1)∆θ, i∆θ], i ∈ {1, . . . ,K}, is P (θ ∈ Si) = p(θ′)∆θ, where θ′ is
some point in Si.

• At limit ∆θ → 0:

EP (θ) [f(θ)] =
∑

θ

P (θ)f(θ) −→ Ep(θ) [f(θ)] =
∫

dθp(θ)f(θ).
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∆θ

1

p(  )θ

θ
0

θP( )

• P (θ ∈ [(i− 1)∆θ, i∆θ]) = p(θ′)∆θ.

• At limit ∆θ → 0:

EP (θ) [f(θ)] =
∑

θ

P (θ)f(θ) −→ Ep(θ) [f(θ)] =
∫

dθp(θ)f(θ).

Estimating the Sex Ratio

• Task: estimate the Bernoulli parameter θ, given N observations of the genders of newborns
in an unnamed country.

• Assume the “true” Bernoulli parameter to be estimated in the unnamed country is θ = 0.55,
the global average being 51.2%.

• Posterior probability density after seeing N newborns in X = {xt}Nt=1:

p(θ | X ) =
p(X | θ)p(θ)

p(X )

∝ p(θ)
N∏

t=1

[
θxt

(1− θ)1−xt
]
.
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Estimating the Sex Ratio
What is our degree of belief in the gender ratio, before seeing any data (prior probability density

p(θ))?

• Very agnostic view: p(θ) = 1 (flat prior).

• Something similar than elsewhere (empirical prior).

• Conspiracy theory prior: all newborns are almost all boys or all girls (boundary prior).

0.0 0.2 0.4 0.6 0.8 1.0

N=0

θθ

flat prior (P=0.55)
empirical prior (P=0.78)
boundary prior (P=0.51)

“True” θ = 0.55 is shown by the red dotted line. The densities have been scaled to have a maximum of one.
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Estimating the Sex Ratio

0.0 0.2 0.4 0.6 0.8 1.0

N=0

θθ

flat prior (P=0.55)
empirical prior (P=0.78)
boundary prior (P=0.51)
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0.0 0.2 0.4 0.6 0.8 1.0

N=1

θθ

flat prior (P=0.30)
empirical prior (P=0.75)
boundary prior (P=0.07)
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0.0 0.2 0.4 0.6 0.8 1.0

N=2

θθ

flat prior (P=0.57)
empirical prior (P=0.78)
boundary prior (P=0.55)
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0.0 0.2 0.4 0.6 0.8 1.0

N=3

θθ

flat prior (P=0.76)
empirical prior (P=0.81)
boundary prior (P=0.79)
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0.0 0.2 0.4 0.6 0.8 1.0

N=4

θθ

flat prior (P=0.59)
empirical prior (P=0.78)
boundary prior (P=0.58)
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0.0 0.2 0.4 0.6 0.8 1.0

N=8

θθ

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)
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0.0 0.2 0.4 0.6 0.8 1.0

N=16

θθ

flat prior (P=0.47)
empirical prior (P=0.75)
boundary prior (P=0.45)
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0.0 0.2 0.4 0.6 0.8 1.0

N=32

θθ

flat prior (P=0.72)
empirical prior (P=0.83)
boundary prior (P=0.71)
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0.0 0.2 0.4 0.6 0.8 1.0

N=64

θθ

flat prior (P=0.86)
empirical prior (P=0.89)
boundary prior (P=0.85)
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0.0 0.2 0.4 0.6 0.8 1.0

N=128

θθ

flat prior (P=0.91)
empirical prior (P=0.93)
boundary prior (P=0.90)
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0.0 0.2 0.4 0.6 0.8 1.0

N=256

θθ

flat prior (P=0.80)
empirical prior (P=0.87)
boundary prior (P=0.80)
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0.0 0.2 0.4 0.6 0.8 1.0

N=512

θθ

flat prior (P=0.59)
empirical prior (P=0.70)
boundary prior (P=0.59)
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0.0 0.2 0.4 0.6 0.8 1.0

N=1024

θθ

flat prior (P=0.36)
empirical prior (P=0.45)
boundary prior (P=0.36)
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0.0 0.2 0.4 0.6 0.8 1.0

N=2048

θθ

flat prior (P=0.42)
empirical prior (P=0.49)
boundary prior (P=0.42)
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0.0 0.2 0.4 0.6 0.8 1.0

N=4096

θθ

flat prior (P=0.12)
empirical prior (P=0.14)
boundary prior (P=0.11)

Observations

• With few data points the results are strongly dependent on the prior assumptions (inductive
bias).
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• As the number of data points grow, the results converge to the same answer.

• The conspiracy theory fades out quickly as we notice that there are both male and female
babies.

• The only zero posterior probability is on hypothesis θ = 0 and θ = 1.

• It takes quite a lot observations to pin the result down to a reasonable accuracy.

• The posterior probability can be very small number. Therefore, we usually work with logs of
probabilities.

11 Estimating Parameters

11.1 Estimates from Posterior

Predictions from the Posterior

• The posterior represents our best knowledge.

• Predictor for new data point:

p(x | X ) = Ep(θ|X ) [p(x | θ)] =
∫

dθp(x | θ)p(θ | X ).

• The calculation of the integral may be infeasible.

• Solution: estimate θ by θ̂ and use the predictor

p(x | X ) ≈ p(x | θ̂).

Estimations from the Posterior

Definition 12 (Maximum Likelihood Estimate).

θ̂ML = arg max
θ

log p(X | θ).

Definition 13 (Maximum a Posteriori Estimate).

θ̂MAP = arg max
θ

log p(θ | X ).

(With flat prior MAP Estimate reduces to the ML Estimate.)
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0.0 0.2 0.4 0.6 0.8 1.0

Maximum a Posteriori Estimate (N=8)

θθ

● ●●

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)

Bernoulli Density

• Two states, x ∈ {0, 1}, one parameter θ ∈ [0, 1].

P (X = x | θ) = θx (1− θ)1−x .

P (X | θ) =
N∏

t=1

θxt
(1− θ)1−xt

.
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L = log P (X | θ) =
∑

t

xt log θ +

(
N −

∑
t

xt

)
log (1− θ).

∂L
∂θ

= 0⇒ θ̂ML =
1
N

∑
t

xt.

Multinomial Density

• K states, x ∈ {1, . . . ,K}, K real parameters θi ≥ 0 with constraint
∑K

k=1 θk = 1.

• One observation is an integer k in {1, . . . ,K} and it is represented by xi = δik.

P (X = i | θ) =
K∏

k=1

θxk
k .

P (X | θ) =
N∏

t=1

K∏
k=1

θ
xt

k
k .

L = log P (X | θ) =
N∑

t=1

K∑
k=1

xt
k log θk.

∂L
∂θk

= 0⇒ θ̂kML =
1
N

∑
t

xt
k.

Gaussian Density

• A real number x is Gaussian (normal) distributed with mean µ and variance σ2 or x ∼
N(µ, σ2) if its density function is

p(x | µ, σ2) =
1√

2πσ2
exp

„
− (x− µ)2

2σ2

«
.

L = log P (X | µ, σ2)

= −N

2
log (2π)−N log σ −

PN
t=1

`
xt − µ

´2
2σ2

.

ML :

(
m = 1

N

PN
t=1 xt

s2 = 1
N

PN
t=1

`
xt −m

´2
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0.
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0.
3

0.
4

N(0,1)

x

p(x | µ = 0, σ2 = 1)

11.2 Bias and Variance

Bias and Variance

• Setup: unknown parameter θ is estimated by d(X ) based on a sample X .

• Example: estimate σ2 by d = s2.

• Bias: bθ(d) = E [d]− θ.
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• Variance: E
[
(d− E [d])2

]
.

• Mean square error of the estimator r(d, θ):

r(d, θ) = E
[
(d− θ)2

]
= (E [d]− θ)2 + E

[
(d− E [d])2

]
= Bias2 + Variance.

d�
i�

E[�d�]�

variance�

bias�

θ�

Figure 4.1: θ is the parameter to be estimated. di

are several estimates (denoted by ‘×’) over different

samples. Bias is the difference between the expected

value of d and θ. Variance is how much di are

scattered around the expected value. We would like

both to be small. From: E. Alpaydın. 2004.

Introduction to Machine Learning. c©The MIT Press.

25

Figure 4.1 of Alpaydin (2004).

Bias and Variance

• Estimator is unbiased if bθ(d) = 0.

• Assume X is sampled from a Gaussian distribution.

• Estimate σ2 by s2: s2 = 1
N

∑
t

(
xt −m

)2.
• We obtain:

Ep(x|µ,σ2)

[
s2
]

=
N − 1

N
σ2.

• s2 is not unbiased estimator, but N
N−1s2 is:

σ̂2 =
1

N − 1

N∑
t=1

(
xt −m

)2
.

• s2 is however asymptotically unbiased (that is, bias vanishes when N →∞).
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Bayes’ Estimator

• Bayes’ estimator: θ̂Bayes = Ep(θ|X ) [θ] =
∫

dθθp(θ | X ).

• Example: xt ∼ N(θ, σ2
0), t ∈ {1, . . . , N}, and θ ∼ N(µ, σ2), where µ, σ2 and σ2

0 are known
constants. Task: estimate θ.

p(X | θ) =
1

(2πσ2
0)N/2

exp

 
−
P

t

`
xt − θ

´2
2σ2

0

!
,

p(θ) =
1√

2πσ2
exp

„
− (θ − µ)2

2σ2

«
.

• It can be shown that p(θ | X ) is Gaussian distributed with

θ̂Bayes = Ep(θ|X ) [θ] =
N/σ2

0

N/σ2
0 + 1/σ2

m +
1/σ2

N/σ2
0 + 1/σ2

µ.
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x

θ

µ σ

N

σ0
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11.3 Conclusion

About Estimators

• Point estimates collapse information contained in the posterior distribution into one point.

• Advantages of point estimates:

– Computations are easier: no need to do the integral.

– Point estimate may be more interpretable.

– Point estimates may be good enough. (If the model is approximate anyway it may make
no sense to compute the integral exactly.)

• Alternative to point estimates: do the integral analytically or using approximate methods
(MCMC, variational methods etc.).

• One should always use test set to validate the results. The best estimate is the one performing
best in the validation/test set.

Conclusion

• Next lecture: More about Model Selection (Alpaydin (2004) Ch 4)

• Problem session on 5 October.

12 Official Business

12.1 Newsgroup opinnot.tik.t613050

Otax Newsgroup opinnot.tik.t613050

• The course has an Otax newsgroup opinnot.tik.t613050

• Suitable topics for the newsgroup include:

– Questions, comments and discussion about the topics of the course.

– Organization of the course.

– Announcements by the course staff.

– Other discussion related to the course.

• The advantage of posting to the newsgroup instead of sending us email is that everyone can
see the question and participate to the discussion. Therefore, you should consider posting
your question or comment to the newsgroup if you have a question or comment that could
benefit also other participants of the course.

• See http://www.cis.hut.fi/Opinnot/T-61.3050/otax
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12.2 Term Project

Term Project: Web Spam Detection

• You have to pass both the examination and the term project (exercise work) to pass the
course.

• The term project will be graded and it will affect the total grade you will get of the course.

• Deadlines:

– 23 November 2007: predictions for the test set and a preliminary version of your project
report.

– 30 November 2007: a presentation about your solution (for some of you).

– 2 January 2008: The final report.

• See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/project

Term Project: Web Spam Detection

• Classification task (see the course web site for details).

• You can work either alone or in groups of two (preferred).

• Both members of the group get the same grade for the term project.

• There is a non-serious competition:

– In November, we will publish an unlabeled test set.

– Your task is to make predictions on the test set and preliminary draft of the report and
submit them by email by 23 November.

– Some of you are asked to describe shortly your approach on 30 November problem
session.

• The final report is due 2 January 2008.

• The web spam detection can be as difficult as you want: you should use some basic methods
you understand and not to try to duplicate complicates methods introduced in research
articles.

Term Project: Web Spam Detection

• Search engines (Google, Yahoo Search, MSN Search etc.) classify a web page more relevant
more relevant pages link to it.

• A good place in search results is financially valuable (it brings visitors).

• Web spam: a page crafted to increase search engine rating of affiliated pages (or itself).

– Creation of extraneous pages which link to each other and target page (link stuffing).
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– Content may be engineered to appear relevant to popular searches (keyword stuffing).

Figure 1: An example spam page; although it contains popular

keywords, the overall content is useless to a human user.

the viewer, are called “web spam”. Figure 1 shows an example of

a spam page: this page contains important keywords, however its

content is, on the whole, useless to a human viewer.

In the context of search engines, spam can be a great nuisance

for several reasons. First, since there are financial advantages to be

gained from search engine referrals, web site operators generating

spam deprive legitimate sites of the revenue that they might earn

in the absence of spam. To the extent that search engines allow

spam to distort recommendations, they are unwittingly complicit in

this “unfairness” towards legitimate sites. Second, if a search en-

gine returns spam web pages to its users, they will be confronted

with irrelevant results, which may lead to frustration and disap-

pointment in the search engine’s services. Finally, a search engine

may waste significant resources on spam pages. Unless detected,

the spam pages are crawled (thus wasting network bandwidth), pro-

cessed (thus wasting CPU cycles), indexed (thus wasting storage

space), and matched against queries (wasting CPU cycles and disk

bandwidth in matching, and network bandwidth when returning

results). Given the amount of spam on the web (estimated to be

13.8% of English-language pages, as shown in Section 3), a search

engine which does not distinguish spam wastes one-seventh of its

resources for spam alone.

Creating an effective spam detection method is a challenging

problem. Given the size of the web, such a method has to be auto-

mated. However, while detecting spam, we have to ensure that we

identify spam pages alone, and that we do not mistakenly consider

legitimate pages to be spam. At the same time, it is most useful

if we can detect that a page is spam as early as possible, and cer-

tainly prior to query processing. In this way, we can allocate our

crawling, processing, and indexing efforts to non-spam pages, thus

making more efficient use of our resources.

In this paper, we explore a variety of methods for detecting spam.

Each method is highly parallelizable, can run in time proportional

to the size of the page, and identifies spam pages by analyzing the

content of every downloaded page. We present experiments per-

formed on a subset of a crawl performed by MSN Search demon-

strating the relative merits of every method. We also present how

to employ machine learning techniques that combine our individual

methods to create a highly efficient and reasonably-accurate spam

detection algorithm. The approaches described in this paper extend

our previous work in identifying web spam [8, 9].

The remainder of our paper is structured as follows: In Section 2

we describe our experimental framework and the real-world data

set that we used. In Section 3 we estimate the prevalence of spam

in selected languages and domains in our data set. In Section 4 we

describe the spam-detection methods that we explored and in Sec-

tion 5 we examine how well these methods can work in combina-

tion. In Section 6 we discuss related work, and finally, in Section 7

we offer some concluding remarks and outline directions for future

work.

2. EXPERIMENTAL FRAMEWORK AND

DATA SETS
In order to design and evaluate our spam detection algorithms,

we used a collection of 105, 484, 446 web pages, collected by the
MSN Search [22] crawler, to serve as a proxy for the web at large.

These pages were collected during August 2004, and were drawn

arbitrarily from the full MSN Search crawl.

The MSN Search crawler discovers new pages using a roughly

breadth-first exploration policy, and uses various importance esti-

mates to schedule recrawling of already-discovered pages. There-

fore, pages crawled using such a policy may not follow a uniform

random distribution; the MSN Search crawler is biased towards

well-connected, important, and “high-quality” pages. In addition,

the MSN Search crawler already uses numerous spam detection

heuristics, including many described in [8].

Although our data set may not correspond to a “random sam-

ple” of the web, we believe that our methods and the numbers

that we report in this paper still have merit for the following rea-

sons. First, although our crawler focuses on well-connected and

important pages, these pages are typically ranked most-highly by

search engines. Therefore, the numbers on spam that we report in

this paper approximate what will eventually be perceived by users

of search engines. Second, since the crawler already discards or

downgrades some of the spam, the numbers and metrics that we

report in the following sections are a conservative estimate of the

impact of web spam.

In the next section, we examine the distribution of spam on the

web in more detail, while in Section 4 we present methods for de-

tecting it.

3. HOWMUCH SPAM?
In this section we seek to gain insight into how pervasive spam

is on the web and whether some pages are more likely to be spam

than others. To assess this, we performed two experiments. In the

first experiment we investigated whether some particular top-level

domains were more likely to contain spam than others. To that

end, we drew uniform random samples (of varying sizes) from each

of the eight most-popular top-level domains, which cumulatively

contain 80% of all pages in our collection. Each page was manually

classified as spam or non-spam.

Figure 2 shows the results of this experiment. The horizontal

axis denotes the top-level domain and the vertical axis shows the

fraction of spam within a particular domain. The numbers in this

graph are reported with a 95% confidence interval, represented by

the vertical interval lines surmounting every bar. The confidence in-

tervals vary in size, due to the differing numbers of samples drawn

in different domains.

84

Figure from Ntoulas et al. (2006) Detecting spam web pages through content analysis. In Proc 15th WWW.

Term Project: Web Spam Detection

• Look at the data first. Look for simple correlations, structures etc.
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• It may be useful to browse through articles discussing web spam (hint: http://scholar.
google.com/).

• Probably feature selection is important (some features are correlated, some do not really
contain information about the class).

• However: use methods that you understand, do not try to duplicate very complex methods
discussed in some articles.

• More important than the best possible classification result by a complex method is that
you have a principled approach and you understand what you are doing (and that Antti
understands your report, too).

13 Parametric Methods

13.1 Reminders

From Discrete to Continuous Random Variables

• Example: Bernoulli probability θ ∈ [0, 1] — infinite number of hypothesis (one for every θ).

• Probability density p(θ): P (a ≤ θ ≤ b) =
∫ b
a dθp(θ).

• Sum rule: P (X) =
∑

Y P (X, Y ) −→ p(X) =
∫

dY p(X, Y ).

• Expectation: EP (X) [f(X)] =
∑

X P (X)f(X) −→ Ep(X) [f(X)] =
∫

dXp(X)f(X).

• Normalization:
∑

X P (X) = 1 −→
∫

dXp(X) = 1.

Estimating the Sex Ratio

• What is our degree of belief in the gender ratio, before seeing any data (prior probability
density p(θ))?

• What is our degree of belief in the gender ratio, after seeing data X (posterior probability
density p(θ | X ))?

p(θ | X ) ∝ p(θ)p(X | θ).
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0.0 0.2 0.4 0.6 0.8 1.0

N=0

θθ

flat prior (P=0.55)
empirical prior (P=0.78)
boundary prior (P=0.51)

0.0 0.2 0.4 0.6 0.8 1.0

N=8

θθ

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)

“True” θ = 0.55 is shown by the red dotted line. The densities have been scaled to have a maximum of one.

Predictions from the Posterior Probability Density

• Task: predict probability of xN+1, given N observations in X .

• Marginalizations:

– p(X , θ) =
∫

dxN+1p(xN+1,X , θ) = p(X | θ)p(θ).
– p(X ) =

∫
dθp(X , θ) =

∫
dθp(X | θ)p(θ).

– p(xN+1,X ) =
∫

dθp(xN+1,X , θ) =
∫

dθp(xN+1 | θ)p(X | θ)p(θ).
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• Posterior: p(θ | X ) = p(X , θ)/p(X ).

• Predictor for new data point: p(xN+1 | X ) = p(xN+1,X )/p(X ) =
∫

dθp(xN+1 | θ)p(X , θ)/p(X ) =∫
dθp(xN+1 | θ)p(θ | X ).

N
XX

θ

N+1

Joint distribution (X =
{
xt
}N

t=1
): p(xN+1,X , θ) = p(xN+1 | θ)p(X | θ)p(θ).

13.2 Estimators

Point Estimators

• The posterior p(θ | X ) represents our best knowledge.

• Predictor for new data point: p(xN+1 | X ) =
∫

dθp(xN+1 | θ)p(θ | X ).

• The calculation of the integral may be infeasible.
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• Estimate θ by θ̂ (or posterior by p(θ | X ) ≈ δ(θ − θ̂)) and use the predictor

p(xN+1 | X ) ≈ p(xN+1 | θ̂).

Estimators from the Posterior

Definition 14 (Maximum Likelihood Estimate).

θ̂ML = arg max
θ

log p(X | θ).

Definition 15 (Maximum a Posteriori Estimate).

θ̂MAP = arg max
θ

log p(θ | X ).

0.0 0.2 0.4 0.6 0.8 1.0

Maximum a Posteriori Estimate (N=8)

θθ

● ●●

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)
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Gaussian Density

• A real number x is Gaussian (normal) distributed with mean µ and variance σ2 or x ∼
N(µ, σ2) if its density function is

p(x | µ, σ2) =
1√

2πσ2
exp

„
− (x− µ)2

2σ2

«
.

L = log P (X | µ, σ2)

= −N

2
log (2π)−N log σ −

PN
t=1

`
xt − µ

´2
2σ2

.

ML :

(
m = 1

N

PN
t=1 xt

s2 = 1
N

PN
t=1

`
xt −m

´2
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Bayes’ Estimator

• Bayes’ estimator: θ̂Bayes = Ep(θ|X ) [θ] =
∫

dθθp(θ | X ).

• Example: xt ∼ N(θ, σ2
0), t ∈ {1, . . . , N}, and θ ∼ N(µ, σ2), where µ, σ2 and σ2

0 are known
constants. Task: estimate θ.

p(X | θ) =
1

(2πσ2
0)N/2

exp

 
−
P

t

`
xt − θ

´2
2σ2

0

!
,

p(θ) =
1√

2πσ2
exp

„
− (θ − µ)2

2σ2

«
.
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• It can be shown that p(θ | X ) is Gaussian distributed with

θ̂Bayes = Ep(θ|X ) [θ] =
N/σ2

0

N/σ2
0 + 1/σ2

m +
1/σ2

N/σ2
0 + 1/σ2

µ.
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θ

µ σ

N

σ0
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13.3 Bias and Variance

Bias and Variance

• Setup: unknown parameter θ is estimated by d(X ) based on a sample X .

• Example: estimate σ2 by d = s2.

• Bias: bθ(d) = E [d]− θ.

• Variance: E
[
(d− E [d])2

]
.

• Mean square error of the estimator r(d, θ):

r(d, θ) = E
[
(d− θ)2

]
= (E [d]− θ)2 + E

[
(d− E [d])2

]
= Bias2 + Variance.

d�
i�

E[�d�]�

variance�

bias�

θ�

Figure 4.1: θ is the parameter to be estimated. di

are several estimates (denoted by ‘×’) over different

samples. Bias is the difference between the expected

value of d and θ. Variance is how much di are

scattered around the expected value. We would like

both to be small. From: E. Alpaydın. 2004.

Introduction to Machine Learning. c©The MIT Press.

25

Figure 4.1 of Alpaydin (2004).

Bias and Variance

• Estimator is unbiased if bθ(d) = 0.

• Assume X is sampled from a Gaussian distribution.

• Estimate σ2 by s2: s2 = 1
N

∑
t

(
xt −m

)2.
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• We obtain:
Ep(x|µ,σ2)

[
s2
]

=
N − 1

N
σ2.

• s2 is not unbiased estimator, but σ̂2 = N
N−1s2 is:

σ̂2 =
1

N − 1

N∑
t=1

(
xt −m

)2
.

• s2 is however asymptotically unbiased (that is, bias vanishes when N →∞).

Example: Lighthouse
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See Problem Set
4/2007, problem 3.

About Estimators

• Point estimates collapse information contained in the posterior distribution into one point.

• Advantages of point estimates:

– Computations are easier: no need to do the integral.

– Point estimate may be more interpretable.

– Point estimates may be good enough. (If the model is approximate anyway it may make
no sense to compute the integral exactly.)

• Alternative to point estimates: do the integral analytically or using approximate methods
(MCMC, variational methods etc.).

• One should always use test set to validate the results. The best estimate is the one performing
best in the validation/test set.
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14 Classification and Regression

14.1 Parametric Classification and Regression

Parametric Classification and Regression

• Task: estimation of p(r | x,X ) (classification or regression), given data X = {(xt, rt)}Nt=1.

• Generative modeling (likelihood-based approach): Marginalize: p(rN+1 | xN+1,X ) =
∫

dθp(rN+1 | xN+1, θ)p(θ | X ),
where p(θ | X ) ∝ p(θ)

∏N
t=1 p(xt, rt | θ). Example: Bayes Classifier as solved in the follow-

ing slides. Discriminative modeling (discriminant-based approach): x does not depend on our
model θ (x is a covariate, we do not model it): p(rN+1 | xN+1,X ) =

∫
dθp(rN+1 | xN+1, θ)pd(θ | X ),

where pd(θ | X ) ∝ p(θ)
∏N

t=1 p(rt | xt, θ). Example: Bayesian regression.
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N+1

N+1x
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θ

N+1
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14.2 Parametric Classification

Parametric Classification

• Bayes Classifier: p(Ci | x) ∝ p(x | Ci)P (Ci).

• Discriminant function: gi(x) = log p(x | Ci) + log P (Ci).

• Assume p(x | Ci) are Gaussian:

p(x | Ci;µ, σ2) =
1√
2πσ2

i

exp

(
−(x− µi)

2

2σ2
i

)
.

• The discriminant function becomes:

gi(x) = −1
2

log 2π − log σi −
(x− µi)

2

2σ2
i

+ log P (Ci).

• Sample X = {(xt, rt)}Nt=1; xt ∈ R, rt ∈ {0, 1}K . rt
i = 1 if xt ∈ Ci, rt

i = 0 otherwise.

• Maximum Likelihood (ML) estimates:

P̂ (Ci) =
∑

t rt
i

N
, mi =

∑
t xtrt

i∑
t rt

i

,

s2
i =

∑
t

(
xt −mi

)2
rt
i∑

t rt
i

.

• Discriminant becomes:

gi(x) = −1
2

log 2π − log si −
(x−mi)

2

2s2
i

+ log P̂ (Ci).
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Parametric Classification
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Figure 4.2: Likelihood functions and the posteriors

with equal priors for two classes when the input is

one-dimensional. Variances are equal and the

posteriors intersect at one point, which is the

threshold of decision. From: E. Alpaydın. 2004.

Introduction to Machine Learning. c©The MIT Press.
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Figure 4.2 of Alpaydin (2004).

P (C1) = P (C2) , σ2
1 = σ2

2 .

Parametric Classification
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Figure 4.3: Likelihood functions and the posteriors

with equal priors for two classes when the input is

one-dimensional. Variances are unequal and the

posteriors intersect at two points. From:

E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Figure 4.3 of Alpaydin (2004).

P (C1) = P (C2) , σ2
1 6= σ2

2 .

14.3 Parametric Regression

Parametric Regression: Bayesian Regression

• Estimator: r ≈ g(x | θ).

• p(r | x, θ) ∼ N(g(x | θ), σ2).

• L(θ | X ) = log
∏N

t=1 p(xt, rt) = log
∏N

t=1 p(rt | xt) + log
∏N

t=1 p(xt).

• L(θ | X ) = const−N log
√

2πσ2 −
∑N

t=1

[
rt − g(xt | θ)

]2
/(2σ2).

• E(θ | X ) = 1
2

∑N
t=1

[
rt − g(xt | θ)

]2.
• Maximizing L(θ | X ) or minimizing E(θ | X ) is equivalent to ML estimate of θ.
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• Example: g(x | w0, . . . , wk) =
∑k

i=0 wix
k. (polynomial regression)

• Square error: E(θ | X ) = 1
2

∑N
t=1

[
rt − g(xt | θ)

]2.
• Relative square error:

ERSE =
∑N

t=1

[
rt − g(xt | θ)

]2∑N
t=1 [rt − r]2

.

• R2: R2 = 1− ERSE .

r

x

r
N

θ

N+1

N+1x
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X�

E[�R�|x�]�=wx+w�
0�

p�(r�|�x*�)�

x*�

E[�R|x*�]�

Figure 4.4: Regression assumes 0 mean Gaussian

noise added to the model; here, the model is linear.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.

28

Figure 4.4 of Alpaydin (2004).

15 Model Selection

15.1 Bias/Variance Dilemma

Bias and Variance

131



!"#$%&"'()$"*'+)&','-./012!3'4556'73$&)2%#$8)3'$)'90#:83"'!"0&383;'< =:"'97='>&"**'?@ABAC

!"

D80*'032'@0&803#"

! " # $# $! " ! " # $! "# $ # $ # $! "# $! "!!!
""" E;,E;,E;,E&,EE;E&,,

!!!!
%&%'%

F80* G0&803#"

# $# $! " ! "# $! " ! " # $# $!!!
"""" E;E&,EE&,&,EE;&, %&%'%

3)8*" *H%0&"2'"&&)&

Estimating Bias and Variance

!"#$%&"'()$"*'+)&','-./012!3'4556'73$&)2%#$8)3'$)'90#:83"'!"0&383;'< =:"'97='>&"**'?@ABAC

!"

,*$8D0$83;'E80*'032'@0&803#"

! 9 !"#$%&!'!()*F
$
8'+'&

$
8,+'8)-+...+9

"/&'0!&1'23'4(2';8'5F6+'8')-+...+9

! " ! " ! "# $

! " ! " ! "# $

! " ! "%

%%

%

&

'&

'&

$
8

$ 8

$$
8

$

$$

F;
9

F;

F;F;
(9

;

F+F;
(

;

-

-
7"/("89&

-
:("!

;

;;

Bias/Variance Dilemma

132



• Example: gi(x) = 2 has no variance and high bias, gi(x) =
∑

t rt
i/N has lower bias with

variance.

• Bias/Variance dilemma: as we increase complexity,

– bias decreases (a better fit to data) and

– variance increases (fit varies more with data).
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15.2 Model Selection Procedures

• Cross-validation: most robust if there is enough data.

• Structural risk minimization (SRM): used, for example, in support vector machines (SVM).

• Bayesian model selection: use prior and Bayes’ formula.

• Minimum description length (MDL): can be viewed as MAP estimate.

• Regularization: add penalty term for complex models (can be obtained, for example, from
prior).

• Latter four methods do not strictly require validation set (at least if implicit modeling as-
sumptions are satisfied, such as that in Bayesian model selection the data is from the model
family; it is always a good idea to use a test set) and latter three are related.

• There is no single best way for small amounts of data (your prior assumptions matter).

Cross-validation

• Separate data into training and validation sets.

• Learn using training set.

• Use error on validation set to select a model.

• You need a test set also if you want an unbiased estimate of error on new data.

• Question: what is a sufficient size for the validation set?
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

!5

0

5
(a) Data and fitted polynomials

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3
(b) Error vs polynomial order

Training
Validation

Figure 4.7: In the same setting as that of figure 4.5,

training and validation sets (each containing 50

instances) are generated. (a) Training data and

fitted polynomials of order from 1 to 8. (b) Training

and validation errors as a function of the polynomial

order. The “elbow” is at 3. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.

31

Figure 4.7 of Alpaydin (2004).
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Structural Risk Minimization (SRM)

• According to the PAC theory, with probability 1− δ,

ETEST ≤ ETRAIN +

√√√√VC(H)
(
log 2N

VC(H) + 1
)
− log δ

4

N
,

where N is the size of the training data, VC(H) is the VC-dimension of the hypothesis class
and ETEST is the expected error on new data and ETRAIN is the error on the training set,
respectively.

• SRM: Choose hypothesis class (for example, the degree of a polynomial) such that the bound
on ETEST is minimized.

• Often used to train the Support Vector Machines (SVM).

• (Vapnik (1995) contains more discussion of the SRM inductive principle; it won’t be discussed
in this course in more detail.)

Bayesian Model Selection

• Define prior probability over models, p(model).

p(model | data) =
p(data | model)p(model)

p(data)

• Equivalent to regularization, when prior favors simpler models.

• MAP: choose model which maximizes

L = log p(data | model) + log p(model)

Regularization

• Augment the cost by a term which penalizes more complex models: E(θ | X )→ E′(θ | X ) =
E(θ | X ) + λ× complexity.

• Example: in Bayesian linear regression, define a Gaussian prior for the model parameters w0,
w1: p(w0) ∼ N(0, 1/λ), p(w1) ∼ N(0, 1/λ). The old ML function reads (if the error has an
unit variance)

LML(θ | X ) = −1
2

N∑
t=1

[
rt − g(xt | θ)

]2 + . . .

The MAP estimate gives an additional term

LMAP (θ | X ) = LML(θ | X )− 1
2
λ
(
w2

0 + w2
1

)
.

This is an example of regularization (the prior favours models with small w0, w1).
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Minimum Description Length (MDL)

• Information theory: the optimal (shortest expected coding length) code for an event with
probability p is − log2 p bits.

• MAP estimate finds a model that minimizes

−L = − log2 p(data | model)− log2 p(model)

• − log2 p(model): number of bits it takes to describe the model.

• − log2 p(data | model): number of bits it takes to describe the data, if the model is known.

• −L: the description length of the data.

• MAP estimate can be seen as finding a shortest description of the data (that is, the best
compression of the data).

15.3 Conclusion

Conclusion

• Next lecture: Alpaydin (2004) Ch 5.

16 Model Selection

16.1 Summary

• Cross-validation: most robust if there is enough data.

• Related:

– Bayesian model selection: use prior and Bayes’ formula.

– Regularization: add penalty term for complex models (can be obtained, for example,
from prior).

– Minimum description length (MDL): can be viewed as MAP estimate. [Basic idea good
to know, details not required in this course.]

• Structural risk minimization (SRM): used, for example, in support vector machines (SVM).
[Not required to know in this course.]

• The latter do not strictly require a validation set.

• There is no single best way for small amounts of data (your prior assumptions matter).
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16.2 Cross-validation

Cross-validation

• Separate data into training and validation sets.

• Learn using training set.

• Use error on validation set to select a model.

• You need a test set also if you want an unbiased estimate of error on new data.

• Question: what is a sufficient size for the validation set?
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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5
(a) Data and fitted polynomials
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(b) Error vs polynomial order

Training
Validation

Figure 4.7: In the same setting as that of figure 4.5,

training and validation sets (each containing 50

instances) are generated. (a) Training data and

fitted polynomials of order from 1 to 8. (b) Training

and validation errors as a function of the polynomial

order. The “elbow” is at 3. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.

31

Figure 4.7 of Alpaydin (2004).

Cross-validation

• Assumption: training data X = {(rt, xt)}Nt=1 has been sampled iid from some (usually un-
known) distribution F , (rt, xt) ∼ F .

• In cross-validation, training data is split in random in training set of size N−n and validation
set of size n. Effectively then also the validation set is sampled iid from F .

• Classifier h(x) is trained using the training set.

• Generalization error E : probability of misclassification for a new data point (r, x) ∼ F ,
E = EF [I(r 6= h(x))].

• Fraction of misclassified items in the validation set, EV ALID, can be used as an estimate of
the generalization error E .
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• EV ALID is an unbiased estimator of E .

• The variance of the estimator EV ALID is Var(EV ALID) =
√
E(1− E)/n ≤ 1/(2

√
n).

Cross-validation

• Classifier h(x) is trained using the training set.

• Fraction of misclassified items in the validation set, EV ALID, can be used as an estimate of
the generalization error E .

• If we select model that has the smallest EV ALID it is no longer unbiased estimate of the
generalization error.

• To get an unbiased estimate of the generalization error we must split the data into three parts
(training, validation and test sets).

16.3 Bayesian Model Selection

Bayesian Model Selection

• Define prior probability over models, p(model).

p(model | data) =
p(data | model)p(model)

p(data)

• Equivalent to regularization, when prior favors simpler models.

• MAP: choose model which maximizes

L = log p(data | model) + log p(model)

• (Notice: we again take logs of probabilities for computational convenience; log of posterior
has the same maximum as the original posterior. Evidence p(data) is constant with respect
to the model, we can therefore drop it.)

Regularization

• Augment the cost by a term which penalizes more complex models: E(θ | X )→ E′(θ | X ) =
E(θ | X ) + λ× complexity.

• Example 1, Bayesian linear regression: define a Gaussian prior for the model parameters
θ = (w0, w1): p(w0) ∼ N(0, 1/λ), p(w1) ∼ N(0, 1/λ). The old ML function reads (if the error
has an unit variance)

LML(θ | X ) = −1
2

N∑
t=1

[
rt − w0 − w1x

t
]2 + . . .

The MAP estimate gives an additional term

LMAP (θ | X ) = LML(θ | X )− 1
2
λ
(
w2

0 + w2
1

)
.

This is an example of regularization (the prior favours models with small w0, w1).
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• Example 2, Akaike Information Criterion (AIC): Penalize for more parameters and choose
model that maximizes:

L(θ | X ) = LML(θ | X )−M,

where M is the number of adjustable parameters in the model.

• Example 3, Bayesian Information Criterion (BIC): Penalize for more parameters and choose
model which maximizes:

L(θ | X ) = LML(θ | X )− 1
2
M log N,

where M is the number of adjustable parameters in the model and N is the size of the sample
X .

• AIC and BIC have some theoretical justification, however, they are very approximate. They
are useful because of their simplicity. They tend to favour (too) simple models.

• Weird intro: http://www.cs.cmu.edu/∼zhuxj/courseproject/aicbic/

Regression Using Regularization

• Do Bayesian regression with σ2 = 1 with the similar data as in the 2nd lecture, use MAP
solution with Gaussian prior over parameters.

−LMAP =

1
2

7∑
t=1

[
yt − g(xt | w)

]2 +
1
2
λwT w.

g(x | w) =
5∑

i=0

wix
i.
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λλ == 1

Regression Using Regularization
Do Bayesian regression with σ2 = 1 with the same data as in the 2nd lecture, use ML solutions

and AIC and BIC regularization:

k ETRAIN ETEST −LAIC −LBIC

0 0.580 0.541 3.03 3.00
1 0.077 0.294 2.26 2.21
2 0.076 0.275 3.26 3.18
3 0.057 0.057 4.19 4.09
4 0.046 0.562 5.16 5.02
5 0.035 4.637 6.12 5.96
6 0 106 7.00 6.81

N = 7 , M = k + 1 , −LAIC = N
2

ETRAIN + M ,
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−LBIC = N
2

ETRAIN + 1
2
M log N, g(x | w0, . . . , wk) =

Pk
i=0 wix

i, ETRAIN = − 2
N
LML = 1

N

PN
t=1

ˆ
rt − g(xt | w)

˜2
.
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Minimum Description Length (MDL)

• Minimum Description Length (MDL): a good model is such that it can be used to give the
data the shortest description.

• Kolmogorov complexity: shortest description of the data.

• Idea:
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– Model can be described using L(M) bits.

– Data can be described using L(D |M) bits, when the model is known.

– Total description length L = L(M) + L(D |M) (approx. Kolmogorov complexity).

– Occam’s razor: prefer the shortest description/hypothesis, choose model with smallest
L.

• The data could in principle be compressed to L bits.

• (In model selection we do not usually need explicit compression, just the description lengths.)

Minimum Description Length (MDL)

• MAP estimate finds a model that minimizes

−L = − log2 p(data | model)− log2 p(model)

• − log2 p(model): number of bits it takes to describe the model.

• − log2 p(data | model): number of bits it takes to describe the data, if the model is known.

• −L: the description length of the data.

• MAP estimate can be seen as finding a shortest description of the data (that is, the best
compression of the data).

Minimum Description Length (MDL)

• Information theory: the optimal (shortest expected coding length) code for an event with
probability p is − log2 p bits.

• Example (Huffman coding; in model selection we do not usually need to construct the coding):

– Let the probabilities of four letters be P (A) = 1
2 , P (B) = 1

4 , P (C) = 1
8 , P (D) = 1

8 .

– Optimal coding: A→ 0, B → 10, C → 110, D → 111.

– For example, ADAB would be coded as 0111010 (7 bits).

– Expected coding length L = 1
2 × 1 + 1

4 × 2 + 1
8 × 3 + 1

8 × 3 = 1.75 bits per number.
“Compression ratio” 1.75/2 = 0.875 as compared to the naive coding of each letter with
2 bits (e.g., A = 00, B = 01, C = 10, D = 11).

Minimum Description Length (MDL)

• An integer in {0, . . . , n} can be expressed using log2 (n + 1) bits.

• Example: To express an integer in {0, . . . , 15} using binary numbers you need log2 16 = 4
bits.

• Usually we do not need to find explicit coding in model selection, knowing the coding length
is enough.
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Minimum Description Length (MDL)

• Data: an ordered sequence D of N binary numbers.

• Model 1: Code the sequence as such.

– Coding length of the model L(M1) = 0 bits.

– Coding length of the data L(D |M1) = N bits.

– Total coding length L1 = L(M1) + L(D |M1) = N bits.

• Model 2: Use the frequency of ones for better coding.

– The model is the number of ones n1 which is a integer in [0, N ]. It can be expressed
using L(M2) = log2 (N + 1) bits.

– There are
(

N
n1

)
possible binary sequences of length N having n1 ones. A sequence

can be expressed using L(D |M2) = log2

(
N
n1

)
bits when n1 is known.

– Total coding length

L2 = L(M2) + L(D |M2) = log2 (N + 1) + log2

(
N
n1

)
bits.

Minimum Description Length (MDL)

• Example 1: D = 0111010010, N = 10.

– L1 = 10 bits. (Choose 1.)

– L2 = log2 (10 + 1) + log2

(
10
5

)
= 3.4 + 8.0 = 11.4 bits.

• Example 2: D = 0001000010, N = 10.

– L1 = 10 bits.

– L2 = log2 (10 + 1) + log2

(
10
2

)
= 3.4 + 5.5 = 8.9 bits. (Choose 2.)

• Example 3: D = 0000000000, N = 10.

– L1 = 10 bits.

– L2 = log2 (10 + 1) + log2

(
10
0

)
= 3.4 + 0 = 3.4 bits. (Choose 2.)
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Structural Risk Minimization (SRM)

• According to the PAC theory, with probability 1− δ,

ETEST ≤ ETRAIN +

√√√√VC(H)
(
log 2N

VC(H) + 1
)
− log δ

4

N
,

where N is the size of the training data, VC(H) is the VC-dimension of the hypothesis class
and ETEST is the expected error on new data and ETRAIN is the error on the training set,
respectively.

• SRM: Choose hypothesis class (for example, the degree of a polynomial) such that the bound
on ETEST is minimized.

• Often used to train the Support Vector Machines (SVM).

• (Vapnik (1995) contains more discussion of the SRM inductive principle; it won’t be discussed
in this course in more detail.)

17 Multivariate Methods

Remainder of the lecture on the blackboard.
For slides see Alpaydin’s site: http://www.cmpe.boun.edu.tr/∼ethem/i2ml/slides/v1-1/

i2ml-chap5-v1-1.pdf

18 Multivariate Methods

18.1 Bayes Classifier

Bayes Classifier

• Data are real vectors.

• Idea: vectors are from class-specific multivariate normal distributions.

• Full model: covariance matrix has O(Kd2) parameters.

145

http://www.cmpe.boun.edu.tr/~ethem/i2ml/slides/v1-1/i2ml-chap5-v1-1.pdf
http://www.cmpe.boun.edu.tr/~ethem/i2ml/slides/v1-1/i2ml-chap5-v1-1.pdf


0

0.05

0.1

x
1

x
2

p
( 

x
|C
1
)

0

0.5

1

x
1

x
2

p
(C
1
| 
x
)

       
 

 

 

 

 

 

 

Figure 5.3: Classes have different covariance

matrices. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.
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From Figure 5.3 of Alpaydin (2004).
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Bayes Classifier

• Data are real vectors.
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• Idea: vectors are from class-specific multivariate normal distributions.

• Full model: O(Kd2) parameters in the covariance matrix.
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From Figure 5.3 of Alpaydin (2004).
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Bayes Classifier

• Idea: the means are class-specific, covariance matrix Σ is common.

• O(d2) parameters in the covariance matrix.

       
 

 

 

 

 

 

 

Figure 5.4: Covariances may be arbitary but shared

by both classes. From: E. Alpaydın. 2004.

Introduction to Machine Learning. c©The MIT Press.
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Bayes Classifier

• Idea: the means are class-specific, covariance matrix Σ is common and diagonal (Naive Bayes).

• d parameters in the covariance matrix.

• Discriminant: gi(x) = −1
2

∑d
j=1 (xt

j −mij)2/s2
j + log P̂ (Ci).
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Figure 5.5: All classes have equal, diagonal

covariance matrices but variances are not equal.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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x
N

C µ,Σ

P(C)

d

Bayes Classifier

• Idea: the means are class-specific, covariance matrix Σ is common and proportional to unit
matrix Σ = σ21.

• 1 parameter in the covariance matrix.

• Discriminant: gi(x) = − ||x−mi||2.

• Nearest mean classifier. Each mean is a prototype.
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Figure 5.6: All classes have equal, diagonal

covariance matrices of equal variances on both

dimensions. From: E. Alpaydın. 2004. Introduction

to Machine Learning. c©The MIT Press.
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d

18.2 Discrete Variables

Discrete Features
Most straightforward using Naive Bayes (replace Gaussian with Bernoulli):
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18.3 Multivariate Regression

Multivariate Regression

151



!"#$%&"'()$"*'+)&','-./012!3'4556'73$&)2%#$8)3'$)'90#:83"'!"0&383;'< =:"'97='>&"**'?@ABAC

!"

9%.$8D0&80$"'E";&"**8)3

! !"#$%&'(%'$)*#%+)'(*,-.)#

! !"#$%&'(%'$)*/-#0+-,%'#*,-.)#1*
2)3%+)*+)4*5%65)(7-(.)(*&'(%'8#)9*

F:;G:<*F=;G=<*F>;G:
=<*F?;G=

=<*F@;G:G=
'+.*"9)*$5)*#%+)'(*,-.)#*%+*$5%9*+)4*! 9/'A)*

B8'9%9*3"+A$%-+9<*C)(+)#*$(%AC<*DE!1*F5'/$)(*:GH

! " #$% 2
$$ HIBBBIHIHG;& :GI

! " & '=::G:G

==::G

=

:
I ( ))))%

$$$$

$

$
22

$$
2

$
22

$$

GHGHH&HIBBBIHIH,

GHGHGHH

!

!

!

19 Dimensionality Reduction

19.1 Subset Selection

Why Reduce Dimensionality?
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Subset Selection

• Toy data set consists of 100 10-dimensional vectors from two classes (1 and 0).

• First two dimensions xt
1 and xt

2: drawn from Gaussian with unit variance and mean of 1 or
-1 for the classes 1 and 0, respectively.

• Remaining eight dimensions: drawn from Gaussian with zero mean and unit variance, that
is, they contain no information of the class.

• Optimal classifier: If x1 + x2 is positive the class is 1, otherwise the class is 0.

• Use nearest mean classifier.
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• Split data in random into training set of 30+30 items and validation set of 20+20 items.

Subset Selection

Forward selection:

Features EV ALID

∅ 0.500
1 0.175
1,2 0.100
1, 2,4 0.100
1, 2, 4,5 0.100
1, 2, 4, 5,3 0.075
1, 2, 4, 5, 3,8 0.050
1, 2, 4, 5, 4, 8,6 0.075
1, 2, 4, 5, 4, 8, 6,7 0.075
1, 2, 4, 5, 4, 8, 6, 7,10 0.100
1, 2, 4, 5, 4, 8, 6, 7, 10,9 0.150

Backward selection:

Features EV ALID

9, 10, 4, 6, 7, 8, 3, 5, 2, 1 0.150
10, 4, 6, 7, 8, 3, 5, 2, 1 0.100
4, 6, 7, 8, 3, 5, 2, 1 0.075
6, 7, 8, 3, 5, 2, 1 0.075
7, 8, 3, 5, 2, 1 0.075
8, 3, 5, 2, 1 0.050
3, 5, 2, 1 0.075
5, 2, 1 0.100
2, 1 0.100
1 0.175
∅ 0.500

Optimal solution would be features 1, 2!

19.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• PCA finds low-dimensional linear subspace such that when x is projected there information
loss (here defined as variance) is minimized.

• Finds directions of maximal variance.

• Projection pursuit: find direction w such that some measure (here variance Var(wTx)) is
maximized.

• Equivalent to finding eigenvalues and -vectors of covariance or correlation matrix.

• Can also be derived probabilistically (see Tipping ME, Bishop CM (1999) Mixtures of Prob-
abilistic Principal Component Analyzers. Neural Computation 11: 443–482); probabilistic
interpretation is important in deriving discrete variants.
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Principal Component Analysis (PCA)

z�
1�

z�
2�

x�
1�

x
� 2
�

z�
1�

z� 2
�

Figure 6.1: Principal components analysis centers

the sample and then rotates the axes to line up with

the directions of highest variance. If the variance on

z2 is too small, it can be ignored and we have

dimensionality reduction from two to one. From:

E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.

40

Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

Previous 10-dimensional toy example:

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)
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Example: Optdigits

• optdigits data set contains 5620 instances of digitized handwritten digits in range 0–9.

• Each digit is a R64 vector: 8× 8 = 64 pixels, 16 grayscales.

0 4 6 2

Principal Component Analysis (PCA)
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19.3 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDAA)
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Remaining Lectures

• 6 Nov: Dimensionality Reduction & Clustering (Aplaydin Ch 6&7)

• 13 Nov: Clustering & Algorithms in Data Analysis (PDF chapter)

• 20 Nov: Assessing Algorithms & Decision Trees (Alpaydin Ch 14&9)

• 27 Nov: Machine Learning @ Google /TBA (additionally, Google recruitment talk in after-
noon in T1 at 16 o’clock, see http://www.cis.hut.fi/googletalk07/)
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• 4 Dec: Decision Trees & Linear Discrimination (Alpaydin Ch 10)

• (7 Dec: last problem session.)

• 11 Dec: Recap

• The plan is preliminary (may still change)

About the Text Book

• This course has Alpaydin (2004) as a text book.

• The lecture slides (neither mine nor the ones on the Alpaydin’s site) are not meant to be a
replacement for the text book.

• It is important also to read the book chapters.

• Library has some reading room copies (they are planning to order some more). If nothing
else, you should probably at least copy some key chapters.

20 Dimensionality Reduction

20.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• PCA finds low-dimensional linear subspace such that when x is projected there information
loss (here defined as variance) is minimized.

• Finds directions of maximal variance.

• Projection pursuit: find direction w such that some measure (here variance Var(wTx)) is
maximized.

• Equivalent to finding eigenvalues and -vectors of covariance or correlation matrix.

Principal Component Analysis (PCA)
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Figure 6.1: Principal components analysis centers

the sample and then rotates the axes to line up with

the directions of highest variance. If the variance on

z2 is too small, it can be ignored and we have

dimensionality reduction from two to one. From:

E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.

40

Principal Component Analysis (PCA)

• More formally: data X = {xt}Nt=1, xt ∈ Rd.

• Center data: yt = xt −m, where m =
∑

t x
t/N .

• Two options:
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– Use covariance matrix S =
∑

t yyT /N .

– Use correlation matrix R, where Rij = Sij/
√

SiiSjj .

• Diagonalize S (or R) using Singular Value Decomposition (SVD): CT SC = D, where C is an
orthogonal (rotation) matrix satisfying CCT = CT C = 1 and D is a diagonal matrix whose
diagonal elements are the eigenvalues λ1 ≥ . . . ≥ λd ≥ 0.

• ith column of C is the ith eigenvector.

• Project data vectors yt to principal components zt = CTyt (equivalently yt = Czt).

Principal Component Analysis (PCA)

• Observation: covariance matrix of {zt}Nt=1 is a diagonal matrix D whose diagonal elements
are the variances.

Sz =
X

t

zzT /N =
X

t

CT yyT C/N

= CT

 X
t

yyT /N

!
C = CT SC = D,

where the diagonal elements of D are the variances Dii = σ2
zi.

• Eigenvalues λi ⇔ variances σ2
i .
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Figure 6.1: Principal components analysis centers

the sample and then rotates the axes to line up with

the directions of highest variance. If the variance on

z2 is too small, it can be ignored and we have

dimensionality reduction from two to one. From:

E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Principal Component Analysis (PCA)

• Idea: in the PC space (z space), k first principal components explain the data well enough,
where k < d.

• “Well enough” means here that the reconstruction error is small enough. More formally:

• Project the data vectors yt into Rk using ẑt = W Tyt, where W ∈ Rd×k is a matrix containing
the first k columns of C. (“W <- C[,1:k]”). ẑt is a representation of yt in k dimensions.

• Project ẑt back to yt space:
ŷt = W ẑt = WW Tyt

What is the average reconstruction error E =
∑

t

(
ŷt − yt

)T (ŷt − yt
)
/N?
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Principal Component Analysis (PCA)

• What is the average reconstruction error E =
∑

t

(
ŷt − yt

)T (ŷt − yt
)
/N?

E = Tr(E [(ŷ − y) (ŷ − y)])

= Tr
““

WW T − 1
”

E
h
yyT

i “
WW T − 1

””
= Tr

“
WW T CDCT WW T

”
+ Tr

“
CDCT

”
− 2Tr

“
W T CDCT W

”
=

dX
i=k+1

λi,

where we have used the fact that S = CDCT = E
[
yyT

]
and the cyclic property of the trace,

Tr(AB) = Tr(BA).

Principal Component Analysis (PCA)

• Result: PCA is a linear projection of data from Rd into Rk such that the average reconstruc-
tion error E = E

[
(ŷ − y)T (ŷ − y)

]
is minimized.

• Proportion of Variance (PoV) Explained: PoV =
∑k

i=1 λi/
∑d

i=1 λi. Some rules of thumb to
find a good k: PoV ≈ 0.9, or PoV curve has an elbow.

• Dimension reduction: it may be sufficient to use ẑt instead of x̂t to train a classifier etc.

• Visualization: plotting the data to ẑt using k = 2 (first thing to do with new data).

• Data compression: instead of storing the full data vectors yt it may be sufficient to store only
ẑt and then reconstruct the original data using ŷt = W ẑt, if necessary.

Example: Optdigits

• optdigits data set contains 5620 instances of digitized handwritten digits in range 0–9.

• Each digit is a R64 vector: 8× 8 = 64 pixels, 16 grayscales.

0 4 6 2
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Example: Optdigits
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Example: Fossils

• Large European land mammals: 124 fossil find sites (dated 23–2 million years old), 139 taxa

• Reconstruction of site vectors given PCA taxon representation for different k: ŷ = W ẑ =
WW Ty, or x̂ = WW T (x−m) + m.
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20.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)

• PCA is unsupervised method (class information is not usually used).

• Linear Discriminant Analysis (LDA) is supervised method for dimensionality reduction in
classification problems.

• As PCA, LDA can be accomplished with standard matrix algebra (eigenvalue decompositions
etc.). This makes it relatively simple and useful.

• PCA is a good general purpose dimensionality reduction method, LDA is a good alternative if
we want to optimize the separability of classes in a specific classification task, and are happy
with dimensionality of less than the number of classes (k < K).

Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

• More formally: data X = {(rt,xt)}Nt=1, where rt
i is one if xt is in class i, zero otherwise, and

xt ∈ Rd.

• Within-class scatter: SW =
∑K

i=1 Si, where Si =
∑

t rt
i

(
xt −mi

) (
xt −mi

)T .
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• Between-class scatter: SB =
∑K

i=1 Ni (mi −m) (mi −m)T , where Ni =
∑

t rt
i . (rank(SB) <

K)

• k = 1: find w ∈ Rd that maximizes Fisher’s discriminant

J(w) =
wT SBw
wT SWw

.

• K > k > 1: find W ∈ Rd×k that maximizes Fisher’s discriminant

J(W ) =

∣∣W T SBW
∣∣

|W T SW W |
.

• The projection from Rd to Rk is given by ẑ = W T (x−m).

• Find W ∈ Rd×k that maximizes Fisher’s discriminant

J(W ) =

∣∣W T SBW
∣∣

|W T SW W |
.

• Write V = S
1/2
W W ∈ Rd×k, where S

1/2
W is a matrix such that S

1/2
W S

1/2
W = SW : J(V ) =∣∣∣V T S

−1/2
W SBS

−1/2
W V

∣∣∣ / ∣∣V T V
∣∣.

• Determinant is a product of eigenvalues. To maximize J(V ) V must contain the k largest
eigenvectors of S

−1/2
W SBS

−1/2
W (like in PCA!): V T S

−1/2
W SBS

−1/2
W V = D ⇔WS

−1/2
W S

−1/2
W SBS

−1/2
W S

1/2
W W =

D ⇔W T S−1
W SBW = D.

• ⇒ LDA is the k largest eigenvector decomposition of S−1
W SB (like PCA is of covariance

matrix).

• At most K − 1 non-zero eigenvalues, that is, one should choose k < K.
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21 Clustering

21.1 Introduction

Mixture densities

• p(x) =
∑k

i=1 p(x | Ci)p(Ci)

• Classification: labels rt are known in training data. Task: predict r for new data vectors x
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• Clustering: data is unlabeled, that is, rt are unknown. Task: assign a cluster label r for new
data vectors x.

• Gaussian mixture model:
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Figure 5.3: Classes have different covariance

matrices. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.

35

From Figure 5.3 of Alpaydin (2004).

C

x
N

P(C)

2µ,Σ
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21.2 K-means Clustering

k-means Clustering

• The simplest Bayesian classifier was nearest mean classifier: classify a data vector to class
which has a nearest mean.

• k-means clustering: find k prototype vectors mi (“means”) which best represent data.

• Error function:

E({mi}ki=1 | X ) =
N∑

t=1

min
i

∣∣∣∣xt −mi

∣∣∣∣2.
• Task: find prototype vectors mi such that error E({mi}ki=1 | X ) is minimized.

• No direct probabilistic interpretation. Can be viewed as approximation of the Bayesian nearest
mean classifier where data vector belongs to a class/cluster with probability 0 or 1 only.

k-means Clustering

• The vectors are assigned to the nearest means.

• In R: cl <- kmeans(t(X),centers=3)
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k-means Clustering

• Compression: a real vector (image etc.) can be represented with a number in {1, . . . , k}.

• Dimensionality reduction: one can use cluster indexes instead of the real vectors to train a
classifier etc.

• Interpretation of the data: clusters have often a meaning. Taxa from various time periods,
customer segments, etc.

• Labeling of data: cluster indexes may be used as class labels.
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k-means Clustering

����� ����� ������� Original image

Figure 9.3 of
Bishop (2006).

• Data set is the set of pixels.

• Each pixel is a vector in three-dimensional RGB space.

• K-means is applied to the data set of pixels of an image.

• The compressed representation is then the prototype vectors, and cluster index for each pixel.

k-means Clustering

• Lloyd’s algorithm: the most famous algorithm to minimize the k-means cost function. Easy
to understand and implement.

• Sensitive to initialization: should be run on several random initializations and choose the
result with the smallest cost.

• In practice one should consider some more advanced method (type help(kmeans) in R for
some suggestions).
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Initialize mi, i = 1, . . . , k, for example, to k random xt

Repeat
For all xt ∈ X

bt
i ←

{
1 if ‖xt −mi‖ = minj ‖xt −mj‖
0 otherwise

For all mi, i = 1, . . . , k

mi ←
∑

t
bt
ix

t/
∑

t
bt
i

Until mi converge

Figure 7.3: k-means algorithm. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.

51

k-means Clustering

Initialize mi, i = 1, . . . , k, randomly.
repeat

for all t ∈ {1, . . . , N} do {E step}

bt
i ←

{
1 , i = arg mini

∣∣∣∣xt −mi

∣∣∣∣
0 , otherwise

end for
for all i ∈ {1, . . . , k} do {M step}

mi ←
∑

t bt
ix

t∑
t bt

i

end for
until the error E({mi}ki=1 | X ) does not change
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k-means Clustering
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Figure 9.1 of

Bishop (2006)

Observations:

• Iteration cannot increase the error E({mi}ki=1 | X ).

• There are finite number, kN , of possible clusterings.

• It follows that the algorithm always stops after a finite time. (It can take no more than kN

steps.)

• Usually k-means is however relatively fast. “In practice the number of iterations is generally
much less than the number of points.” (Duda & Hart & Stork, 2000)

• Worst-case running time with really bad data and really bad initialization is however 2Ω(
√

N)

— luckily this usually does not happen in real life (David A, Vassilivitskii S (2006) How slow is the k-means
method? In Proc 22nd SCG.)

Observations:
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• The result can in the worst case be really bad.

• Example:

– Four data vectors (N = 4) from Rd in X : x1 = (0, 0, . . . , 0)T , x2 = (1, 0, . . . , 0)T ,
x3 = (0, 1, . . . , 1)T and x4 = (1, 1, . . . , 1)T .

– Optimal clustering into two (k = 2) is given by the prototype vectors m1 = (0.5, 0, . . . , 0)T

and m2 = (0.5, 1, . . . , 1)T , error being E({mi}ki=1 | X ) = 1.

– Lloyd’s algorithm can however converge also to m1 = (0, 0.5, . . . , 0.5)T and m2 =
(1, 0.5, . . . , 0.5)T , error being E({mi}ki=1 | X ) = d − 1. (Check that iteration stops
here!)

k-means Clustering

• Example: cluster taxa into k = 6 clusters 1000 times with Lloyd’s algorithm.

• The error E({mi}ki=1 | X ) is different for different runs!

• You should try several random initializations, and choose the solution with smallest error.
• For a cool initialization see Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful Seeding.

Error (1000 runs, k=6)
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21.3 EM Algorithm

EM Algorithm

• Expectation-Maximization algorithm (EM): soft cluster assignments

• Probabilistic interpretation

EM Algorithm
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Figure 9.8 of

Bishop (2006)

• EM algorithm is like k-means, except cluster assignments are “soft”: each data point is a
member of a given cluster with certain probability.

• bt
i ∈ {0, 1} −→ ht

i ∈ [0, 1].

EM Algorithm

• Find maximum likelihood solution of the mixture model L = log
∏N

t=1 p(xt | θ), where the
parameters θ are µi, Σi and πi = P (Gi).

• Maximum likelihood solution is found by the EM algorithm (which is essentially generalization
of the Lloyd’s algorithm to soft cluster memberships)

• Idea: iteratively find the membership weights of each data vector in clusters, and the param-
eter values. Continue until convergence.

• End result is intuitive.
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EM Algorithm
Initialize mi and πi, i = 1, . . . , k, randomly.
repeat

for all t ∈ {1, . . . , N} do {E step}

ht
i ←

πi exp
h
− 1

2s2

˛̨˛̨
xt −mi

˛̨˛̨2iP
j πj exp

ˆ
− 1

2s2 ||xt −mj ||2
˜

end for
for all i ∈ {1, . . . , k} do {M step}

mi ←
P

t ht
ix

tP
t ht

i

πi ←
P

t ht
i

N
end for

until convergence

EM Algorithm

• For derivation, see Alpaydin (2004), section 7.4 (pages 139–144); for an alternative derivation,
see Bishop (2006), section 9.4 (pages 450–455). A sketch of follows.

• Task: find an ML solution of a likelihood function given by p(X | θ) =
∑

Z p(X,Z | θ).∑
t

log p(xt | θ) ≥
∑

t

log p(xt | θ)−
∑

t

KL(ht
i || p(zt | xt, θ))

=
∑

t

∑
i

ht
i log p(xt, zt | θ) +

∑
t

H(ht
i),

where we have used the Kullback-Leibler (KL) divergence KL(q(i) || p(i)) =
∑

i q(i) log (q(i)/p(i)).
KL divergence is always non-negative and it vanishes only when the distributions q and p are
equal. The entropy is given by H(q(i)) = −

∑
i q(i) log q(i).

• Expectation step (E Step): find ht
i by minimizing the KL divergence.

• Maximization step (M Step): find θ by maximizing the expectation.
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Figure 9.14
of Bishop (2006)

22 Clustering

22.1 k-means Clustering

k-means Clustering

LLOYDS(X ,k) {Input: X , data set; k, number of clusters. Output: {mi}ki=1, cluster prototypes.}
Initialize mi, i = 1, . . . , k, appropriately for example, in random.
repeat

for all t ∈ {1, . . . , N} do {E step}

bt
i ←


1 , i = arg mini

˛̨˛̨
xt −mi

˛̨˛̨
0 , otherwise

end for
for all i ∈ {1, . . . , k} do {M step}

mi ←
P

t bt
ix

tP
t bt

i

end for
until the error E({mi}ki=1 | X ) does not change
return {mi}ki=1

k-means Clustering
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Figure 9.1 of

Bishop (2006)

Observations:

• Iteration cannot increase the error E({mi}ki=1 | X ).

• There are finite number, kN , of possible clusterings.

• It follows that the algorithm always stops after a finite time. (It can take no more than kN

steps.)

• Usually k-means is however relatively fast. “In practice the number of iterations is generally
much less than the number of points.” (Duda & Hart & Stork, 2000)

• Worst-case running time with really bad data and really bad initialization is however 2Ω(
√

N)

— luckily this usually does not happen in real life (David A, Vassilivitskii S (2006) How slow is the k-means
method? In Proc 22nd SCG.)

Observations:

• The result can in the worst case be really bad.
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• Example:

– Four data vectors (N = 4) from Rd in X : x1 = (0, 0, . . . , 0)T , x2 = (1, 0, . . . , 0)T ,
x3 = (0, 1, . . . , 1)T and x4 = (1, 1, . . . , 1)T .

– Optimal clustering into two (k = 2) is given by the prototype vectors m1 = (0.5, 0, . . . , 0)T

and m2 = (0.5, 1, . . . , 1)T , error being E({mi}ki=1 | X ) = 1.

– Lloyd’s algorithm can however converge also to m1 = (0, 0.5, . . . , 0.5)T and m2 =
(1, 0.5, . . . , 0.5)T , error being E({mi}ki=1 | X ) = d − 1. (Check that iteration stops
here!)

k-means Clustering

• Example: cluster taxa into k = 6 clusters 1000 times with Lloyd’s algorithm.

• The error E({mi}ki=1 | X ) is different for different runs!

• You should try several random initializations, and choose the solution with smallest error.
• For a cool initialization see Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful Seeding.

Error (1000 runs, k=6)
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22.2 Greedy algorithms

Greedy algorithm

• Task: solve arg minθ E(θ | X ).

• 0 ≤ E(θ | X ) <∞

• Assume that the cost/error E(θ | X ) can be evaluated in polynomial time O(Nk), given an
instance of parameters θ and a data set X , where N is the size of the data set and k is some
constant.

• Often, no polynomial time algorithm to minimize the cost is known.

• Assume that for each instance parameter values θ there exists a candidate set C(θ) such that
θ ∈ C(θ).
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• Assume arg minθ′∈C(θ) E(θ′ | X ) can be solved in polynomial time.

GREEDY(E ,C,ε,X ) {Input: E , cost function; C, candidate set; ε ≥ 0, convergence cutoff; X ,
data set. Output: Instance of parameter values θ.}
Initialize θ appropriately, for example, in random.
repeat

θ ← arg min
θ′∈C(θ)

E(θ′ | X )

until the change in E(θ | X ) is no more than ε
return θ

• Examples of greedy algorithms:

– Forward and backward selection.

– Lloyd’s algorithm.

– Optimizing a cost function using gradient descent and line search.

• Each step (except the last) reduces the cost by more than ε.

• Each step can be done in polynomial time.

• The algorithm stops after a finite number of steps (at least if ε > 0).

• Difficult parts:

– What is a good initialization?

– What is a good candidate set C(θ)?

• θ is a global optimum if θ = arg minθ E(θ | X ).

• θ is a local optimum if θ = arg minθ′∈C(θ) E(θ′ | X ).

• Algorithm always finds a local optimum, but not necessarily a global optimum. (Interesting
sidenote: greedoid.)

• Denote E∗ = minθ E(θ | X ), θALG = GREEDY(E ,C,ε,X ) and EALG = E(θALG | X )

• 1 ≤ α <∞ is an approximation ratio if EALG ≤ αE∗ is always satisfied for all X .

• 1 ≤ α <∞ is an expected approximation ratio if E [EALG] ≤ αE∗ is always satisfied for all X
(expectation is over instances of the algorithm).

• Observation: if approximation ratio exists, then the algorithm always finds the zero cost
solution if such a solution exists for a given data set.

• Sometimes the approximation ratio can be proven; often one can only run algorithm several
times and observe the distribution of costs.

• For kmeans with approximation ratio α = O(log k) and references see Arthur D, Vassilivitskii S (2006)
k-means++: The Advantages of Careful Seeding.
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• We can usually easily say that the running time of one step is polynomial.

• Often, the number of steps the algorithm takes is also polynomial, hence the algorithm is
often polynomial (at least in practice).

• Proving the number of steps required until convergence is often quite difficult, however. Again,
the easiest is to run algorithm several times and observe the distribution of the number of
steps.

• Does the definition of the cost function make sense in your application? Should you use some
other cost, for example, some utility?

• There may be several solutions with small cost. Do these solutions have similar parameters,
for example, prototype vectors (interpretation of the results)?

• How efficient is the optimization step involving C(θ)? Could you find better C(θ)?

• If there exists a zero-cost solution, does your algorithm find it?

• Is there an approximation ratio?

• Can you say anything about number of steps required?

• What is the empirical distribution of the error EALG and the number of steps taken, in your
typical application?

22.3 EM Algorithm

EM Algorithm

• Expectation-Maximization algorithm (EM): greedy algorithm that finds soft cluster assign-
ments

• Probabilistic interpretation, that is, we are maximizing a likelihood.

EM Algorithm
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Figure 9.8 of

Bishop (2006)

• EM algorithm is like k-means, except cluster assignments are “soft”: each data point is a
member of a given cluster with certain probability.

• bt
i ∈ {0, 1} −→ ht

i ∈ [0, 1].

EM Algorithm

• Find maximum likelihood solution of the mixture model L = log
∏N

t=1 p(xt | θ), where the
parameters θ are µi, Σi and πi = P (Gi).

• Maximum likelihood solution is found by the EM algorithm (which is essentially generalization
of the Lloyd’s algorithm to soft cluster memberships)

• Idea: iteratively find the membership weights of each data vector in clusters, and the param-
eter values. Continue until convergence.

• End result is intuitive.
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EM Algorithm
EM(X ,k) {Input: X , data set; k, number of mixture components. Output: {mi}ki=1, mixture components.}
Initialize mi, i = 1, . . . , k, for example using some kmeans algorithm.
repeat

for all t ∈ {1, . . . , N} do {E step}

ht
i ←

exp
h
− 1

2s2

˛̨˛̨
xt −mi

˛̨˛̨2iP
j exp

ˆ
− 1

2s2 ||xt −mj ||2
˜

end for
for all i ∈ {1, . . . , k} do {M step}

mi ←
P

t ht
ix

tP
t ht

i

end for
until convergence
return {mi}ki=1

EM Algorithm

• For derivation, see Alpaydin (2004), section 7.4 (pages 139–144); for an alternative derivation,
see Bishop (2006), section 9.4 (pages 450–455). A sketch follows.

• Task: find an ML solution of a likelihood function given by p(X | θ) =
∑

Z p(X,Z | θ).∑
t

log p(xt | θ) ≥
∑

t

log p(xt | θ)−
∑

t

KL(ht
i || p(zt | xt, θ))

=
∑

t

∑
i

ht
i log p(xt, zt | θ) +

∑
t

H(ht
i),

where we have used the Kullback-Leibler (KL) divergence KL(q(i) || p(i)) =
∑

i q(i) log (q(i)/p(i)).
KL divergence is always non-negative and it vanishes only when the distributions q and p are
equal. The entropy is given by H(q(i)) = −

∑
i q(i) log q(i).

• Expectation step (E Step): find ht
i by minimizing the KL divergence.

• Maximization step (M Step): find θ by maximizing the expectation.
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of Bishop (2006)

23 Decision Trees

23.1 Introduction

Decision Trees
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• Each internal node tests an attribute.

• Each branch corresponds to set of attribute values.

• Each leaf node assigns a classification (classification tree) or a real number (regression tree).

• The tree is usually learned using a greedy algorithm built around ID3, such as C4.5. (The
problem of finding optimal tree is generally NP-hard.)
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• Advantages of trees:

– Learning and classification is fast.

– Trees are accurate in many domains.

– Trees are easy to interpret as sets of decision rules.

• Often, trees should be used as a benchmark before more complicated algorithms are at-
tempted.
• For alternative discussion, see Mitchell (1997), Ch 3.

23.2 Classification Trees

Example Data from Mitchell (1997)

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Example: Final Decision Tree
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Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

Figure 3.1 of Mitchell (1997).

ID3 algorithm for discrete attributes
ID3(X ) {Input: X = {(rt,xt)}Nt=1, data set with binary attributes rt ∈ {−1, +1} and a vector of discrete variables
xt. Output: T , classification tree.}
Create root node for T
If all items in X are positive (negative), return a single-node tree with label “+” (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do

Let Xv be subset of X that have value v for A
if Xv is empty then

Below the root of T , add a leaf node with most common label in X
else

Below the root of T , add subtree ID3(Xv)
end if

end for
return T

Entropy
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• X is a sample of training examples.

• p+ is the proportion of positive and p− = 1− p+ is the proportion of negative samples in X .

• Entropy measures impurity of X .

• Entropy(X ) is the expected number of bits needed to encode class (+1 or −1) of randomly
drawn member of X (under the optimal, shortest-length code).

• Information theory: the optimal (shortest expected coding length) code for an event with
probability p is − log2 p bits.

• Therefore, expected number of bits to encode +1 or −1 of a random member of X is

p+ (− log2 p+) + p− (− log2 p−) .

Entropy(X ) = −p+ log2 p+ − p− log2 p−
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Figure 9.2: Entropy function for a two-class problem.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Information Gain

• Gain(X , A) is the expected reduction in entropy due to sorting on A.

Gain(X , A) = Entropy(X )−
∑

v∈values(A)

|Xv|
|X |

Entropy(Xv).

• For ID3: attribute A that has the highest gain classifies the examples X “best”.

Selecting the Next Attribute

Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

  = .940 - (7/14).985 - (7/14).592
  = .151

  = .940 - (8/14).811 - (6/14)1.0
  = .048

Gain (S, Humidity ) Gain (S,          )Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:

Humidity provides greater information gain than Wind, relative to the target classification. E stands for entropy
and S for collection of examples. Figure 3.3 of Mitchell (1997).

Example: Final Decision Tree
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Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

The final decision tree. Figure 3.1 of Mitchell (1997).

Variations of ID3

• Alternative impurity measures:

– Entropy: −p+ log2 p+ − p− log2 p−.

– Gini index: 2p+p−.

– Misclassification error: 1−max (p+, p−).

– All vanish for p+ ∈ {0, 1} and have a maximum at p+ = p− = 1/2.

• Continuous or ordered variables: sort xt
A for some attribute A and find the best split xA ≤ w

vs. xA > w.

Rule Extraction from Trees
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Observations of ID3

• Inductive bias:

– Preference on short trees.

– Preference on trees with high information gain near root.

• Vanilla ID3 classifies the training data perfectly.
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• Hence, in presence of noise, vanilla ID3 overfits.

Pruning

• How to avoid overfitting?

– Prepruning: stop growing when data split is not statistically significant. For example:
stop tree construction when node is smaller than a given limit, or impurity of a node is
below a given limit θI . (faster)

– Postpruning: grow the whole tree, then prune subtrees which overfit on the pruning
(validation) set. (more accurate)

• Split data into training and pruning (validation) sets.

• Do until further pruning is harmful:

1. Evaluate impact on pruning set of pruning each possible node (plus those below it).

2. Greedily remove the one that most improves the pruning set accuracy.

• Produces smallest version of most accurate subtree.

• Alternative: rule postpruning (commonly used, for example, C4.5).

23.3 Regression Trees

Examples: Predicting woody cover in African savannas

• Task: woody cover (% of surface covered by trees) as a function of precipitation (MAP), soil
characteristics (texture, total nitrogen total and phosphorus, and nitrogen mineralization),
fire and herbivory regimes.

• Result: MAP is the most important factor.

©!!""#!Nature Publishing Group!
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below the MAP-controlled upper bound (Fig. 3). Woody cover is
higher, on average, where fires are infrequent (fire-return interval
.10.5 yr). In sites with more frequent fires, woody cover is typically
low, except on very sandy soils (mostly concentrated on the Kalahari
sand sheets), which tend to support higher woody cover (Fig. 3). The
dependence of fire frequency on MAP presumably arises because
increased grass production in mesic sites leads to greater fuel loads
that can support more frequent fires14 (Supplementary Fig. S2). Very
high sand content, which correlates with low nutrient availability
(Supplementary Table S1), may promote higher woody cover if the
positive effects of coarse-textured soils, such as lower wilting points19

and greater water percolation to soil layers below grass rooting
depths1,11,12, override the negative effects associated with lower
nutrient availability in these soils19.
Herbivore effects on woody cover are, however, less apparent.

Although we found a tendency for grazers to enhance woody cover
and browsers and mixed feeders to depress it, such effects were weak
and could not be generalized beyond our data set (see Methods;
measures of herbivore biomass were retained in the complete, but not
pruned, regression tree). The lack of consistent herbivore effects
across sites most probably reflects differences in herbivore guilds,
seasonality of herbivory, and variation in herbivore body-size distri-
butions across sites, features for which data were not available.
Larger, more detailed data sets will undoubtedly provide greater
resolution of how different driver variables interact to influence
mean woody cover.
These results have the power to inform savanna management

strategies because they bear directly on our ability to predict savanna
responses to changing environmental drivers. In particular, our data
indicate that woody encroachment, a phenomenon in which many
savannas across the world show a directional trend of increasing
woody cover1, may be a bounded process in savannas receiving a
MAP of ,650 ^ 134mm, ultimately limited by water availability.
For sites close to or at theMAP-controlled bound (Fig. 1), changes in
precipitation regimes that lead to increased water availability6 there-
foremay be a cause for concernwith respect to woody encroachment.
However, the enormous variation in woody cover, with most sites far
from the climatic bound (Fig. 1), suggests that processes other than
MAP regulate actual tree cover in many savannas of Africa. In
particular, our results suggest that if disturbances by fire, browsers

and humans were absent, then large sections of the African continent
would switch to a wooded state (hatched regions in Fig. 4).
The patterns described here for African savannas suggest that the

dominant ecological theories for tree–grass coexistence in these
systems need to be combined: it is clear that most savannas are
strongly affected by disturbances that maintain woody cover well
below the resource-limited upper bound. Disturbance-based models
do not consider and are unable to explain, however, the upper bound
to tree cover. The results emerging from this continental scale
analysis strongly indicate that water limits the maximum cover of
woody species inmany African savanna systems, but that disturbance
dynamics control savanna structure below the maximum. These
results have important implications both for our understanding of
the fundamental nature of African savanna systems and for our
ability to predict their responses to changing environmental drivers.
It remains to be established whether the patterns observed here for
African savannas also hold in other tropical savanna regions or in
temperate savannas where the effects of winter precipitation and
temperature on moisture distribution through the soil profile can
markedly alter water partitioning between woody and herbaceous
plants, and thus can influence maximum woody cover.

METHODS
Data collection. Data on projected woody cover (the percentage of ground
surface covered when crowns are projected vertically), MAP, soil characteristics
(texture, total nitrogen and phosphorus, and nitrogen mineralization), fire and
herbivory regimes were gathered from several sources for a range of sites across
Africa. We included only sites for which vegetation was sampled over sufficiently
large spatial scales (.0.25 ha for plot measurements and .100m for transect
sampling). Sites located in riparian or seasonally flooded areas, or in net water
run-on areas such as depressions, and sites in which trees were known to access
ground water resources (that is, sources of water not dependent on rainfall in the
immediate vicinity or in recent years) were excluded from the analysis because
MAP is not a relevant descriptor of water availability in these sites. We also
excluded sites that had been cultivated or harvested by humans ,10 yr before
sampling from the analysis.

Rainfall data included estimates from field measurements and regional
rainfall maps (n ¼ 469) and from fitted climatic grids (0.058 resolution,

Figure 4 |The distributions ofMAP-determined (‘stable’) and disturbance-
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (.784mmMAP); cross-hatched
areas show the transition between stable and unstable savannas (516–
784mm MAP); grey areas that are not hatched show the stable savannas
(,516mm MAP).

Figure 3 | Regression tree showing generalized relationships between
woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained,45.2% of the variance in woody cover, which is significantly
more than a random tree (P , 0.001). Of this, 31%was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.
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below the MAP-controlled upper bound (Fig. 3). Woody cover is
higher, on average, where fires are infrequent (fire-return interval
.10.5 yr). In sites with more frequent fires, woody cover is typically
low, except on very sandy soils (mostly concentrated on the Kalahari
sand sheets), which tend to support higher woody cover (Fig. 3). The
dependence of fire frequency on MAP presumably arises because
increased grass production in mesic sites leads to greater fuel loads
that can support more frequent fires14 (Supplementary Fig. S2). Very
high sand content, which correlates with low nutrient availability
(Supplementary Table S1), may promote higher woody cover if the
positive effects of coarse-textured soils, such as lower wilting points19

and greater water percolation to soil layers below grass rooting
depths1,11,12, override the negative effects associated with lower
nutrient availability in these soils19.
Herbivore effects on woody cover are, however, less apparent.

Although we found a tendency for grazers to enhance woody cover
and browsers and mixed feeders to depress it, such effects were weak
and could not be generalized beyond our data set (see Methods;
measures of herbivore biomass were retained in the complete, but not
pruned, regression tree). The lack of consistent herbivore effects
across sites most probably reflects differences in herbivore guilds,
seasonality of herbivory, and variation in herbivore body-size distri-
butions across sites, features for which data were not available.
Larger, more detailed data sets will undoubtedly provide greater
resolution of how different driver variables interact to influence
mean woody cover.
These results have the power to inform savanna management

strategies because they bear directly on our ability to predict savanna
responses to changing environmental drivers. In particular, our data
indicate that woody encroachment, a phenomenon in which many
savannas across the world show a directional trend of increasing
woody cover1, may be a bounded process in savannas receiving a
MAP of ,650 ^ 134mm, ultimately limited by water availability.
For sites close to or at theMAP-controlled bound (Fig. 1), changes in
precipitation regimes that lead to increased water availability6 there-
foremay be a cause for concernwith respect to woody encroachment.
However, the enormous variation in woody cover, with most sites far
from the climatic bound (Fig. 1), suggests that processes other than
MAP regulate actual tree cover in many savannas of Africa. In
particular, our results suggest that if disturbances by fire, browsers

and humans were absent, then large sections of the African continent
would switch to a wooded state (hatched regions in Fig. 4).
The patterns described here for African savannas suggest that the

dominant ecological theories for tree–grass coexistence in these
systems need to be combined: it is clear that most savannas are
strongly affected by disturbances that maintain woody cover well
below the resource-limited upper bound. Disturbance-based models
do not consider and are unable to explain, however, the upper bound
to tree cover. The results emerging from this continental scale
analysis strongly indicate that water limits the maximum cover of
woody species inmany African savanna systems, but that disturbance
dynamics control savanna structure below the maximum. These
results have important implications both for our understanding of
the fundamental nature of African savanna systems and for our
ability to predict their responses to changing environmental drivers.
It remains to be established whether the patterns observed here for
African savannas also hold in other tropical savanna regions or in
temperate savannas where the effects of winter precipitation and
temperature on moisture distribution through the soil profile can
markedly alter water partitioning between woody and herbaceous
plants, and thus can influence maximum woody cover.

METHODS
Data collection. Data on projected woody cover (the percentage of ground
surface covered when crowns are projected vertically), MAP, soil characteristics
(texture, total nitrogen and phosphorus, and nitrogen mineralization), fire and
herbivory regimes were gathered from several sources for a range of sites across
Africa. We included only sites for which vegetation was sampled over sufficiently
large spatial scales (.0.25 ha for plot measurements and .100m for transect
sampling). Sites located in riparian or seasonally flooded areas, or in net water
run-on areas such as depressions, and sites in which trees were known to access
ground water resources (that is, sources of water not dependent on rainfall in the
immediate vicinity or in recent years) were excluded from the analysis because
MAP is not a relevant descriptor of water availability in these sites. We also
excluded sites that had been cultivated or harvested by humans ,10 yr before
sampling from the analysis.

Rainfall data included estimates from field measurements and regional
rainfall maps (n ¼ 469) and from fitted climatic grids (0.058 resolution,

Figure 4 |The distributions ofMAP-determined (‘stable’) and disturbance-
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (.784mmMAP); cross-hatched
areas show the transition between stable and unstable savannas (516–
784mm MAP); grey areas that are not hatched show the stable savannas
(,516mm MAP).

Figure 3 | Regression tree showing generalized relationships between
woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained,45.2% of the variance in woody cover, which is significantly
more than a random tree (P , 0.001). Of this, 31%was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.
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should limit the potential tree cover that can be supported at any
given site, and maximum realizable woody cover should gradually
increase with MAP4,12. By contrast, if disturbances such as fire
and herbivory primarily maintain savannas4,5,15, then we expect an
abrupt, rather than gradual, increase in maximum realizable woody
cover with increasing MAP4: below a critical threshold of rainfall
sufficient to permit tree growth outside riparian areas or depressions,
grasslands should dominate; above this threshold, the maximum
woody cover should correspond to a closed-canopy woodland state4.
Depending on the level of disturbance, a particular location might
have reduced woody cover, but the upper bound would not depend
on MAP.
We evaluated relationships between woody cover and MAP, soil

characteristics (texture, percentage nitrogen, nitrogen mineraliza-
tion, total phosphorus) and disturbance regimes (fire-return inter-
vals, mammalian herbivore biomass) from 854 sites across Africa
(Supplementary Fig. S1 andMethods).Woody cover ranges from 0 to
90% across sites and tends to increase with MAP (Fig. 1). More
particularly, within a narrow range of MAP from ,100 to 650mm,
an upper bound exists on the maximum realizable woody cover
(Fig. 1). In these arid to semi-arid sites (,650 ^ 134mm MAP;
see Fig. 1), maximum realized woody cover increases with MAP
(Fig. 2a), but shows no relationship with fire-return intervals,
herbivore biomass or soil characteristics (Fig. 2b–f), suggesting
that the observed upper limit on woody cover in arid and semi-
arid African savannas is primarily a consequence of moisture
limitation. The presence of an upper bound on woody cover in
these savannas that is linked primarily to MAP is not consistent with
the view that savannas are inherently unstable systems maintained by
disturbances.
Within this MAP range (,650 ^ 134mm MAP), our analysis

suggests that tree–grass coexistence is stable to the extent that
disturbances such as fire and herbivory, although capable of modify-
ing tree to grass ratios, are not necessary for coexistence. In these
“climatically determined savannas”17 (,650 ^ 134mm MAP),
restrictions on maximumwoody cover as a result of water limitation
permit grasses to persist in the system. By contrast, in areas that

receive aMAP in excess of 650 ^ 134mm, water availability seems to
be sufficient to allow trees to approach canopy closure such that
grasses may be effectively excluded. These “disturbance-driven
savannas”17 represent unstable systems in which disturbances such
as fire, grazing and browsing are required to maintain both trees
and grasses in the system by buffering against transitions to a closed-
canopy state5,17.
Whereas MAP drives the upper bound onwoody cover in arid and

semi-arid savannas, disturbance regimes and soil characteristics
impose significant controls on savanna structure by influencing
woody cover below the bound. A regression tree analysis of mean
woody cover for a restricted subset of sites for which all data were
available (Fig. 3 and Methods) further highlights the importance of
MAP as a principal driver of savanna structure and suggests that
MAP also mediates the relative importance of other savanna drivers
such as fire and soil characteristics.
Below aMAPof,350mm,woody cover is typically low (Fig. 3). In

these sites, soil properties and disturbances such as fire and herbivory
rarely regulate woody cover. As MAP increases above this threshold,
fire in particular becomes a common factor that reduces woody cover

Figure 1 | Change in woody cover of African savannas as a function of
MAP. Maximum tree cover is represented by using a 99th quantile piece-
wise linear regression. The regression analysis identifies the breakpoint (the
rainfall at which maximum tree cover is attained) in the interval
650 ^ 134mm MAP (between 516 and 784mm; see Methods). Trees are
typically absent below 101mm MAP. The equation for the line quantifying
the upper bound on tree cover between 101 and 650mm MAP is
Cover(%) ¼ 0.14(MAP) 2 14.2. Data are from 854 sites across Africa.

Figure 2 | Woody cover as a function of MAP, soil properties and
disturbance regimes in arid and semi-arid savannas. Relationships
between woody cover and MAP (a; n ¼ 529), fire-return intervals
(b; n ¼ 302), herbivore biomass (c; n ¼ 145), percentage of clay
(d; n ¼ 234), nitrogen mineralization potential (e; n ¼ 109) and soil total
phosphorus (f; n ¼ 118) for savannas receiving ,650mm MAP. Unbroken
and broken lines represent the 99th and 90th linear quantiles, respectively.
Maximum woody cover increased with MAP, but showed no consistent
relationship with other variables. For MAP, both quantile slopes were
significantly different from zero. For fire-return intervals, herbivore
biomass, clay and nitrogen mineralization rates, neither regression line had
a significant non-zero slope. For total phosphorus, the 90th but not the 99th
quantile slope differed from zero.
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From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846–849.
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Regression Trees

• Error at node m:

bm(x) =
{

1 x reaches node m
0 otherwise

Em =
1

Nm

∑
t

(
rt − gm

)2
bm(xt) , gm =

∑
t bm(xt)rt∑
t bm(xt)

.

• After splitting:

bmj(x) =
{

1 x reaches node m and branch j
0 otherwise

Em =
1

Nm

∑
j

∑
t

(
rt − gmj

)2
bmj(xt) , gmj =

∑
t bmj(xt)rt∑
t bmj(xt)

.
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Implementations

• There are many implementations, with sophisticated pruning methods.
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Machine Learning Guest Lectures on 27 November
10–11 Juha Vesanto (Xtract): Data Mining in Practice How to make succesfull analytics/data mining

in an industry/corporate environment. Principles and a case study.

11–12 Hannu Helminen (Google): Machine Learning Methods in Web Search Google is using

machine learning methods in the presence of erroneous user queries and documents of low quality. Differences

between a traditional information retrieval corpora and the web, and implications of these differences for improving

queries and modeling the web are discussed. Inferring meaning from context and using this additional context for

query expansion improves the quality of search results.

See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/guestlecture
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Please visit www.google.com/jobs/students to view our complete list of  
job opportunities and learn more about Google, our work and our culture.

Let’s talk.
Google is coming to campus to talk  
about Engineering  opportunities.  

Join us to find out how we work, play 
and change the world.

Helsinki University of Technology 
Lecture Hall: T1

TKK Computer Science Building
Konemiehentie 2, Espoo 
27th November 2007

4.15pm

See

http://www.cis.hut.fi/googletalk07/
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24 Decision Trees

24.1 Classification Trees

Decision Trees
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• Each internal node tests an attribute.

• Each branch corresponds to set of attribute values.

206



• Each leaf node assigns a classification (classification tree) or a real number (regression tree).

• The tree is usually learned using a greedy algorithm built around ID3, such as C4.5. (The
problem of finding optimal tree is generally NP-hard.)

• Advantages of trees:

– Learning and classification is fast.

– Trees are accurate in many domains.

– Trees are easy to interpret as sets of decision rules.

• Often, trees should be used as a benchmark before more complicated algorithms are at-
tempted.
• For alternative discussion, see Mitchell (1997), Ch 3.

ID3 algorithm for discrete attributes
ID3(X ) {Input: X = {(rt,xt)}Nt=1, data set with binary attributes rt ∈ {−1, +1} and a vector of discrete variables
xt. Output: T , classification tree.}
Create root node for T
If all items in X are positive (negative), return a single-node tree with label “+” (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do

Let Xv be subset of X that have value v for A
if Xv is empty then

Below the root of T , add a leaf node with most common label in X
else

Below the root of T , add subtree ID3(Xv)
end if

end for
return T

Variations of ID3

• Impurity measures:

– Entropy: −p+ log2 p+ − p− log2 p−.

– Gini index: 2p+p−.

– Misclassification error: 1−max (p+, p−).

– All vanish for p+ ∈ {0, 1} and have a maximum at p+ = p− = 1/2.

• Continuous or ordered variables: sort xt
A for some attribute A and find the best split xA ≤ w

vs. xA > w.

Rule Extraction from Trees

207



!"#$%&"'()$"*'+)&','-./012!3'4556'73$&)2%#$8)3'$)'90#:83"'!"0&383;'< =:"'97='>&"**'?@ABAC

!!

D%."',E$&0#$8)3'+&)F'=&""*
!"#$%&'()*

+,&-.'/.0*12234

Observations of ID3

• Inductive bias:

– Preference on short trees.

– Preference on trees with high information gain near root.

• Vanilla ID3 classifies the training data perfectly.

208



• Hence, in presence of noise, vanilla ID3 overfits.

Pruning

• How to avoid overfitting?

– Prepruning: stop growing when data split is not statistically significant. For example:
stop tree construction when node is smaller than a given limit, or impurity of a node is
below a given limit θI . (faster)

– Postpruning: grow the whole tree, then prune subtrees which overfit on the pruning
(validation) set. (more accurate)

• Split data into training and pruning (validation) sets.

• Do until further pruning is harmful:

1. Evaluate impact on pruning set of pruning each possible node (plus those below it).

2. Greedily remove the one that most improves the pruning set accuracy.

• Produces smallest version of most accurate subtree.

• Alternative: rule postpruning (commonly used, for example, C4.5).

24.2 Regression Trees

Examples: Predicting woody cover in African savannas

• Task: woody cover (% of surface covered by trees) as a function of precipitation (MAP), soil
characteristics (texture, total nitrogen total and phosphorus, and nitrogen mineralization),
fire and herbivory regimes.

• Result: MAP is the most important factor.
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below the MAP-controlled upper bound (Fig. 3). Woody cover is
higher, on average, where fires are infrequent (fire-return interval
.10.5 yr). In sites with more frequent fires, woody cover is typically
low, except on very sandy soils (mostly concentrated on the Kalahari
sand sheets), which tend to support higher woody cover (Fig. 3). The
dependence of fire frequency on MAP presumably arises because
increased grass production in mesic sites leads to greater fuel loads
that can support more frequent fires14 (Supplementary Fig. S2). Very
high sand content, which correlates with low nutrient availability
(Supplementary Table S1), may promote higher woody cover if the
positive effects of coarse-textured soils, such as lower wilting points19

and greater water percolation to soil layers below grass rooting
depths1,11,12, override the negative effects associated with lower
nutrient availability in these soils19.
Herbivore effects on woody cover are, however, less apparent.

Although we found a tendency for grazers to enhance woody cover
and browsers and mixed feeders to depress it, such effects were weak
and could not be generalized beyond our data set (see Methods;
measures of herbivore biomass were retained in the complete, but not
pruned, regression tree). The lack of consistent herbivore effects
across sites most probably reflects differences in herbivore guilds,
seasonality of herbivory, and variation in herbivore body-size distri-
butions across sites, features for which data were not available.
Larger, more detailed data sets will undoubtedly provide greater
resolution of how different driver variables interact to influence
mean woody cover.
These results have the power to inform savanna management

strategies because they bear directly on our ability to predict savanna
responses to changing environmental drivers. In particular, our data
indicate that woody encroachment, a phenomenon in which many
savannas across the world show a directional trend of increasing
woody cover1, may be a bounded process in savannas receiving a
MAP of ,650 ^ 134mm, ultimately limited by water availability.
For sites close to or at theMAP-controlled bound (Fig. 1), changes in
precipitation regimes that lead to increased water availability6 there-
foremay be a cause for concernwith respect to woody encroachment.
However, the enormous variation in woody cover, with most sites far
from the climatic bound (Fig. 1), suggests that processes other than
MAP regulate actual tree cover in many savannas of Africa. In
particular, our results suggest that if disturbances by fire, browsers

and humans were absent, then large sections of the African continent
would switch to a wooded state (hatched regions in Fig. 4).
The patterns described here for African savannas suggest that the

dominant ecological theories for tree–grass coexistence in these
systems need to be combined: it is clear that most savannas are
strongly affected by disturbances that maintain woody cover well
below the resource-limited upper bound. Disturbance-based models
do not consider and are unable to explain, however, the upper bound
to tree cover. The results emerging from this continental scale
analysis strongly indicate that water limits the maximum cover of
woody species inmany African savanna systems, but that disturbance
dynamics control savanna structure below the maximum. These
results have important implications both for our understanding of
the fundamental nature of African savanna systems and for our
ability to predict their responses to changing environmental drivers.
It remains to be established whether the patterns observed here for
African savannas also hold in other tropical savanna regions or in
temperate savannas where the effects of winter precipitation and
temperature on moisture distribution through the soil profile can
markedly alter water partitioning between woody and herbaceous
plants, and thus can influence maximum woody cover.

METHODS
Data collection. Data on projected woody cover (the percentage of ground
surface covered when crowns are projected vertically), MAP, soil characteristics
(texture, total nitrogen and phosphorus, and nitrogen mineralization), fire and
herbivory regimes were gathered from several sources for a range of sites across
Africa. We included only sites for which vegetation was sampled over sufficiently
large spatial scales (.0.25 ha for plot measurements and .100m for transect
sampling). Sites located in riparian or seasonally flooded areas, or in net water
run-on areas such as depressions, and sites in which trees were known to access
ground water resources (that is, sources of water not dependent on rainfall in the
immediate vicinity or in recent years) were excluded from the analysis because
MAP is not a relevant descriptor of water availability in these sites. We also
excluded sites that had been cultivated or harvested by humans ,10 yr before
sampling from the analysis.

Rainfall data included estimates from field measurements and regional
rainfall maps (n ¼ 469) and from fitted climatic grids (0.058 resolution,

Figure 4 |The distributions ofMAP-determined (‘stable’) and disturbance-
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (.784mmMAP); cross-hatched
areas show the transition between stable and unstable savannas (516–
784mm MAP); grey areas that are not hatched show the stable savannas
(,516mm MAP).

Figure 3 | Regression tree showing generalized relationships between
woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained,45.2% of the variance in woody cover, which is significantly
more than a random tree (P , 0.001). Of this, 31%was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.
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below the MAP-controlled upper bound (Fig. 3). Woody cover is
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sand sheets), which tend to support higher woody cover (Fig. 3). The
dependence of fire frequency on MAP presumably arises because
increased grass production in mesic sites leads to greater fuel loads
that can support more frequent fires14 (Supplementary Fig. S2). Very
high sand content, which correlates with low nutrient availability
(Supplementary Table S1), may promote higher woody cover if the
positive effects of coarse-textured soils, such as lower wilting points19

and greater water percolation to soil layers below grass rooting
depths1,11,12, override the negative effects associated with lower
nutrient availability in these soils19.
Herbivore effects on woody cover are, however, less apparent.

Although we found a tendency for grazers to enhance woody cover
and browsers and mixed feeders to depress it, such effects were weak
and could not be generalized beyond our data set (see Methods;
measures of herbivore biomass were retained in the complete, but not
pruned, regression tree). The lack of consistent herbivore effects
across sites most probably reflects differences in herbivore guilds,
seasonality of herbivory, and variation in herbivore body-size distri-
butions across sites, features for which data were not available.
Larger, more detailed data sets will undoubtedly provide greater
resolution of how different driver variables interact to influence
mean woody cover.
These results have the power to inform savanna management

strategies because they bear directly on our ability to predict savanna
responses to changing environmental drivers. In particular, our data
indicate that woody encroachment, a phenomenon in which many
savannas across the world show a directional trend of increasing
woody cover1, may be a bounded process in savannas receiving a
MAP of ,650 ^ 134mm, ultimately limited by water availability.
For sites close to or at theMAP-controlled bound (Fig. 1), changes in
precipitation regimes that lead to increased water availability6 there-
foremay be a cause for concernwith respect to woody encroachment.
However, the enormous variation in woody cover, with most sites far
from the climatic bound (Fig. 1), suggests that processes other than
MAP regulate actual tree cover in many savannas of Africa. In
particular, our results suggest that if disturbances by fire, browsers

and humans were absent, then large sections of the African continent
would switch to a wooded state (hatched regions in Fig. 4).
The patterns described here for African savannas suggest that the

dominant ecological theories for tree–grass coexistence in these
systems need to be combined: it is clear that most savannas are
strongly affected by disturbances that maintain woody cover well
below the resource-limited upper bound. Disturbance-based models
do not consider and are unable to explain, however, the upper bound
to tree cover. The results emerging from this continental scale
analysis strongly indicate that water limits the maximum cover of
woody species inmany African savanna systems, but that disturbance
dynamics control savanna structure below the maximum. These
results have important implications both for our understanding of
the fundamental nature of African savanna systems and for our
ability to predict their responses to changing environmental drivers.
It remains to be established whether the patterns observed here for
African savannas also hold in other tropical savanna regions or in
temperate savannas where the effects of winter precipitation and
temperature on moisture distribution through the soil profile can
markedly alter water partitioning between woody and herbaceous
plants, and thus can influence maximum woody cover.

METHODS
Data collection. Data on projected woody cover (the percentage of ground
surface covered when crowns are projected vertically), MAP, soil characteristics
(texture, total nitrogen and phosphorus, and nitrogen mineralization), fire and
herbivory regimes were gathered from several sources for a range of sites across
Africa. We included only sites for which vegetation was sampled over sufficiently
large spatial scales (.0.25 ha for plot measurements and .100m for transect
sampling). Sites located in riparian or seasonally flooded areas, or in net water
run-on areas such as depressions, and sites in which trees were known to access
ground water resources (that is, sources of water not dependent on rainfall in the
immediate vicinity or in recent years) were excluded from the analysis because
MAP is not a relevant descriptor of water availability in these sites. We also
excluded sites that had been cultivated or harvested by humans ,10 yr before
sampling from the analysis.

Rainfall data included estimates from field measurements and regional
rainfall maps (n ¼ 469) and from fitted climatic grids (0.058 resolution,

Figure 4 |The distributions ofMAP-determined (‘stable’) and disturbance-
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (.784mmMAP); cross-hatched
areas show the transition between stable and unstable savannas (516–
784mm MAP); grey areas that are not hatched show the stable savannas
(,516mm MAP).

Figure 3 | Regression tree showing generalized relationships between
woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained,45.2% of the variance in woody cover, which is significantly
more than a random tree (P , 0.001). Of this, 31%was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.
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should limit the potential tree cover that can be supported at any
given site, and maximum realizable woody cover should gradually
increase with MAP4,12. By contrast, if disturbances such as fire
and herbivory primarily maintain savannas4,5,15, then we expect an
abrupt, rather than gradual, increase in maximum realizable woody
cover with increasing MAP4: below a critical threshold of rainfall
sufficient to permit tree growth outside riparian areas or depressions,
grasslands should dominate; above this threshold, the maximum
woody cover should correspond to a closed-canopy woodland state4.
Depending on the level of disturbance, a particular location might
have reduced woody cover, but the upper bound would not depend
on MAP.
We evaluated relationships between woody cover and MAP, soil

characteristics (texture, percentage nitrogen, nitrogen mineraliza-
tion, total phosphorus) and disturbance regimes (fire-return inter-
vals, mammalian herbivore biomass) from 854 sites across Africa
(Supplementary Fig. S1 andMethods).Woody cover ranges from 0 to
90% across sites and tends to increase with MAP (Fig. 1). More
particularly, within a narrow range of MAP from ,100 to 650mm,
an upper bound exists on the maximum realizable woody cover
(Fig. 1). In these arid to semi-arid sites (,650 ^ 134mm MAP;
see Fig. 1), maximum realized woody cover increases with MAP
(Fig. 2a), but shows no relationship with fire-return intervals,
herbivore biomass or soil characteristics (Fig. 2b–f), suggesting
that the observed upper limit on woody cover in arid and semi-
arid African savannas is primarily a consequence of moisture
limitation. The presence of an upper bound on woody cover in
these savannas that is linked primarily to MAP is not consistent with
the view that savannas are inherently unstable systems maintained by
disturbances.
Within this MAP range (,650 ^ 134mm MAP), our analysis

suggests that tree–grass coexistence is stable to the extent that
disturbances such as fire and herbivory, although capable of modify-
ing tree to grass ratios, are not necessary for coexistence. In these
“climatically determined savannas”17 (,650 ^ 134mm MAP),
restrictions on maximumwoody cover as a result of water limitation
permit grasses to persist in the system. By contrast, in areas that

receive aMAP in excess of 650 ^ 134mm, water availability seems to
be sufficient to allow trees to approach canopy closure such that
grasses may be effectively excluded. These “disturbance-driven
savannas”17 represent unstable systems in which disturbances such
as fire, grazing and browsing are required to maintain both trees
and grasses in the system by buffering against transitions to a closed-
canopy state5,17.
Whereas MAP drives the upper bound onwoody cover in arid and

semi-arid savannas, disturbance regimes and soil characteristics
impose significant controls on savanna structure by influencing
woody cover below the bound. A regression tree analysis of mean
woody cover for a restricted subset of sites for which all data were
available (Fig. 3 and Methods) further highlights the importance of
MAP as a principal driver of savanna structure and suggests that
MAP also mediates the relative importance of other savanna drivers
such as fire and soil characteristics.
Below aMAPof,350mm,woody cover is typically low (Fig. 3). In

these sites, soil properties and disturbances such as fire and herbivory
rarely regulate woody cover. As MAP increases above this threshold,
fire in particular becomes a common factor that reduces woody cover

Figure 1 | Change in woody cover of African savannas as a function of
MAP. Maximum tree cover is represented by using a 99th quantile piece-
wise linear regression. The regression analysis identifies the breakpoint (the
rainfall at which maximum tree cover is attained) in the interval
650 ^ 134mm MAP (between 516 and 784mm; see Methods). Trees are
typically absent below 101mm MAP. The equation for the line quantifying
the upper bound on tree cover between 101 and 650mm MAP is
Cover(%) ¼ 0.14(MAP) 2 14.2. Data are from 854 sites across Africa.

Figure 2 | Woody cover as a function of MAP, soil properties and
disturbance regimes in arid and semi-arid savannas. Relationships
between woody cover and MAP (a; n ¼ 529), fire-return intervals
(b; n ¼ 302), herbivore biomass (c; n ¼ 145), percentage of clay
(d; n ¼ 234), nitrogen mineralization potential (e; n ¼ 109) and soil total
phosphorus (f; n ¼ 118) for savannas receiving ,650mm MAP. Unbroken
and broken lines represent the 99th and 90th linear quantiles, respectively.
Maximum woody cover increased with MAP, but showed no consistent
relationship with other variables. For MAP, both quantile slopes were
significantly different from zero. For fire-return intervals, herbivore
biomass, clay and nitrogen mineralization rates, neither regression line had
a significant non-zero slope. For total phosphorus, the 90th but not the 99th
quantile slope differed from zero.
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From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846–849.
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Regression Trees

• Error at node m:

bm(x) =
{

1 x reaches node m
0 otherwise

Em =
1

Nm

∑
t

(
rt − gm

)2
bm(xt) , gm =

∑
t bm(xt)rt∑
t bm(xt)

.

• After splitting:

bmj(x) =
{

1 x reaches node m and branch j
0 otherwise

Em =
1

Nm

∑
j

∑
t

(
rt − gmj

)2
bmj(xt) , gmj =

∑
t bmj(xt)rt∑
t bmj(xt)

.
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Implementations

• There are many implementations, with sophisticated pruning methods.
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25 Linear Discrimination

25.1 Naive Bayes Classifier (Again)

Linear Discrimination

• Source material:

– Alpaydin (2004) Ch 10, or

– A new chapter by Mitchell (September 2005), “Generative and Discriminative Classifiers:
Naive Bayes and Logistic Regression”, available as PDF at http://www.cs.cmu.edu/
∼tom/NewChapters.html

Naive Bayes Classifier

• Idea: the means are class-specific, covariance matrix Σ is common and diagonal (Naive Bayes).

• d parameters in the covariance matrix.

• Discriminant is linear: gi(x) = wT
i x + wi0, where wi = Σ−1µi and wi0 = −1

2µT
i Σ−1µi +

log P (Ci).
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Figure 5.5: All classes have equal, diagonal

covariance matrices but variances are not equal.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Naive Bayes Classifier

• X = {(rt,xt)}Nt=1, rt ∈ {0, 1}, xt ∈ Rd.

• Naive Bayes assumption: P (xt | rt) =
∏d

i=1 P (xt
i | rt).

• Using Bayes rule,

P (r | x) =
P (r)

∏d
i=1 P (xi | r)∑

s∈{0,1} P (s)
∏d

i=1 P (xi | s)
.

• Discriminant is linear: gi(x) = log P (ri = 1 | x) + const. = wT
i x + wi0, where wi = Σ−1µi

and wi0 = −1
2µT

i Σ−1µi + log P (Ci).
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• Observation:
log

P (r = 1 | x)
1− P (r = 1 | x)

= wTx + w0.

25.2 Logistic Regression

Logistic Regression

• Logit: logit(p) = log
(

p
1−p

)
.

• Sigmoid: sigmoid(t) = logit−1(t) = 1/(1 + e−t).

• Derivative of sigmoid: sigmoid′(t) = sigmoid(t) (1− sigmoid(t)).

Sigmoid (Logistic) Function
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Cost Function for Logistic Regression

•

P (R | X, W ) =
n∏

t=1

P (rt | xt,W )
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•

L = e−P (R|X,W ) = −
N∑

t=1

(
rt log yt − (1− rt) log (1− yt)

)
,

where yt = P (rt = 1 | x) = sigmoid(wtx + w0).

• Task: find W = (w, w0) such that L is minimized.

• No EM algorithm. Use gradient ascent.

Gradient Ascent
GRADASC(L(θ), θ0) {Input: L(θ), cost function; θ0, initial parameters. Output: θ, a local
minimum of L.}
θ ← θ0 {θ, θ0 ∈ Rd.}
t← 1
repeat

for all i ∈ {1, . . . , d} do
∆θi ← ∂L(θ)/∂θi

end for
for all i ∈ {1, . . . , d} do

θi ← θi − ηt∆θi

end for
t← t + 1

until convergence
return θ

Gradient Ascent

• The function GRADASC always converges if
∑∞

t=1 ηt = ∞ and
∑∞

t=1 η2
t < ∞, where ηt ≥ 0

for all t, for example, ηt = 1/t.

• The function GRADASC often converges also for constant small enough ηt = η > 0.

• GRADASC is inefficient.

• Usually one should use a more sophisticated gradient ascent algorithm, such as conjugate
gradient, from some numerical library (e.g., in R type help(optim)).
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Minimizing L(θ) = (θ1 + θ2)2 + (θ2 − 1)2, using θ0 = (0, 0)T .

Gradient Ascent

• Logistic regression may converge to w → ±∞ (see right), especially when data is high dimen-
sional and sparse. This causes problems.

• Solution: minimize regularized cost L → L+ 1
2λ
(
w2

0 + wTw
)
.
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2004. Introduction to Machine Learning. c©The MIT

Press.

83

Generalized Linear Models

• Logistic regression is a special case of Generalized Linear Models (GLM)

– logit is a link function.
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• Many respectable numerical packages contain GLM implementation which includes logistic
regression (e.g., in R help(glm)). You should probably use these in real life applications
instead of programming one on your own.

25.3 Logistic Regression vs. Naive Bayes

Naive Bayes Classifier
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Naive Bayes vs. Logistic Regression

• Naive Bayes classifier estimates parameters of P (r) and P (x | r) (means, covariances, etc.).
(generative classifier, because we can generate the data points, given parameters)

• Logistic regression directly estimates the parameters of P (r | x). (discriminative classifier,
because we can directly discriminate wrt. r, given x; no generative model for p(x) is needed)

• If Naive Bayes assumptions hold (data from multivariate Gaussians with diagonal covariate
matrix) and the number of training examples is very large, Naive Bayes and logistic regression
give identical classification.

• The differences:

223



– If data is not Gaussian etc. (that is, NB assumptions do not hold), logistic regression
often gives better result (at least for large amounts of data).

– Logistic regression needs more data. Naive Bayes needs N = O(log d) samples, while
logistic regression needs N = O(d). Ng & Jordan (2002) On Discriminative vs. Generative Classifiers: A
Comparison of Logistic Regression and Naive Bayes. In Proc NIPS 14..

• Generative classifier: more bias, less variance. There is a model for P (x). This is good if
there is little data and/or the model for x is correct enough.

• Discriminative classifier: less bias, more variance. There is no model for P (x), it is estimated
directly from data. This is good if the NB model for x is wrong and/or there is enough data.

25.4 Floating Point Numbers

IEEE Floating Point Arithmetics

• The floating point numbers are stored in three parts in binary:

– fraction (f = 52 bits in double precision)

– exponent (e = 11 bits in double precision)

– sign (1 bit)

• This includes the following types of numbers:

– normalized numbers (normal non-zero numbers)

– zero (±0)

– infinities (±∞)

– NaN

– denormalized numbers (± something very small or very large)

The three fields in an IEEE 754 float.

Image by Charles Esson, GFDL.

Numerical Computation: Computing Sums and Products

• Sometimes it is enough to use + and * operators to compute sums and products. According
to R: 3.14*42=131.88; 3.14+42+5=50.14.

• Sometimes it is not. According to R: 3.14e-200*42e-201*1e300=0; 1e-400*1e400=NaN; 1e-
16+1-1=0.

• In probabilistic modeling it is typical to. . .

– Have numbers of different orders of magnitudes, including very small numbers.
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– Do sums and products with them.

• Important numbers (examples from the R floating point implementation in Mac OS X,
help(.Machine)):

– Smallest positive floating point number ε (machine epsilon) for which 1 + ε 6= 1: 2.2 ×
10−16.

– The largest finite floating point number: 1.7× 10308.

– The smallest positive floating point number: 2.2× 10−308.

Numerical Computation: Representing Numbers

• In many practical applications, 2.2× 10−308 is too large for representing intermediate proba-
bilities.

• Solution: store numbers as logs.

• Probabilities are usually always positive. (Generally, software should however be written so
that to work consistently also with zero probabilities.)

• R is consistent also for zero probabilities: log(0)=-Inf; exp(-Inf)=0.

• Other software may behave differently. Read the documentation and test.

Numerical Computation: Computing Products

• Task: compute the product y =
∏n

i=1 xi.

• 1e-200*1e-200*1e300=0 (wrong!).

• Solution: use logs.

• log y =
∑n

i=1 log xi.

• log(1e-200)+log(1e-200)+log(1e300)=log(1e-100) (correct).

• Division: log(x/y) = log x− log y. Product with negatives.

Numerical Computation: Computing Sums

• Task: compute sum y =
∑n

i=1 xi.

• exp(-1000)+exp(-999)=0 (wrong!).

• Solution: scale numbers appropriately before doing the sum.

• log y = log xMAX + log (
∑n

i=1 exp (log xi − log xMAX)), where log xMAX = maxi log xi.

• -999+log(exp(-1)+exp(0))=-998.6 (correct).

• Something like this: safesum <- function(x) { xmax <- max(x) ; xmax+log(sum(exp(x-xmax)))) }

225



Numerical Computation: Example

P (Ci | x) =
P (x | Ci)P (Ci)∑K

k=1 P (x | Ck)P (Ck)
=

likelihood× prior
evidence

Store numbers as logs and denote: a[i] = log P (x | Ci), b[i] = log P (Ci).

safesum <- function(x) { xmax <- max(x); xmax+log(sum(exp(x-xmax)))) }

evidence <- safesum(a+b)

posterior <- sum(c(a[i],b[i],-evidence))

exp(posterior) #P (Ci | x)

26 Announcements

26.1 Examination

• To pass the course you must pass the examination and the term project.

• Grading:

– Examination grade E ∈ [0, 1] (0 smallest passed grade)

– Term project grade T ∈ [0, 1] (0 smallest passed grade)

– Problem session grade P ∈ [0, 1]

– Course grade min(5,floor(4E + 2T + P ))

Examination

• Currently scheduled at 19 Dec & 2 Feb & 15 May (check the times and locations from the
examination schedule!)

• You must sign in to the examination at least one week in advance using WWWTopi

• Calculator (with memory erased) is allowed

• No other extra material is allowed.

• 4–6 problems (to pass you have to get about half of the points)

Reading List

• The examination is based on the topics covered in the lectures

• See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/examination
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26.2 Course Feedback

Course Feedback

• Please give course feedback at http://www.cs.hut.fi/Opinnot/Palaute/kurssipalaute-en.
html

• (Open until 7 January 2008)

27 Summary of the Course

27.1 Summary of the Course

Objectives

• After this course, the student should. . .

1. be able to apply the basic methods to real world data;

2. understand the basic principles of the methods; and

3. have necessary prerequisites to understand and apply new concepts and methods that
build on the topics covered in the course.

• The topic is difficult (and interdisciplinary, involving at least computer science, mathematics,
computational modeling and statistics)

Learning Tasks

• Supervised learning

– classification

– regression

• Unsupervised learning

– clustering etc.

• Reinforcement learning [not in this course]

Concept Learning

• Task: classify a previously unseen instance into positive or negative

• Hypothesis class H

• Learning: use positive and negative examples to prune out the hypothesis

• If none of the hypothesis in the hypothesis class is correct we might end up with no consistent
hypothesis.
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• Inductive bias: we must restrict the allowed hypothesis to be able to generalize (predict classes
of new instances).

• The choice of a hypothesis space is called model selection.

• Underfitting: the hypothesis space is too simple.

• Overfitting: the hypothesis space is too complex.

• VC dimension can be used to measure the complexity of the hypothesis space.
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7

Figure 2.2 of Alpaydin (2004).

Regression with Noise

• Classification is the prediction of a 0–1 class, given attributes.

• Regression is the prediction of a real number, given

• Usually, we want to minimize a quadratic error function,
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E(g | X ) =
1
N

N∑
t=1

(
rt − g(xt)

)2
.

Dimensions of a Supervised Learner

Model
g(x | θ)

Loss Function

E (θ | X ) =
1
N

N∑
t=1

L
(
rt, g(xt | θ)

)
.

Optimization Procedure
θ ← arg min

θ
E (θ | X ).

Polynomial Regressors

230



−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sin((X ππ))
degree 0 polynomial

231



−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sin((X ππ))
degree 1 polynomial

232



−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sin((X ππ))
degree 2 polynomial

233



−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sin((X ππ))
degree 3 polynomial

234



−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sin((X ππ))
degree 4 polynomial

235



−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sin((X ππ))
degree 5 polynomial

236



−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sin((X ππ))
degree 6 polynomial

237



Model Selection and Generalization

model complexity

er
ro

r

test set
training set

training set size

er
ro

r

test set
training set

• empirical error = error on training set

• generalization error = error on test set

• We see empirical error, but want to minimize the error on new data.

• Training vs. validation vs. test sets

K-Fold Cross-Validation

• How to use the training/validation data most efficiently?

CV(X ,A,K){Input: X , data X = {(rt, xt)}Nt=1; A, classification algorithm; K, number of folds.
Output: E , error measure.}
Partition X in random into K roughly equally sized parts Xi.
for all i ∈ {1, . . . ,K} do

Train A using X \ Xi as a training set.
Let Ei be the error of A in Xi (for example, the fraction of incorrectly labeled items).

end for
E ←

∑K
i=1 |Xi| Ei/ |X |

return E{E can be used as a validation set error in model selection.}

Rules of Probability

• In presence of noise, we have to use probabilities.

• In principle, you can derive everything in probabilistic inference from the basic axiom, in-
cluding the sum and product rules.
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Rules of Probability

• P (E,F ) = P (F,E): probability of both E and F happening.

• P (E) =
∑

F P (E,F ) (sum rule, marginalization)

• P (E,F ) = P (F | E)P (E) (product rule, conditional probability)

• Consequence: P (F | E) = P (E | F )P (F )/P (E) (Bayes’ formula)

• We say E and F are independent if P (E,F ) = P (E)P (F ) (for all E and F ).

• We say E and F are conditionally independent given G if P (E,F | G) = P (E | G)P (F | G),
or equivalently P (E | F,G) = P (E | G).

Bayes’ Rule

P (Ci | x) =
P (x | Ci)P (Ci)

P (x)
=

P (x | Ci)P (Ci)∑K
k=1 P (x | Ck)P (Ck)

• P (Ck) ≥ 0 and
∑K

k=1 P (Ck) = 1.

• Naive Bayes Classifier: choose Ck where k = arg maxk P (Ck | x).

Classifier Using Probabilistic Model

• First compute posterior class probability P (C | x).

• Choose class C with the largest posterior probability.

• Another option: Choose class which minimizes risk (or maximizes utility), if the loss of
misclassification is not a constant.

• A class for uncertainty: reject-option

Bayesian Networks
Bayesian network is a directed acyclic graph (DAG) that describes a joint distribution over the

vertices X1,. . . ,Xd such that

P (X1, . . . , Xd) =
d∏

i=1

P (Xi | parents(Xi)),

where parents(Xi) are the set of vertices from which there is an edge to Xi.

C

A B
P (A,B, C) = P (A | C)P (B | C)P (C). (A and B are conditionally

independent given C.)
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...

C

1 X NX
Equivalently:

N

C

X

• Plate is used as a shorthand notation for repetition. The number of repetitions is in the
bottom right corner.

• Gray nodes denote observed variables.

Estimating the Sex Ratio

• What is our degree of belief in the gender ratio, before seeing any data (prior probability
density p(θ))?
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• What is our degree of belief in the gender ratio, after seeing data X (posterior probability
density p(θ | X ))?

p(θ | X ) ∝ p(θ)p(X | θ).

0.0 0.2 0.4 0.6 0.8 1.0

N=0

θθ

flat prior (P=0.55)
empirical prior (P=0.78)
boundary prior (P=0.51)

0.0 0.2 0.4 0.6 0.8 1.0

N=8

θθ

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)

“True” θ = 0.55 is shown by the red dotted line. The densities have been scaled to have a maximum of one.

Estimating the Sex Ratio
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N=0

θθ

flat prior (P=0.55)
empirical prior (P=0.78)
boundary prior (P=0.51)
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0.0 0.2 0.4 0.6 0.8 1.0

N=1

θθ

flat prior (P=0.30)
empirical prior (P=0.75)
boundary prior (P=0.07)
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0.0 0.2 0.4 0.6 0.8 1.0

N=2

θθ

flat prior (P=0.57)
empirical prior (P=0.78)
boundary prior (P=0.55)
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0.0 0.2 0.4 0.6 0.8 1.0

N=3

θθ

flat prior (P=0.76)
empirical prior (P=0.81)
boundary prior (P=0.79)
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0.0 0.2 0.4 0.6 0.8 1.0

N=4

θθ

flat prior (P=0.59)
empirical prior (P=0.78)
boundary prior (P=0.58)
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0.0 0.2 0.4 0.6 0.8 1.0

N=8

θθ

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)
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0.0 0.2 0.4 0.6 0.8 1.0

N=16

θθ

flat prior (P=0.47)
empirical prior (P=0.75)
boundary prior (P=0.45)
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0.0 0.2 0.4 0.6 0.8 1.0

N=32

θθ

flat prior (P=0.72)
empirical prior (P=0.83)
boundary prior (P=0.71)
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0.0 0.2 0.4 0.6 0.8 1.0

N=64

θθ

flat prior (P=0.86)
empirical prior (P=0.89)
boundary prior (P=0.85)
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0.0 0.2 0.4 0.6 0.8 1.0

N=128

θθ

flat prior (P=0.91)
empirical prior (P=0.93)
boundary prior (P=0.90)
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0.0 0.2 0.4 0.6 0.8 1.0

N=256

θθ

flat prior (P=0.80)
empirical prior (P=0.87)
boundary prior (P=0.80)
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0.0 0.2 0.4 0.6 0.8 1.0

N=512

θθ

flat prior (P=0.59)
empirical prior (P=0.70)
boundary prior (P=0.59)
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0.0 0.2 0.4 0.6 0.8 1.0

N=1024

θθ

flat prior (P=0.36)
empirical prior (P=0.45)
boundary prior (P=0.36)
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0.0 0.2 0.4 0.6 0.8 1.0

N=2048

θθ

flat prior (P=0.42)
empirical prior (P=0.49)
boundary prior (P=0.42)
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0.0 0.2 0.4 0.6 0.8 1.0

N=4096

θθ

flat prior (P=0.12)
empirical prior (P=0.14)
boundary prior (P=0.11)

Predictions from the Posterior Probability Density

• Task: predict probability of xN+1, given N observations in X .
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• Marginalizations:

– p(X , θ) =
∫

dxN+1p(xN+1,X , θ) = p(X | θ)p(θ).

– p(X ) =
∫

dθp(X , θ) =
∫

dθp(X | θ)p(θ).

– p(xN+1,X ) =
∫

dθp(xN+1,X , θ) =
∫

dθp(xN+1 | θ)p(X | θ)p(θ).

• Posterior: p(θ | X ) = p(X , θ)/p(X ).

• Predictor for new data point: p(xN+1 | X ) = p(xN+1,X )/p(X ) =
∫

dθp(xN+1 | θ)p(X , θ)/p(X ) =∫
dθp(xN+1 | θ)p(θ | X ).

N
XX

θ

N+1

Joint distribution (X =
{
xt
}N

t=1
): p(xN+1,X , θ) = p(xN+1 | θ)p(X | θ)p(θ).

Point Estimators
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• The posterior p(θ | X ) represents our best knowledge.

• Predictor for new data point: p(xN+1 | X ) =
∫

dθp(xN+1 | θ)p(θ | X ).

• The calculation of the integral may be infeasible.

• Estimate θ by θ̂ (or posterior by p(θ | X ) ≈ δ(θ − θ̂)) and use the predictor

p(xN+1 | X ) ≈ p(xN+1 | θ̂).

Estimators from the Posterior

Definition 16 (Maximum Likelihood Estimate).

θ̂ML = arg max
θ

log p(X | θ).

Definition 17 (Maximum a Posteriori Estimate).

θ̂MAP = arg max
θ

log p(θ | X ).
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0.0 0.2 0.4 0.6 0.8 1.0

Maximum a Posteriori Estimate (N=8)

θθ

● ●●

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)
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Naive Bayes Classifier
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• Idea: the means are class-specific, covariance matrix Σ is common and diagonal (Naive Bayes).

• d parameters in the covariance matrix.

• Discriminant is linear: gi(x) = wT
i x + wi0, where wi = Σ−1µi and wi0 = −1

2µT
i Σ−1µi +

log P (Ci).

       
 

 

 

 

 

 

 

Figure 5.5: All classes have equal, diagonal

covariance matrices but variances are not equal.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.

37

x
N

C µ,Σ

P(C)

d

• Cross-validation: most robust if there is enough data.

• Structural risk minimization (SRM): used, for example, in support vector machines (SVM).

• Bayesian model selection: use prior and Bayes’ formula.

• Minimum description length (MDL): can be viewed as MAP estimate.

• Regularization: add penalty term for complex models (can be obtained, for example, from
prior).

• Latter four methods do not strictly require validation set (at least if implicit modeling as-
sumptions are satisfied, such as that in Bayesian model selection the data is from the model
family; it is always a good idea to use a test set) and latter three are related.

• There is no single best way for small amounts of data (your prior assumptions matter).

Subset Selection
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Principal Component Analysis (PCA)

• Observation: covariance matrix of {zt}Nt=1 is a diagonal matrix D whose diagonal elements
are the variances.

Sz =
X

t

zzT /N =
X

t

CT yyT C/N

= CT

 X
t

yyT /N

!
C = CT SC = D,

where the diagonal elements of D are the variances Dii = σ2
zi.

• Eigenvalues λi ⇔ variances σ2
i .
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Figure 6.1: Principal components analysis centers

the sample and then rotates the axes to line up with

the directions of highest variance. If the variance on

z2 is too small, it can be ignored and we have

dimensionality reduction from two to one. From:

E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Example: Fossils

• Large European land mammals: 124 fossil find sites (dated 23–2 million years old), 139 taxa

• Reconstruction of site vectors given PCA taxon representation for different k: ŷ = W ẑ =
WW Ty, or x̂ = WW T (x−m) + m.

264



20 40 60 80 100 120

20
40

60
80

10
0

12
0

Cenozoic Large Land Mammals

taxa

fo
ss

il 
si

te
s

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Taxa − Proportion of Variance Explained

k

P
oV

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−4 −2 0 2

−
2

0
2

4

Taxa

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●● ●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

1

16

32

47

62

78

93

110

120

140

20 40 60 80 100 120

20
40

60
80

10
0

12
0

X (original data)

taxa

fo
ss

il 
si

te
s

20 40 60 80 100 120

20
40

60
80

10
0

12
0

X (reconstructed data with k=2)

taxa

fo
ss

il 
si

te
s

20 40 60 80 100 120

20
40

60
80

10
0

12
0

X (reconstructed data with k=52)

taxa

fo
ss

il 
si

te
s

Linear Discriminant Analysis (LDA)

• PCA is unsupervised method (class information is not usually used).

• Linear Discriminant Analysis (LDA) is supervised method for dimensionality reduction in
classification problems.

• As PCA, LDA can be accomplished with standard matrix algebra (eigenvalue decompositions
etc.). This makes it relatively simple and useful.

• PCA is a good general purpose dimensionality reduction method, LDA is a good alternative if
we want to optimize the separability of classes in a specific classification task, and are happy
with dimensionality of less than the number of classes (k < K).

Linear Discriminant Analysis (LDA)
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k-means Clustering

LLOYDS(X ,k) {Input: X , data set; k, number of clusters. Output: {mi}ki=1, cluster prototypes.}
Initialize mi, i = 1, . . . , k, appropriately for example, in random.
repeat

for all t ∈ {1, . . . , N} do {E step}

bt
i ←


1 , i = arg mini

˛̨˛̨
xt −mi

˛̨˛̨
0 , otherwise
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end for
for all i ∈ {1, . . . , k} do {M step}

mi ←
P

t bt
ix

tP
t bt

i

end for
until the error E({mi}ki=1 | X ) does not change
return {mi}ki=1

k-means Clustering
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Figure 9.1 of

Bishop (2006)

k-means Clustering

• Example: cluster taxa into k = 6 clusters 1000 times with Lloyd’s algorithm.

• The error E({mi}ki=1 | X ) is different for different runs!

• You should try several random initializations, and choose the solution with smallest error.
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• For a cool initialization see Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful Seeding.

Error (1000 runs, k=6)
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Decision Trees
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ID3 algorithm for discrete attributes
ID3(X ) {Input: X = {(rt,xt)}Nt=1, data set with binary attributes rt ∈ {−1, +1} and a vector of discrete variables
xt. Output: T , classification tree.}
Create root node for T
If all items in X are positive (negative), return a single-node tree with label “+” (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do

Let Xv be subset of X that have value v for A
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if Xv is empty then
Below the root of T , add a leaf node with most common label in X

else
Below the root of T , add subtree ID3(Xv)

end if
end for
return T
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Cost Function for Logistic Regression
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•

P (R | X, W ) =
n∏

t=1

P (rt | xt,W )

•

L = − log P (R | X, W ) = −
N∑

t=1

(
rt log yt − (1− rt) log (1− yt)

)
,

where yt = P (rt = 1 | x) = sigmoid(wtx + w0).

• Task: find W = (w, w0) such that L is minimized.

• No EM etc. algorithm. Use gradient ascent.

Gradient Ascent

• Logistic regression may converge to w → ±∞ (see right), especially when data is high dimen-
sional and sparse. This causes problems.

• Solution: minimize regularized cost L → L+ 1
2λ
(
w2

0 + wTw
)
.
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Figure 10.7: For a univariate two-class problem

(shown with ‘◦’ and ‘×’ ), the evolution of the line

wx + w0 and the sigmoid output after 10, 100, and

1,000 iterations over the sample. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.

83

The End
(Some overflow slides follow.)
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28 Overflow

28.1 Optimization Algorithms

Algorithms in Machine Learning

• Many (most?) machine learning algorithms problems can be stated as optimization problem:
“Find parameters θ such that the cost L(θ) is minimized.”

• Earlier in the course:

– Some optimization problems can be solved in polynomial time (e.g., PCA)

– In some optimization problems (typically they are NP-hard) one must use approximation
algorithms, such as greedy search. (e.g., Lloyd’s algorithm in kmeans clustering).

• Issues to take into account:

– What is the time and memory complexity?

– How is data accessed (for large data sets, serial access is fastest)

– Does the algorithm find a reasonable solution (is there approximation ratio?)

– Could there be a better greedy optimization step?

– Is your algorithm numerically robust? (That is, does it work consistently and give
accurate results for every possible input.)

• Making numerically robust algorithms is difficult

• The first rule in numerical computation: always use robust numerical libraries when possible

• Of methods with essentially similar performance, choose the simplest/easiest to understand.

28.2 Computing Sums and Products

IEEE Floating Point Arithmetics

• The floating point numbers are stored in three parts in binary:

– fraction (f = 52 bits in double precision)

– exponent (e = 11 bits in double precision)

– sign (1 bit)

• This includes the following types of numbers:

– normalized numbers (normal non-zero numbers)

– zero (±0)

– infinities (±∞)

– NaN

– denormalized numbers (± something very small or very large)
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The three fields in an IEEE 754 float.

Image by Charles Esson, GFDL.

Numerical Computation: Computing Sums and Products

• Sometimes it is enough to use + and * operators to compute sums and products. According
to R: 3.14*42=131.88; 3.14+42+5=50.14.

• Sometimes it is not. According to R: 3.14e-200*42e-201*1e300=0; 1e-400*1e400=NaN; 1e-
16+1-1=0.

• In probabilistic modeling it is typical to. . .

– Have numbers of different orders of magnitudes, including very small numbers.

– Do sums and products with them.

• Important numbers (examples from the R floating point implementation in Mac OS X,
help(.Machine)):

– Smallest positive floating point number ε (machine epsilon) for which 1 + ε 6= 1: 2.2 ×
10−16.

– The largest finite floating point number: 1.7× 10308.

– The smallest positive floating point number: 2.2× 10−308.

Numerical Computation: Representing Numbers

• In many practical applications, 2.2× 10−308 is too large for representing intermediate proba-
bilities.

• Solution: store numbers as logs.

• Probabilities are usually always positive. (Generally, software should however be written so
that to work consistently also with zero probabilities.)

• R is consistent also for zero probabilities: log(0)=-Inf; exp(-Inf)=0.

• Other software may behave differently. Read the documentation and test.

Numerical Computation: Computing Products

• Task: compute the product y =
∏n

i=1 xi.

• 1e-200*1e-200*1e300=0 (wrong!).

• Solution: use logs.
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• log y =
∑n

i=1 log xi.

• log(1e-200)+log(1e-200)+log(1e300)=log(1e-100) (correct).

• Division: log(x/y) = log x− log y. Product with negatives.

Numerical Computation: Computing Sums

• Task: compute sum y =
∑n

i=1 xi.

• exp(-1000)+exp(-999)=0 (wrong!).

• Solution: scale numbers appropriately before doing the sum.

• log y = log xMAX + log (
∑n

i=1 exp (log xi − log xMAX)), where log xMAX = maxi log xi.

• -999+log(exp(-1)+exp(0))=-998.6 (correct).

• Something like this: safesum <- function(x) { xmax <- max(x) ; xmax+log(sum(exp(x-xmax)))) }

Numerical Computation: Example

P (Ci | x) =
P (x | Ci)P (Ci)∑K

k=1 P (x | Ck)P (Ck)
=

likelihood× prior
evidence

Store numbers as logs and denote: a[i] = log P (x | Ci), b[i] = log P (Ci).

safesum <- function(x) { xmax <- max(x); xmax+log(sum(exp(x-xmax)))) }

evidence <- safesum(a+b)

posterior <- sum(c(a[i],b[i],-evidence))

exp(posterior) #P (Ci | x)

28.3 Validation and Cross-Validation

Evaluating Classification Algorithms

• Questions:

– What is the performance of a classification algorithm on unseen data?

– Which of the two (or more) classification algorithms is better?

• Our results are conditioned on the data set. (In fact, for all algorithms there exists data sets
for which it would perform excellently or poorly, No Free Lunch Theorem, Wolpert 1995.)

• Limited amount of training/validation data makes it difficult

– Choose the model complexity.

– Evaluate the results.
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K-Fold Cross-Validation

• How to use the training/validation data most efficiently?

CV(X ,A,K){Input: X , data X = {(rt, xt)}Nt=1; A, classification algorithm; K, number of folds.
Output: E , error measure.}
Partition X in random into K roughly equally sized parts Xi.
for all i ∈ {1, . . . ,K} do

Train A using X \ Xi as a training set.
Let Ei be the error of A in Xi (for example, the fraction of incorrectly labeled items).

end for
E ←

∑K
i=1 |Xi| Ei/ |X |

return E{E can be used as a validation set error in model selection.}
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