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To pass the course you must pass the examination and the
term project.

Grading:

Examination grade E ∈ [0, 1] (0 smallest passed grade)
Term project grade T ∈ [0, 1] (0 smallest passed grade)
Problem session grade P ∈ [0, 1]
Course grade min(5,floor(4E + 2T + P))
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Examination

Currently scheduled at 19 Dec & 2 Feb & 15 May (check the
times and locations from the examination schedule!)

You must sign in to the examination at least one week in
advance using WWWTopi

Calculator (with memory erased) is allowed

No other extra material is allowed.

4–6 problems (to pass you have to get about half of the
points)

Kai Puolamäki T-61.3050
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Reading List

The examination is based on the topics covered in the lectures

See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/
examination
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Course Feedback

Please give course feedback at http://www.cs.hut.fi/
Opinnot/Palaute/kurssipalaute-en.html

(Open until 7 January 2008)
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Objectives

After this course, the student should. . .
1 be able to apply the basic methods to real world data;
2 understand the basic principles of the methods; and
3 have necessary prerequisites to understand and apply new

concepts and methods that build on the topics covered in the
course.

The topic is difficult (and interdisciplinary, involving at least
computer science, mathematics, computational modeling and
statistics)

Kai Puolamäki T-61.3050



AB

Announcements
Summary of the Course

Overflow
Summary of the Course

Learning Tasks

Supervised learning

classification
regression

Unsupervised learning

clustering etc.

Reinforcement learning [not in this course]

Kai Puolamäki T-61.3050
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Concept Learning

Task: classify a previously unseen instance into positive or
negative

Hypothesis class H
Learning: use positive and negative examples to prune out the
hypothesis

If none of the hypothesis in the hypothesis class is correct we
might end up with no consistent hypothesis.

Inductive bias: we must restrict the allowed hypothesis to be
able to generalize (predict classes of new instances).

The choice of a hypothesis space is called model selection.

Underfitting: the hypothesis space is too simple.

Overfitting: the hypothesis space is too complex.

VC dimension can be used to measure the complexity of the
hypothesis space.

Kai Puolamäki T-61.3050
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Concept Learning
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Figure 2.2: Example of a hypothesis class. The class

of family car is a rectangle in the price-engine power

space. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.

7

Figure 2.2 of Alpaydin (2004).
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Regression with Noise

Classification is the prediction of a 0–1 class, given attributes.

Regression is the prediction of a real number, given

Usually, we want to minimize a quadratic error function,

E (g | X ) =
1

N

N∑
t=1

(
r t − g(xt)

)2
.

Kai Puolamäki T-61.3050
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Dimensions of a Supervised Learner

Model

g(x | θ)

Loss Function

E (θ | X ) =
1

N

N∑
t=1

L
(
r t , g(xt | θ)

)
.

Optimization Procedure

θ ← arg min
θ

E (θ | X ).

Kai Puolamäki T-61.3050
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Polynomial Regressors
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Polynomial Regressors
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Polynomial Regressors
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Polynomial Regressors
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Polynomial Regressors
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Polynomial Regressors
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Polynomial Regressors
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Model Selection and Generalization
Schematic illustration of the empirical vs. generalization error

model complexity

er
ro

r

test set
training set

training set size
er

ro
r

test set
training set

empirical error = error on training set
generalization error = error on test set
We see empirical error, but want to minimize the error on new
data.
Training vs. validation vs. test sets

Kai Puolamäki T-61.3050
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K-Fold Cross-Validation

How to use the training/validation data most efficiently?

CV(X ,A,K ){Input: X , data X = {(r t , x t)}Nt=1; A, classification
algorithm; K , number of folds. Output: E , error measure.}
Partition X in random into K roughly equally sized parts Xi .
for all i ∈ {1, . . . ,K} do

Train A using X \ Xi as a training set.
Let Ei be the error of A in Xi (for example, the fraction of
incorrectly labeled items).

end for
E ←

∑K
i=1 |Xi | Ei/ |X |

return E{E can be used as a validation set error in model
selection.}

Kai Puolamäki T-61.3050
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Rules of Probability

In presence of noise, we have to use probabilities.

In principle, you can derive everything in probabilistic inference
from the basic axiom, including the sum and product rules.

Kai Puolamäki T-61.3050
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Rules of Probability

P(E ,F ) = P(F ,E ): probability of both E and F happening.

P(E ) =
∑

F P(E ,F ) (sum rule, marginalization)

P(E ,F ) = P(F | E )P(E ) (product rule, conditional
probability)

Consequence: P(F | E ) = P(E | F )P(F )/P(E ) (Bayes’
formula)

We say E and F are independent if P(E ,F ) = P(E )P(F ) (for
all E and F ).

We say E and F are conditionally independent given G if
P(E ,F | G ) = P(E | G )P(F | G ), or equivalently
P(E | F ,G ) = P(E | G ).

Kai Puolamäki T-61.3050
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Bayes’ Rule
Classification to K classes

P(Ci | x) =
P(x | Ci )P(Ci )

P(x)
=

P(x | Ci )P(Ci )∑K
k=1 P(x | Ck)P(Ck)

P(Ck) ≥ 0 and
∑K

k=1 P(Ck) = 1.

Naive Bayes Classifier: choose Ck where
k = arg maxk P(Ck | x).

Kai Puolamäki T-61.3050
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Classifier Using Probabilistic Model

First compute posterior class probability P(C | x).
Choose class C with the largest posterior probability.

Another option: Choose class which minimizes risk (or
maximizes utility), if the loss of misclassification is not a
constant.

A class for uncertainty: reject-option

Kai Puolamäki T-61.3050
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Bayesian Networks

Bayesian network is a directed acyclic graph (DAG) that describes
a joint distribution over the vertices X1,. . . ,Xd such that

P(X1, . . . ,Xd) =
d∏

i=1

P(Xi | parents(Xi )),

where parents(Xi ) are the set of vertices from which there is an
edge to Xi .

C

A B

P(A,B,C ) = P(A | C )P(B | C )P(C ).
(A and B are conditionally independent given C .)

Kai Puolamäki T-61.3050
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Estimating the Sex Ratio

What is our degree of belief
in the gender ratio, before
seeing any data (prior
probability density p(θ))?

What is our degree of belief
in the gender ratio, after
seeing data X (posterior
probability density
p(θ | X ))?

p(θ | X ) ∝ p(θ)p(X | θ).

0.0 0.2 0.4 0.6 0.8 1.0

N=0

θθ

flat prior (P=0.55)
empirical prior (P=0.78)
boundary prior (P=0.51)

“True” θ = 0.55 is shown by the red
dotted line. The densities have been
scaled to have a maximum of one.

Kai Puolamäki T-61.3050
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Estimating the Sex Ratio

What is our degree of belief
in the gender ratio, before
seeing any data (prior
probability density p(θ))?

What is our degree of belief
in the gender ratio, after
seeing data X (posterior
probability density
p(θ | X ))?

p(θ | X ) ∝ p(θ)p(X | θ).

0.0 0.2 0.4 0.6 0.8 1.0

N=8

θθ

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)

“True” θ = 0.55 is shown by the red
dotted line. The densities have been
scaled to have a maximum of one.
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=0

θθ

flat prior (P=0.55)
empirical prior (P=0.78)
boundary prior (P=0.51)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=1

θθ

flat prior (P=0.30)
empirical prior (P=0.75)
boundary prior (P=0.07)

Kai Puolamäki T-61.3050



AB

Announcements
Summary of the Course

Overflow
Summary of the Course

Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=2

θθ

flat prior (P=0.57)
empirical prior (P=0.78)
boundary prior (P=0.55)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=3

θθ

flat prior (P=0.76)
empirical prior (P=0.81)
boundary prior (P=0.79)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=4

θθ

flat prior (P=0.59)
empirical prior (P=0.78)
boundary prior (P=0.58)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=8

θθ

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=16

θθ

flat prior (P=0.47)
empirical prior (P=0.75)
boundary prior (P=0.45)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=32

θθ

flat prior (P=0.72)
empirical prior (P=0.83)
boundary prior (P=0.71)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=64

θθ

flat prior (P=0.86)
empirical prior (P=0.89)
boundary prior (P=0.85)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=128

θθ

flat prior (P=0.91)
empirical prior (P=0.93)
boundary prior (P=0.90)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=256

θθ

flat prior (P=0.80)
empirical prior (P=0.87)
boundary prior (P=0.80)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=512

θθ

flat prior (P=0.59)
empirical prior (P=0.70)
boundary prior (P=0.59)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=1024

θθ

flat prior (P=0.36)
empirical prior (P=0.45)
boundary prior (P=0.36)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=2048

θθ

flat prior (P=0.42)
empirical prior (P=0.49)
boundary prior (P=0.42)
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Estimating the Sex Ratio
Posterior probability density

0.0 0.2 0.4 0.6 0.8 1.0

N=4096

θθ

flat prior (P=0.12)
empirical prior (P=0.14)
boundary prior (P=0.11)
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Predictions from the Posterior Probability Density

Task: predict probability of xN+1, given
N observations in X .

Marginalizations:

p(X , θ) =
∫

dxN+1p(xN+1,X , θ) =
p(X | θ)p(θ).
p(X ) =

∫
dθp(X , θ) =∫

dθp(X | θ)p(θ).
p(xN+1,X ) =

∫
dθp(xN+1,X , θ) =∫

dθp(xN+1 | θ)p(X | θ)p(θ).

Posterior: p(θ | X ) = p(X , θ)/p(X ).

Predictor for new data point:
p(xN+1 | X ) = p(xN+1,X )/p(X ) =∫

dθp(xN+1 | θ)p(X , θ)/p(X ) =∫
dθp(xN+1 | θ)p(θ | X ).

N
XX

θ

N+1

Joint distribution
(X = {x t}Nt=1):
p(xN+1,X , θ) =
p(xN+1 | θ)p(X |
θ)p(θ).
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Point Estimators

The posterior p(θ | X ) represents our best knowledge.

Predictor for new data point:
p(xN+1 | X ) =

∫
dθp(xN+1 | θ)p(θ | X ).

The calculation of the integral may be infeasible.

Estimate θ by θ̂ (or posterior by p(θ | X ) ≈ δ(θ − θ̂)) and use
the predictor

p(xN+1 | X ) ≈ p(xN+1 | θ̂).
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Estimators from the Posterior

Definition (Maximum Likelihood
Estimate)

θ̂ML = arg max
θ

log p(X | θ).

Definition (Maximum a Posteriori
Estimate)

θ̂MAP = arg max
θ

log p(θ | X ). 0.0 0.2 0.4 0.6 0.8 1.0

Maximum a Posteriori Estimate (N=8)

θθ

● ●●

flat prior (P=0.83)
empirical prior (P=0.84)
boundary prior (P=0.85)
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Polynomial Regression
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Naive Bayes Classifier
Common diagonal covariance matrix

Idea: the means are class-specific, covariance matrix Σ is
common and diagonal (Naive Bayes).

d parameters in the covariance matrix.

Discriminant is linear: gi (x) = wT
i x + wi0, where wi = Σ−1µi

and wi0 = −1
2µT

i Σ−1µi + log P(Ci ).

       
 

 

 

 

 

 

 

Figure 5.5: All classes have equal, diagonal

covariance matrices but variances are not equal.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Cross-validation: most robust if there is enough data.

Structural risk minimization (SRM): used, for example, in
support vector machines (SVM).

Bayesian model selection: use prior and Bayes’ formula.

Minimum description length (MDL): can be viewed as MAP
estimate.

Regularization: add penalty term for complex models (can be
obtained, for example, from prior).

Latter four methods do not strictly require validation set (at
least if implicit modeling assumptions are satisfied, such as
that in Bayesian model selection the data is from the model
family; it is always a good idea to use a test set) and latter
three are related.

There is no single best way for small amounts of data (your
prior assumptions matter).
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Subset Selection
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Principal Component Analysis (PCA)

Observation: covariance matrix of
{zt}Nt=1 is a diagonal matrix D
whose diagonal elements are the
variances.

Sz =
X

t

zzT /N =
X

t

CTyyTC/N

= CT

 X
t

yyT /N

!
C = CTSC = D,

where the diagonal elements of D
are the variances Dii = σ2

zi .

Eigenvalues λi ⇔ variances σ2
i .

z�
1�

z�
2�

x�
1�

x
� 2
�

z�
1�

z� 2
�

Figure 6.1: Principal components analysis centers

the sample and then rotates the axes to line up with

the directions of highest variance. If the variance on

z2 is too small, it can be ignored and we have

dimensionality reduction from two to one. From:

E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Example: Fossils

Large European land mammals: 124 fossil find sites (dated
23–2 million years old), 139 taxa

Reconstruction of site vectors given PCA taxon representation
for different k: ŷ = W ẑ = WW Ty, or
x̂ = WW T (x−m) + m.
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Example: Fossils

Large European land mammals: 124 fossil find sites (dated
23–2 million years old), 139 taxa

Reconstruction of site vectors given PCA taxon representation
for different k: ŷ = W ẑ = WW Ty, or
x̂ = WW T (x−m) + m.
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Kai Puolamäki T-61.3050



AB

Announcements
Summary of the Course

Overflow
Summary of the Course

Linear Discriminant Analysis (LDA)

PCA is unsupervised method (class information is not usually
used).

Linear Discriminant Analysis (LDA) is supervised method for
dimensionality reduction in classification problems.

As PCA, LDA can be accomplished with standard matrix
algebra (eigenvalue decompositions etc.). This makes it
relatively simple and useful.

PCA is a good general purpose dimensionality reduction
method, LDA is a good alternative if we want to optimize the
separability of classes in a specific classification task, and are
happy with dimensionality of less than the number of classes
(k < K ).
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Linear Discriminant Analysis (LDA)
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k-means Clustering
Lloyd’s algorithm

LLOYDS(X ,k) {Input: X , data set; k, number of clusters. Output: {mi}ki=1,
cluster prototypes.}
Initialize mi , i = 1, . . . , k, appropriately for example, in random.
repeat

for all t ∈ {1, . . . , N} do {E step}

bt
i ←


1 , i = arg mini

˛̨˛̨
xt −mi

˛̨˛̨
0 , otherwise

end for
for all i ∈ {1, . . . , k} do {M step}

mi ←
P

t bt
i x

tP
t bt

i

end for
until the error E({mi}ki=1 | X ) does not change
return {mi}ki=1
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k-means Clustering
Lloyd’s algorithm
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Figure 9.1 of Bishop (2006)
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k-means Clustering
Lloyd’s algorithm

Example: cluster taxa into k = 6 clusters 1000 times with
Lloyd’s algorithm.

The error E({mi}ki=1 | X ) is different for different runs!

You should try several random initializations, and choose the
solution with smallest error.
For a cool initialization see Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful
Seeding.

Error (1000 runs, k=6)
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Decision Trees
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ID3 algorithm for discrete attributes

ID3(X ) {Input: X = {(r t , xt)}Nt=1, data set with binary attributes
r t ∈ {−1, +1} and a vector of discrete variables xt . Output: T , classification
tree.}
Create root node for T
If all items in X are positive (negative), return a single-node tree with label
“+” (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do

Let Xv be subset of X that have value v for A
if Xv is empty then

Below the root of T , add a leaf node with most common label in X
else

Below the root of T , add subtree ID3(Xv )
end if

end for
return T
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Cost Function for Logistic Regression

P(R | X ,W ) =
n∏

t=1

P(r t | xt ,W )

L = − log P(R | X ,W ) = −
N∑

t=1

(
r t log y t − (1− r t) log (1− y t)

)
,

where y t = P(r t = 1 | x) = sigmoid(wtx + w0).

Task: find W = (w,w0) such that L is minimized.

No EM etc. algorithm. Use gradient ascent.
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Gradient Ascent

Logistic regression may
converge to w → ±∞ (see
right), especially when data
is high dimensional and
sparse. This causes
problems.

Solution: minimize
regularized cost
L → L+ 1

2λ
(
w2

0 + wTw
)
.
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Figure 10.7: For a univariate two-class problem

(shown with ‘◦’ and ‘×’ ), the evolution of the line

wx + w0 and the sigmoid output after 10, 100, and

1,000 iterations over the sample. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.
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The End
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(Some overflow slides follow.)
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Algorithms in Machine Learning

Many (most?) machine learning algorithms problems can be
stated as optimization problem: “Find parameters θ such that
the cost L(θ) is minimized.”

Earlier in the course:

Some optimization problems can be solved in polynomial time
(e.g., PCA)
In some optimization problems (typically they are NP-hard)
one must use approximation algorithms, such as greedy search.
(e.g., Lloyd’s algorithm in kmeans clustering).
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Algorithms in Machine Learning

Issues to take into account:

What is the time and memory complexity?
How is data accessed (for large data sets, serial access is
fastest)
Does the algorithm find a reasonable solution (is there
approximation ratio?)
Could there be a better greedy optimization step?
Is your algorithm numerically robust? (That is, does it work
consistently and give accurate results for every possible input.)
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Algorithms in Machine Learning

Making numerically robust algorithms is difficult

The first rule in numerical computation: always use robust
numerical libraries when possible

Of methods with essentially similar performance, choose the
simplest/easiest to understand.
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IEEE Floating Point Arithmetics

The floating point numbers are stored in three parts in binary:

fraction (f = 52 bits in double precision)
exponent (e = 11 bits in double precision)
sign (1 bit)

This includes the following types of numbers:
normalized numbers (normal non-zero numbers)
zero (±0)
infinities (±∞)
NaN
denormalized numbers (± something very small or very large)

The three fields in an IEEE 754 float. Image by Charles Esson, GFDL.
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Numerical Computation: Computing Sums and Products

Sometimes it is enough to use + and * operators to compute
sums and products. According to R:
3.14*42=131.88; 3.14+42+5=50.14.

Sometimes it is not. According to R:
3.14e-200*42e-201*1e300=0; 1e-400*1e400=NaN;
1e-16+1-1=0.
In probabilistic modeling it is typical to. . .

Have numbers of different orders of magnitudes, including very
small numbers.
Do sums and products with them.

Important numbers (examples from the R floating point
implementation in Mac OS X, help(.Machine)):

Smallest positive floating point number ε (machine epsilon) for
which 1 + ε 6= 1: 2.2× 10−16.
The largest finite floating point number: 1.7× 10308.
The smallest positive floating point number: 2.2× 10−308.
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Numerical Computation: Representing Numbers

In many practical applications, 2.2× 10−308 is too large for
representing intermediate probabilities.

Solution: store numbers as logs.

Probabilities are usually always positive. (Generally, software
should however be written so that to work consistently also
with zero probabilities.)

R is consistent also for zero probabilities:
log(0)=-Inf; exp(-Inf)=0.

Other software may behave differently. Read the
documentation and test.
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Numerical Computation: Computing Products

Task: compute the product y =
∏n

i=1 xi .

1e-200*1e-200*1e300=0 (wrong!).

Solution: use logs.

log y =
∑n

i=1 log xi .

log(1e-200)+log(1e-200)+log(1e300)=log(1e-100) (correct).

Division: log(x/y) = log x − log y . Product with negatives.
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Numerical Computation: Computing Sums

Task: compute sum y =
∑n

i=1 xi .

exp(-1000)+exp(-999)=0 (wrong!).

Solution: scale numbers appropriately before doing the sum.

log y = log xMAX + log (
∑n

i=1 exp (log xi − log xMAX )), where
log xMAX = maxi log xi .

-999+log(exp(-1)+exp(0))=-998.6 (correct).

Something like this:
safesum <- function(x) { xmax <- max(x) ;
xmax+log(sum(exp(x-xmax)))) }
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Numerical Computation: Example
Naive Bayes’ classifier

P(Ci | x) =
P(x | Ci )P(Ci )∑K

k=1 P(x | Ck)P(Ck)
=

likelihood× prior
evidence

Store numbers as logs and denote: a[i ] = log P(x | Ci ),
b[i ] = log P(Ci ).

safesum <- function(x) { xmax <- max(x); xmax+log(sum(exp(x-xmax)))) }

evidence <- safesum(a+b)

posterior <- sum(c(a[i],b[i],-evidence))

exp(posterior) #P(Ci | x)
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Evaluating Classification Algorithms

Questions:

What is the performance of a classification algorithm on
unseen data?
Which of the two (or more) classification algorithms is better?

Our results are conditioned on the data set. (In fact, for all
algorithms there exists data sets for which it would perform
excellently or poorly, No Free Lunch Theorem, Wolpert 1995.)

Limited amount of training/validation data makes it difficult

Choose the model complexity.
Evaluate the results.
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K-Fold Cross-Validation

How to use the training/validation data most efficiently?

CV(X ,A,K ){Input: X , data X = {(r t , x t)}Nt=1; A, classification
algorithm; K , number of folds. Output: E , error measure.}
Partition X in random into K roughly equally sized parts Xi .
for all i ∈ {1, . . . ,K} do

Train A using X \ Xi as a training set.
Let Ei be the error of A in Xi (for example, the fraction of
incorrectly labeled items).

end for
E ←

∑K
i=1 |Xi | Ei/ |X |

return E{E can be used as a validation set error in model
selection.}
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