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Machine Learning Guest Lectures on 27 November

10-11 Juha Vesanto (Xtract): Data Mining in Practice
How to make succesfull analytics/data mining in an industry/corporate

environment. Principles and a case study.

11-12 Hannu Helminen (Google): Machine Learning Methods in
Web Search

Google is using machine learning methods in the presence of erroneous user
queries and documents of low quality. Differences between a traditional
information retrieval corpora and the web, and implications of these differences
for improving queries and modeling the web are discussed. Inferring meaning
from context and using this additional context for query expansion improves

the quality of search results.

See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/guestlecture ¢
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Let’s talk.

Google is coming to campus to talk
about Engineering opportunities.
Join us to find out how we work, play
and change the world.

Helsinki University of Technology
Lecture Hall: T1
TKK Computer Science Building
Konemiehentie 2, Espoo
27th November 2007
4.15pm

ioww.google.comjobs/student
rtunities and learn more abx

See http://www.cis.hut.fi/googletalk07/
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Decision Trees

@ Each internal node tests an attribute.
@ Each branch corresponds to set of attribute values.

e Each leaf node assigns a classification (classification tree) or a
real number (regression tree).

@ The tree is usually learned using a greedy algorithm built
around /D3, such as C4.5. (The problem of finding optimal
tree is generally NP-hard.)

@ Advantages of trees:

e Learning and classification is fast.
e Trees are accurate in many domains.
o Trees are easy to interpret as sets of decision rules.
@ Often, trees should be used as a benchmark before more

complicated algorithms are attempted.
@ For alternative discussion, see Mitchell (1997), Ch 3.
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ID3 algorithm for discrete attributes

ID3(X) {Input: & = {(r’,x")},, data set with binary attributes
r* € {—1,+1} and a vector of discrete variables x’. Output: T, classification
tree.}
Create root node for T
If all items in X are positive (negative), return a single-node tree with label
()
Let A be attribute that “best” classifies the examples
for all values v of A do
Let X, be subset of X’ that have value v for A
if X, is empty then
Below the root of T, add a leaf node with most common label in X
else
Below the root of T, add subtree ID3(X,)
end if
end for
return T
X
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Regression Trees

Variations of ID3

@ Impurity measures:

o Entropy: —p4 log, p1 — p— log, p—.

e Gini index: 2pyp_.

o Misclassification error: 1 — max (py, p—).

o All vanish for p; € {0,1} and have a maximum at

p+ =p-=1/2.
@ Continuous or ordered variables: sort xj‘ for some attribute A
and find the best split x4 < w vs. x4 > w.

X
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Decision Trees

Classification Trees
Regression Trees

Rule Extraction from Trees

x,: Age
C4.5Rules Q@ x, : Years in job
(Quinlan, 1993) L x, : Gender
Yes No x,: Job type
o
‘A 'B" '
o] [o] L]

F (age>38.5) AND (years-in-job>2.5) THEN y =0.8

F (age>38.5) AND (years-in-job=2.5) THEN y =0.6
R3: IF (age<38.5) AND (job-type='A") THEN y =0.4

F (age=38.5) AND (job-type="B’) THEN y =0.3

F (age=38.5) AND (job-type=‘C") THEN y =0.2

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1) &
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Observations of ID3

@ Inductive bias:

o Preference on short trees.
o Preference on trees with high information gain near root.

@ Vanilla ID3 classifies the training data perfectly.

@ Hence, in presence of noise, vanilla ID3 overfits.

X
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Pruning

@ How to avoid overfitting?

e Prepruning: stop growing when data split is not statistically
significant. For example: stop tree construction when node is
smaller than a given limit, or impurity of a node is below a
given limit ;. (faster)

e Postpruning: grow the whole tree, then prune subtrees which
overfit on the pruning (validation) set. (more accurate)

X
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Pruning

Postpruning

o

Split data into training and pruning (validation) sets.

Do until further pruning is harmful:

@ Evaluate impact on pruning set of pruning each possible node
(plus those below it).

@ Greedily remove the one that most improves the pruning set
accuracy.

Produces smallest version of most accurate subtree.

Alternative: rule postpruning (commonly used, for example,

C4.5).

X
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Examples: Predicting woody cover in African savannas

e Task: woody cover (% of surface covered by trees) as a
function of precipitation (MAP), soil characteristics (texture,
total nitrogen total and phosphorus, and nitrogen
mineralization), fire and herbivory regimes.

@ Result: MAP is the most important factor.

o 00
e
J L
7 X
/
o)

WWNW i

From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846-849.
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Decision Trees = q
Classification Trees

Regression Trees

Regression Trees

@ Error at node m:

1 x reaches node m
0 otherwise

bm(x) = {

_ t 2 t p» bm(xF)rt
Em = ng(r _gm) bm(x") , &gm = m

@ After splitting:

1 x reaches node m and branch j
0 otherwise

bmj(x) = {

1 2 > bmi(xH)rt
<c:m: v rt_gm' bm' Xt y 8mj = t d .
Nm ZJ: Zt: ( J) J( ) Y Zt bmj(xt)
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Implementations

@ There are many implementations, with sophisticated pruning

methods.
= library(rpart)
= rpart{Hipparion ~ .,DD[,taxal)
n= 124

node), split, n, loss, yval, (yprob)
* denotes terminal node

13 root 124 32 8 (@.74193548 0.25806452)
23 Amphimachairodus=8 108 19 @ (0.82407407 8.17592593)
43} Choerolophodon=8 96 13 8 (9.86458333 0.13541667)
8) Ursus=0 76 6 @ (@.52105263 0.07894737) *
93 Ursus=1 28 7 @ (0.65000000 @.35000000)
18) Cervus=1 13 2 @ (0.84615385 0.15384615) *
19} Cervus=8 7 2 1 (0.28571429 @.71428571) *
5) Choerolophodon=1 12 & @ (@.50000000 0.50000000) *
3} Amphimachairodus=1 16 3 1 (@.18750000 @.81250000) *
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Linear Discrimination

@ Source material:
o Alpaydin (2004) Ch 10, or

o A new chapter by Mitchell (September 2005), “Generative and
Discriminative Classifiers: Naive Bayes and Logistic
Regression"”, available as PDF at

http://www.cs.cmu.edu/~tom/NewChapters.html

X
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Naive Bayes Classifier (Again)
Linear Discrimination L on
on vs. Naive Bayes

Naive Bayes Classifier

Common diagonal covariance matrix

@ ldea: the means are class-specific, covariance matrix X is
common and diagonal (Naive Bayes).

@ d parameters in the covariance matrix.
o Discriminant is linear: gi(x) = w/x + wjp, where w; = £~y
and w;g = —%uiTZ‘lu,- + log P(C,)

)

Figure 5.5: All classes have equal, diagonal v
covariance matrices but variances are not equal
From: E. Alpaydin. 2004. Introduction to Machine d N

Learning. ©The MIT Press.
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Using Naive Bayes Classifier

accuracy of linear discriminator

7 Naive Bayes

1.0

0.6

accuracy

0.2

0.0

-2 0 2 4 6

Accuracy of discriminator “class 1 if x < w, class 2 if x > w". é
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Linear Discrimination

Naive Bayes Classifier

X = {(rt,x)}N,, rt € {0,1}, xt € R
Naive Bayes assumption: P(x! | rt) =[], P(x! | rt).
Using Bayes rule,

PO POl
Zse{o,l} P(s) H;I:l P(xi | s)

P(r|x)=

@ Discriminant is linear:
gi(x) = log P(r; = 1| x) + const. = w/ x + wjg, where
wW; = Z_lu,' and w;g = —%IU,ITZ_IIU,; + log P(C,)

Observation:

P(r=1]|x)
€1 P(r=1|x)

lo :wa—i-wo.

X
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Logistic Regression

e Logit: logit(p) = log (ﬁ).
@ Sigmoid: sigmoid(t) = logit~1(t) = 1/(1 4 e~ %).

@ Derivative of sigmoid:
sigmoid’(t) = sigmoid(t) (1 — sigmoid(t)).

X
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Naive Bayes Classifier (Again)
Linear Discrimination Logistic Regression
Logistic Regression vs. Naive Bayes

Sigmoid (Logistic) Function

1. Calculate g(x) = w”x + w, and choose C, if g(x) > 0, or

2.Calculate y = sigmoid(wa + wo)and choose C, if y > 0.5

12
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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/es Classifier (Again)
Linear Discrimination
Logisti ession vs. Naive Bayes

Cost Function for Logistic Regression

PRI X,W)=T]P(r |x",W

[ — e—PRIX.W) _

Mz

r flogy' — (1 —r )Iog(l—yt)),

t=1

where y' = P(rt = 1| x) = sigmoid(w'x + wp).
e Task: find W = (w, wp) such that £ is minimized.
o No EM algorithm. Use gradient ascent.

X
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Gradient Ascent

GRADASC(L(6), 6°) {Input: £(8), cost function; #°, initial
parameters. Output: 6, a local minimum of L.}
6 —6° {0,600 c R}
t—1
repeat
forallie{1,...,d} do
A0 — 0L(0)/00;
end for
forallie{1,...,d} do
0; «— 0; — n:AY;
end for
t—t+1
until convergence
return 60 ¢
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Linear Discrimination

Gradient Ascent

20

@ The function GRADASC
always converges if
Y toqme =00 and
S22 n? < oo, where ;> 0
for all t, for example,
ne =1/t
@ The function GRADASC RN
often converges also for :
constant small enough
ne=mn>0. Minimizing
L(6) = (61 + 62)> + (62 — 1),
using #° = (0,0) 7. ¢

15

6,
1.0

0
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Gradient Ascent

Convergence of GRADASC

20

15

@ GRADASC is inefficient.

@ Usually one should use a
more sophisticated gradient
ascent algorithm, such as
conjugate gradient, from
some numerical library (e.g.,
in R type help(optim)). .

6,
1.0

0.5
I

0.0

Minimizing
L(0) = (01 + 02)> + (02 — 1)?,
using #° = (0,0)7. K
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Linear Discrimination

Gradient Ascent

es Classifier (Again)
Logistic Regression
Logistic Regression vs. Naive Bayes

o Logistic regression may
converge to w — £o0 (see
right), especially when data
is high dimensional and
sparse. This causes
problems.

@ Solution: minimize

regularized cost
L— L+ %)\ (Wg +wTw).

Figure 10.7: For a univariate two-class problem
(shown with ‘o’ and ‘x’ ), the evolution of the line
wz + wp and the sigmoid output after 10, 100, and
1,000 iterations over the sample. From: E. Alpaydin.
2004. Introduction to Machine Learning. © The MIT

Press.

Kai Puolamaki T-61.3050



Naive Bayes Classifier (Again)
Linear Discrimination Logist sion
Logistic gression vs. Naive Bayes

Generalized Linear Models

@ Logistic regression is a special case of Generalized Linear
Models (GLM)

e logit is a link function.

@ Many respectable numerical packages contain GLM
implementation which includes logistic regression (e.g., in R
help(glm)). You should probably use these in real life
applications instead of programming one on your own.

X
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Naive Bayes Classifier

Using Naive Bayes Classifier

accuracy of linear discriminator

n Bayes
— logit
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Accuracy of discriminator “class 1 if x < w, class 2 if x > w". é
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Naive Bayes vs. Logistic Regression

o Naive Bayes classifier estimates parameters of P(r) and
P(x | r) (means, covariances, etc.). (generative classifier,
because we can generate the data points, given parameters)

@ Logistic regression directly estimates the parameters of
P(r | x). (discriminative classifier, because we can directly
discriminate wrt. r, given x; no generative model for p(x) is
needed)

e If Naive Bayes assumptions hold (data from multivariate
Gaussians with diagonal covariate matrix) and the number of
training examples is very large, Naive Bayes and logistic
regression give identical classification.

X
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Naive Bayes vs. Logistic Regression

@ The differences:
o If data is not Gaussian etc. (that is, NB assumptions do not
hold), logistic regression often gives better result (at least for

large amounts of data).
o Logistic regression needs more data. Naive Bayes needs
N = O(log d) samples, while logistic regression needs

N = O(d) Ng & Jordan (2002) On Discriminative vs. Generative Classifiers: A
Comparison of Logistic Regression and Naive Bayes. In Proc NIPS 14..

o Generative classifier: more bias, less variance. There is a
model for P(x). This is good if there is little data and/or the
model for x is correct enough.

@ Discriminative classifier: less bias, more variance. There is no
model for P(x), it is estimated directly from data. This is
good if the NB model for x is wrong and/or there is enough
data. <
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Floating Point Numbers
Computing Sums and Products

Numerical Computation: Computing Sums and Products

@ Sometimes it is enough to use + and * operators to compute
sums and products. According to R:
3.14*%42=131.88; 3.14+42+5=50.14.

@ Sometimes it is not. According to R:
3.14e-200*42e-201*1e300=0; 1e-400*1e400=NaN;
le-16+1-1=0.

@ In probabilistic modeling it is typical to. ..

e Have numbers of different orders of magnitudes, including very
small numbers.
e Do sums and products with them.

@ Important numbers (examples from the R floating point
implementation in Mac OS X, help(.Machine)):

o Smallest positive floating point number e (machine epsilon) for
which 1 +¢e#1: 2.2 x 10716,

o The largest finite floating point number: 1.7 x 1038,

o The smallest positive floating point number: 2.2 x 10739,

Kai Puolamaki T-61.3050
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Floating Point Numbers
Computing Sums and Products

Numerical Computation: Representing Numbers

@ In many practical applications, 2.2 x 1073% s too large for
representing intermediate probabilities.

@ Solution: store numbers as logs.

@ Probabilities are usually always positive. (Generally, software
should however be written so that to work consistently also
with zero probabilities.)

@ R is consistent also for zero probabilities:
log(0)=-Inf; exp(-Inf)=0.

@ Other software may behave differently. Read the
documentation and test.

X
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Floating Point Numbers
Computing Sums and Products

Numerical Computation: Computing Products

Task: compute the product y =[] x;.
1e-200*1e-200*1e300=0 (wrong!).

Solution: use logs.

logy = i, log x;.
log(1e-200)-+log(1e-200)+log(1e300)=log(1e-100) (correct).
Division: log(x/y) = log x — log y. Product with negatives.

X
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Floating Point Numbers
Computing Sums and Products

Numerical Computation: Computing Sums

Task: compute sum y = Y7, x;.
exp(-1000)+exp(-999)=0 (wrong!).
Solution: scale numbers appropriately before doing the sum.

log y = log xmax + log (D71 exp (log x; — log xpmax)), where
log xpax = max; log x;.

-999-+log(exp(-1)+exp(0))=-998.6 (correct).

@ Something like this:

safesum <- function(x) { xmax <- max(x) ;
xmax+log(sum(exp(x-xmax)))) }

X
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Floating Point Numbers
Computing Sums and Products

Numerical Computation: Example

Naive Bayes' classifier

P(X ’ CI)P(CI) likelihood x prior
P(Gi|x) = =x - -
D kg P(x | G)P(Cy) evidence

Store numbers as logs and denote: a[i] = log P(x | C;),
b[i] = log P(C;).

safesum <- function(x) { xmax <- max(x); xmax-+log(sum(exp(x-xmax)))) }
evidence <- safesum(a+b)
posterior <- sum(c(a[i],b[i],-evidence))

exp(posterior) #P(Ci | x)

X
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