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Clustering

k-means Clustering
Lloyd'’s algorithm

LLOYDS(X,k) {Input: X, data set; k, number of clusters. Output: {m;}5,,
cluster prototypes.}
Initialize m;, i = 1,..., k, appropriately for example, in random.
repeat
for all t € {1,..., N} do {E step}

¢ 1 i:argmin-||xt—m-||
bi <_{ 0 : otherwise I I

end for
forall i€ {1,...,k} do {M step}

_ Sbix
2 b
end for
until the error £({m;}%_; | X) does not change
return {m;} <
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means Clustering
Lloyd'’s algorithm

Figure 9.1 of Bishop (2006)



Clustering

k-means Clustering
Lloyd'’s algorithm

Observations:
o lteration cannot increase the error £({m;}%_; | X).
@ There are finite number, k", of possible clusterings.

o It follows that the algorithm always stops after a finite time.
(It can take no more than k" steps.)

@ Usually k-means is however relatively fast. “In practice the
number of iterations is generally much less than the number
of pOintS.” (Duda & Hart & Stork, 2000)

@ Worst-case running time with really bad data and really bad

initialization is however 22(VN) — luckily this usually does not
happen in real ||fe (David A, Vassilivitskii S (2006) How slow is the k-means method? In Proc
22nd SCG.)

X
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Clustering

k-means Clustering
Lloyd'’s algorithm

Observations:

@ The result can in the worst case be really bad.
e Example:
o Four data vectors (N = 4) from R in X: x! =(0,0,...,0)7,
x> =(1,0,...,0)7, x3=(0,1,...,1)" and
x4 =(1,1,...,1)T.
o Optimal clustering into two (k = 2) is given by the prototype
vectors my = (0.5,0,...,0)7 and my = (0.5,1,...,1)7, error
being £({m;}, | X) = 1.
o Lloyd's algorithm can however converge also to
m; = (0,0.5,...,0.5)7 and my = (1,0.5,...,0.5)7, error
being £({m;}%_, | &) = d — 1. (Check that iteration stops
here!)

X
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Clustering

k-means Clustering
Lloyd'’s algorithm

@ Example: cluster taxa into k = 6 clusters 1000 times with
Lloyd’s algorithm.

o The error £({m;}k_, | X) is different for different runs!

@ You should try several random initializations, and choose the

solution with smallest error.
@ For a cool initialization see Arthur D, Vassilivitskii S (2006) k-means+-: The Advantages of Careful

Seeding.
Error (1000 runs, k=6) Genozoic Large Land Mammals (k=6) Genozoic Large Land Mammls (cluster prototypes)
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Greedy algorithms
EM Algorithm

Clustering

Greedy algorithm

@ Task: solve arg ming £(0 | X).

0 0<EMO|X) <0

@ Assume that the cost/error £(6 | X) can be evaluated in
polynomial time O(N¥), given an instance of parameters 6
and a data set X, where N is the size of the data set and k is
some constant.

e Often, no polynomial time algorithm to minimize the cost is
known.

@ Assume that for each instance parameter values 6 there exists
a candidate set C(6) such that 6 € C(0).

o Assume arg ming.cc(g) £(6' | X) can be solved in polynomial
time.

X
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Greedy algorithms
EM Algorithm

Clustering

Greedy algorithm

GREEDY(&,C,e,X) {Input: &, cost function; C, candidate set;
€ > 0, convergence cutoff; X', data set. Output: Instance of
parameter values 6.}

Initialize 6 appropriately, for example, in random.

repeat

0 — arg elrenciree)g(ﬁl | X)

until the change in £(0 | X) is no more than
return ¢

X

Kai Puolamaki T-61.3050



s Clustering
algorithms
EM Algorithm
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Greedy algorithm

@ Examples of greedy algorithms:

e Forward and backward selection.

e Lloyd's algorithm.

e Optimizing a cost function using gradient descent and line
search.

X
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Greedy algorithms
EM Algorithm

Clustering

Greedy algorithm

Observations

@ Each step (except the last) reduces the cost by more than e.
@ Each step can be done in polynomial time.
@ The algorithm stops after a finite number of steps (at least if
e > 0).
o Difficult parts:
e What is a good initialization?
o What is a good candidate set C(0)?
e 0 is a global optimum if # = argming £(0 | X).
o 0 is a local optimum if & = arg mingcc(g) £(0" | X).
@ Algorithm always finds a local optimum, but not necessarily a

global optimum. (Interesting sidenote: greedoid.)

X
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Greedy algorithms
EM Algorithm

Clustering

Greedy algorithm

Approximation ratio

@ Denote £* =ming£(0 | X), a6 = GREEDY(E,C,e,X) and
Eare = E(0aLc | X)

o 1 < a < oo is an approximation ratio if E41¢ < a&* is always
satisfied for all X.

@ 1 < a < oo is an expected approximation ratio if
E [EaLc) < a&* is always satisfied for all X' (expectation is
over instances of the algorithm).

@ Observation: if approximation ratio exists, then the algorithm
always finds the zero cost solution if such a solution exists for
a given data set.

@ Sometimes the approximation ratio can be proven; often one
can only run algorithm several times and observe the

distribution of costs. _
e For kmeans with approximation ratio o = O(log k) and

references see arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful Seeding.
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Clustering

Greedy algorithm

Running times

@ We can usually easily say that the running time of one step is
polynomial.

@ Often, the number of steps the algorithm takes is also
polynomial, hence the algorithm is often polynomial (at least
in practice).

@ Proving the number of steps required until convergence is
often quite difficult, however. Again, the easiest is to run
algorithm several times and observe the distribution of the
number of steps.

X
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Clustering

Greedy algorithm

Questions to ask about a greedy algorithm

@ Does the definition of the cost function make sense in your
application? Should you use some other cost, for example,
some utility?

@ There may be several solutions with small cost. Do these
solutions have similar parameters, for example, prototype
vectors (interpretation of the results)?

e How efficient is the optimization step involving C(0)? Could
you find better C(6)?

If there exists a zero-cost solution, does your algorithm find it?
Is there an approximation ratio?
Can you say anything about number of steps required?

What is the empirical distribution of the error £4;¢ and the
number of steps taken, in your typical application? b
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EM Algorithm

@ Expectation-Maximization algorithm (EM): greedy algorithm
that finds soft cluster assignments

@ Probabilistic interpretation, that is, we are maximizing a
likelihood.

X
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EM Algorithm

-2 0 @ 2 -2 0 @ 2 -2 o n 2

Figure 9.8 of Bishop (2006)

@ EM algorithm is like k-means, except cluster assignments are
“soft”: each data point is a member of a given cluster with
certain probability.

o bt €{0,1} — ht € [0,1]. ¢
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EM Algorithm

@ Find maximum likelihood solution of the
mixture model £ = log H,’_y:l p(xt | 6), where
the parameters 6 are p;, ¥; and m; = P(G;).

@ Maximum likelihood solution is found by the
EM algorithm (which is essentially

generalization of the Lloyd's algorithm to soft @
cluster memberships)

)

o ldea: iteratively find the membership weights
of each data vector in clusters, and the
parameter values. Continue until
convergence.

z

o End result is intuitive.
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EM Algorithm

Example: soft Gaussian mixture, fixed shared diagonal covariance matrix ¥; = s°1,
P(G)) =m =1/k.

EM(X,k) {Input: X, data set; k, number of mixture components. Output:
{m;}*_;, mixture components.}
Initialize m;, i = 1,..., k, for example using some kmeans algorithm.

repeat
for all t € {1,..., N} do {E step}

exp [~ 5k [|x* — mi| ']

Fe
> exp [ 5 [xt — my|[?]

end for
forall i € {1,...,k} do {M step}

Zt ht t
2 hi
end for
until convergence
k X
return {m;};_;
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EM Algorithm

e For derivation, see Alpaydin (2004), section 7.4 (pages
139-144); for an alternative derivation, see Bishop (2006),
section 9.4 (pages 450-455). A sketch follows.

@ Task: find an ML solution of a likelihood function given by

P(X[0)=>_zp(X,Z]0).
> logp(x'|6) > Zlogp (x* | 6) - ZKL (h || p(z" | x",6))

= Zthlogpx zt|0 —l—ZH (h}),

where we have used the Kullback-Leibler (KL) divergence

KL(q(i) || p(7)) = >_; q(i)log (q(i)/p(i)). KL divergence is

always non-negative and it vanishes only when the
distributions g and p are equal. The entropy is given by

H(q(i)) = —>_; q(i)log q(i). b



Clustering

EM Algorithm

e Expectation step (E Step): find h! by minimizing the KL
divergence.

e Maximization step (M Step): find 6 by maximizing the
expectation.

Inp(X|0)

gold guew

Figure 9.14 of Bishop (2006) <
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Decision Trees

@ Each internal node tests an attribute.
@ Each branch corresponds to set of attribute values.

e Each leaf node assigns a classification (classification tree) or a
real number (regression tree).

@ The tree is usually learned using a greedy algorithm built
around /D3, such as C4.5. (The problem of finding optimal
tree is generally NP-hard.)

@ Advantages of trees:

e Learning and classification is fast.
e Trees are accurate in many domains.
o Trees are easy to interpret as sets of decision rules.
@ Often, trees should be used as a benchmark before more

complicated algorithms are attempted.
@ For alternative discussion, see Mitchell (1997), Ch 3.

Kai Puolamaki T-61.3050
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Example Data from Mitchell (1997)

Day Outlook Temperature Humidity Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3  Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7  Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12  Overcast Mild High Strong Yes
D13  Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

X
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Example: Final Decision Tree

Sunny Overcast Rain

Humidity Yes

High Normal Strong
No Yes No

Figure 3.1 of Mitchell (1997).
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ID3 algorithm for discrete attributes

ID3(X) {Input: & = {(r’,x")}L,, data set with binary attributes
rt € {—1,+1} and a vector of discrete variables x’. Output: T, classification
tree.}
Create root node for T
If all items in X are positive (negative), return a single-node tree with label
()
Let A be attribute that “best” classifies the examples
for all values v of A do
Let X, be subset of X' that have value v for A
if X, is empty then
Below the root of T, add a leaf node with most common label in X
else
Below the root of T, add subtree ID3(X,)
end if
end for
return T
X
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Decision Trees

@ X is a sample of training examples.

@ p. is the proportion of positive and
p— =1 — py is the proportion of negative
samples in X.

@ Entropy measures impurity of X.

Entropy(&') = —p; log, p+ — p- log, p—

Kai Puolamaki

Figure 9.2: Entropy function for a two-class problem
From: E. Alpaydin. 2004. Introduction to Machine
Learning. ©The MIT Press




Decision Trees

e Entropy(X') is the expected number of
bits needed to encode class (41 or —1) of
randomly drawn member of X (under the
optimal, shortest-length code).

@ Information theory: the optimal (shortest
expected coding length) code for an event
with probability p is — log, p bits.

° Th erefore' eXpeCted n u m ber Of bits to Figure 9.2: Entropy function for a two-class problem.
encode +1 or —1 of a random member of o £ Apavan, 2004 ntoducton to Macnine
X is

p+ (—logy py) + p— (—logop-).

Entropy(X) = —p; logy p1 — p- log, p- g
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Decision Trees .
Regression Trees

Information Gain

e Gain(X, A) is the expected reduction in entropy due to
sorting on A.

Xy
Gain(X, A) = Entropy(X') — Z ‘|X]‘ Entropy(&Xy).

vevalues(A)

o For ID3: attribute A that has the highest gain classifies the
examples X “best”.

X
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Selecting the Next Attribute

ession Trees

Which attribute is the best classifier?

S:[9+,5-] S: [9+,5-]
E =0.940 E=0.940
High Normal Weak Strong
[3+4-] [6+,1-] [6+,2-] [3+,3-]
E=0.985 E=0.592 E=03811 E=1.00
Gain (S, Humidity ) Gain (S, Wind)
=.940 - (7/14).985 - (7/14).592 =.940 - (8/14).811 - (6/14)1.0
=.151 =.048

Humidity provides greater information gain than Wind, relative to the target
classification. E stands for entropy and S for collection of examples. Figure 3.3
of Mitchell (1997).
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Example: Final Decision Tree

Sunny Overcast Rain

i I

High Normal Strong Weak
N / \
No Yes No Yes

The final decision tree. Figure 3.1 of Mitchell (1997).
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Decision Trees

Variations of ID3

@ Alternative impurity measures:

o Entropy: —p4 log, p1 — p— log, p—.

e Gini index: 2pyp_.

e Misclassification error: 1 — max (py, p—).

o All vanish for p; € {0,1} and have a maximum at

p+ =p-=1/2.
@ Continuous or ordered variables: sort xj‘ for some attribute A
and find the best split x4 < w vs. x4 > w.

X
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Decision Trees

Rule Extraction from Trees

x,: Age
C4.5Rules Q@ x, : Years in job
(Quinlan, 1993) L x; : Gender
Yes No X, Job type
Cxo
‘A 'B" '
(o] [oo] []

F (age>38.5) AND (years-in-job>2.5) THEN y =0.8

F (age>38.5) AND (years-in-job=2.5) THEN y =0.6
R3: IF (age<38.5) AND (job-type='A") THEN y =0.4

F (age=38.5) AND (job-type="B’) THEN y =0.3

F (age=38.5) AND (job-type=‘C") THEN y =0.2

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1) &
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Observations of ID3

@ Inductive bias:

o Preference on short trees.
o Preference on trees with high information gain near root.

@ Vanilla ID3 classifies the training data perfectly.

@ Hence, in presence of noise, vanilla ID3 overfits.

Kai Puolamaki T-61.3050
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Regression Trees

Pruning

@ How to avoid overfitting?

e Prepruning: stop growing when data split is not statistically
significant. For example: stop tree construction when node is
smaller than a given limit, or impurity of a node is below a
given limit ;. (faster)

e Postpruning: grow the whole tree, then prune subtrees which
overfit on the pruning (validation) set. (more accurate)

X
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Pruning

Postpruning

(]

Split data into training and pruning (validation) sets.

Do until further pruning is harmful:

@ Evaluate impact on pruning set of pruning each possible node
(plus those below it).

@ Greedily remove the one that most improves the pruning set
accuracy.

Produces smallest version of most accurate subtree.

Alternative: rule postpruning (commonly used, for example,

C4.5).

X
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Decision Trees

Examples: Predicting woody cover in African savannas

@ Task: woody cover (% of surface covered by trees) as a
function of precipitation (MAP), soil characteristics (texture,
total nitrogen total and phosphorus, and nitrogen
mineralization), fire and herbivory regimes.

@ Result: MAP is the most important factor.

From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846-849.
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Regression Trees

@ Error at node m:

1 x reaches node m
0 otherwise

bm(x) = {

_ t 2 t e bm(xF)rt
Em = ng(r _gm) bm(x) , &m = m

o After splitting:

1 x reaches node m and branch j
0 otherwise

bmj(x) = {

1 2 > bmi(xH)rt
<c:m: v rt_gm' bm' Xt y 8mj = t d .
Nm ZJ: Zt: ( J) J( ) Yy Zt bmj(xt)

Kai Puolamaki T-61.3050
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Implementations

@ There are many implementations, with sophisticated pruning

methods.
- Library(rpart)
= rpart{Hipparion ~ .,DD[,taxal)
n= 124

node), split, n, loss, yval, (yprob)
* denotes terminal node

13 root 124 32 8 (@.74193548 0.25806452)
23 Amphimachairodus=8 108 19 @ (0.82407407 8.17592593)
43 Choerolophodon=0 96 13 @ (@.#6458333 0.13541667)
8) Ursus=0 76 6 @ (@.52105263 0.07894737) *
93 Ursus=1 28 7 @ (0.65000000 @.35000000)
18) Cervus=1 13 2 @ (0.84615385 0.15384615) *
19} Cervus=8 7 2 1 (0.28571429 @.71428571) *
5) Choerolophodon=1 12 & @ (@.50000000 0.50000000) *
3} Amphimachairodus=1 16 3 1 (@.18750000 @.81250000) *

Kai Puolamaki
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