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k-means Clustering
Lloyd’s algorithm

LLOYDS(X ,k) {Input: X , data set; k, number of clusters. Output: {mi}ki=1,
cluster prototypes.}
Initialize mi , i = 1, . . . , k, appropriately for example, in random.
repeat

for all t ∈ {1, . . . , N} do {E step}

bt
i ←


1 , i = arg mini

˛̨˛̨
xt −mi

˛̨˛̨
0 , otherwise

end for
for all i ∈ {1, . . . , k} do {M step}

mi ←
P

t bt
i x

tP
t bt

i

end for
until the error E({mi}ki=1 | X ) does not change
return {mi}ki=1
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Figure 9.1 of Bishop (2006)
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Observations:

Iteration cannot increase the error E({mi}ki=1 | X ).

There are finite number, kN , of possible clusterings.

It follows that the algorithm always stops after a finite time.
(It can take no more than kN steps.)

Usually k-means is however relatively fast. “In practice the
number of iterations is generally much less than the number
of points.” (Duda & Hart & Stork, 2000)

Worst-case running time with really bad data and really bad

initialization is however 2Ω(
√

N) — luckily this usually does not
happen in real life (David A, Vassilivitskii S (2006) How slow is the k-means method? In Proc
22nd SCG.)
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Observations:

The result can in the worst case be really bad.

Example:

Four data vectors (N = 4) from Rd in X : x1 = (0, 0, . . . , 0)T ,
x2 = (1, 0, . . . , 0)T , x3 = (0, 1, . . . , 1)T and
x4 = (1, 1, . . . , 1)T .
Optimal clustering into two (k = 2) is given by the prototype
vectors m1 = (0.5, 0, . . . , 0)T and m2 = (0.5, 1, . . . , 1)T , error
being E({mi}ki=1 | X ) = 1.
Lloyd’s algorithm can however converge also to
m1 = (0, 0.5, . . . , 0.5)T and m2 = (1, 0.5, . . . , 0.5)T , error
being E({mi}ki=1 | X ) = d − 1. (Check that iteration stops
here!)
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Example: cluster taxa into k = 6 clusters 1000 times with
Lloyd’s algorithm.

The error E({mi}ki=1 | X ) is different for different runs!

You should try several random initializations, and choose the
solution with smallest error.
For a cool initialization see Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful
Seeding.

Error (1000 runs, k=6)
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Greedy algorithm

Task: solve arg minθ E(θ | X ).

0 ≤ E(θ | X ) <∞
Assume that the cost/error E(θ | X ) can be evaluated in
polynomial time O(Nk), given an instance of parameters θ
and a data set X , where N is the size of the data set and k is
some constant.

Often, no polynomial time algorithm to minimize the cost is
known.

Assume that for each instance parameter values θ there exists
a candidate set C (θ) such that θ ∈ C (θ).

Assume arg minθ′∈C(θ) E(θ′ | X ) can be solved in polynomial
time.

Kai Puolamäki T-61.3050
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GREEDY(E ,C ,ε,X ) {Input: E , cost function; C , candidate set;
ε ≥ 0, convergence cutoff; X , data set. Output: Instance of
parameter values θ.}
Initialize θ appropriately, for example, in random.
repeat

θ ← arg min
θ′∈C(θ)

E(θ′ | X )

until the change in E(θ | X ) is no more than ε
return θ

Kai Puolamäki T-61.3050
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Examples of greedy algorithms:

Forward and backward selection.
Lloyd’s algorithm.
Optimizing a cost function using gradient descent and line
search.

Kai Puolamäki T-61.3050
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Observations

Each step (except the last) reduces the cost by more than ε.

Each step can be done in polynomial time.

The algorithm stops after a finite number of steps (at least if
ε > 0).

Difficult parts:

What is a good initialization?
What is a good candidate set C (θ)?

θ is a global optimum if θ = arg minθ E(θ | X ).

θ is a local optimum if θ = arg minθ′∈C(θ) E(θ′ | X ).

Algorithm always finds a local optimum, but not necessarily a
global optimum. (Interesting sidenote: greedoid.)

Kai Puolamäki T-61.3050
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Denote E∗ = minθ E(θ | X ), θALG = GREEDY(E ,C ,ε,X ) and
EALG = E(θALG | X )
1 ≤ α <∞ is an approximation ratio if EALG ≤ αE∗ is always
satisfied for all X .
1 ≤ α <∞ is an expected approximation ratio if
E [EALG ] ≤ αE∗ is always satisfied for all X (expectation is
over instances of the algorithm).
Observation: if approximation ratio exists, then the algorithm
always finds the zero cost solution if such a solution exists for
a given data set.
Sometimes the approximation ratio can be proven; often one
can only run algorithm several times and observe the
distribution of costs.
For kmeans with approximation ratio α = O(log k) and
references see Arthur D, Vassilivitskii S (2006) k-means++: The Advantages of Careful Seeding.
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Running times

We can usually easily say that the running time of one step is
polynomial.

Often, the number of steps the algorithm takes is also
polynomial, hence the algorithm is often polynomial (at least
in practice).

Proving the number of steps required until convergence is
often quite difficult, however. Again, the easiest is to run
algorithm several times and observe the distribution of the
number of steps.
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Questions to ask about a greedy algorithm

Does the definition of the cost function make sense in your
application? Should you use some other cost, for example,
some utility?

There may be several solutions with small cost. Do these
solutions have similar parameters, for example, prototype
vectors (interpretation of the results)?

How efficient is the optimization step involving C (θ)? Could
you find better C (θ)?

If there exists a zero-cost solution, does your algorithm find it?

Is there an approximation ratio?

Can you say anything about number of steps required?

What is the empirical distribution of the error EALG and the
number of steps taken, in your typical application?

Kai Puolamäki T-61.3050
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Expectation-Maximization algorithm (EM): greedy algorithm
that finds soft cluster assignments

Probabilistic interpretation, that is, we are maximizing a
likelihood.

Kai Puolamäki T-61.3050
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Figure 9.8 of Bishop (2006)

EM algorithm is like k-means, except cluster assignments are
“soft”: each data point is a member of a given cluster with
certain probability.

bt
i ∈ {0, 1} −→ ht

i ∈ [0, 1].

Kai Puolamäki T-61.3050
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Find maximum likelihood solution of the
mixture model L = log

∏N
t=1 p(xt | θ), where

the parameters θ are µi , Σi and πi = P(Gi ).

Maximum likelihood solution is found by the
EM algorithm (which is essentially
generalization of the Lloyd’s algorithm to soft
cluster memberships)

Idea: iteratively find the membership weights
of each data vector in clusters, and the
parameter values. Continue until
convergence.

End result is intuitive.

G

x
N

P(G)

2µ,Σ
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Example: soft Gaussian mixture, fixed shared diagonal covariance matrix Σi = s21,
P(Gi ) = πi = 1/k.

EM(X ,k) {Input: X , data set; k, number of mixture components. Output:
{mi}ki=1, mixture components.}
Initialize mi , i = 1, . . . , k, for example using some kmeans algorithm.
repeat

for all t ∈ {1, . . . , N} do {E step}

ht
i ←

exp
h
− 1

2s2

˛̨˛̨
xt −mi

˛̨˛̨2i
P

j exp
ˆ
− 1

2s2 ||xt −mj ||2
˜

end for
for all i ∈ {1, . . . , k} do {M step}

mi ←
P

t ht
i x

tP
t ht

i

end for
until convergence
return {mi}ki=1

Kai Puolamäki T-61.3050
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For derivation, see Alpaydin (2004), section 7.4 (pages
139–144); for an alternative derivation, see Bishop (2006),
section 9.4 (pages 450–455). A sketch follows.

Task: find an ML solution of a likelihood function given by
p(X | θ) =

∑
Z p(X,Z | θ).∑

t

log p(xt | θ) ≥
∑

t

log p(xt | θ)−
∑

t

KL(ht
i || p(zt | xt , θ))

=
∑

t

∑
i

ht
i log p(xt , zt | θ) +

∑
t

H(ht
i ),

where we have used the Kullback-Leibler (KL) divergence
KL(q(i) || p(i)) =

∑
i q(i) log (q(i)/p(i)). KL divergence is

always non-negative and it vanishes only when the
distributions q and p are equal. The entropy is given by
H(q(i)) = −

∑
i q(i) log q(i).

Kai Puolamäki T-61.3050
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Expectation step (E Step): find ht
i by minimizing the KL

divergence.

Maximization step (M Step): find θ by maximizing the
expectation.
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Figure 9.14 of Bishop (2006)

Kai Puolamäki T-61.3050



AB

Clustering
Decision Trees

Introduction
Classification Trees
Regression Trees

Outline

1 Clustering
k-means Clustering
Greedy algorithms
EM Algorithm

2 Decision Trees
Introduction
Classification Trees
Regression Trees
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!"#$%&"'()$"*'+)&','-./012!3'4556'73$&)2%#$8)3'$)'90#:83"'!"0&383;'< =:"'97='>&"**'?@ABAC

!

=&""'D*"*'()2"*E'032'!"0F"*
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Decision Trees

Each internal node tests an attribute.

Each branch corresponds to set of attribute values.

Each leaf node assigns a classification (classification tree) or a
real number (regression tree).

The tree is usually learned using a greedy algorithm built
around ID3, such as C4.5. (The problem of finding optimal
tree is generally NP-hard.)

Advantages of trees:

Learning and classification is fast.
Trees are accurate in many domains.
Trees are easy to interpret as sets of decision rules.

Often, trees should be used as a benchmark before more
complicated algorithms are attempted.
For alternative discussion, see Mitchell (1997), Ch 3.

Kai Puolamäki T-61.3050
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Example Data from Mitchell (1997)

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Kai Puolamäki T-61.3050
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Example: Final Decision Tree

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

Figure 3.1 of Mitchell (1997).
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ID3 algorithm for discrete attributes

ID3(X ) {Input: X = {(r t , xt)}Nt=1, data set with binary attributes
r t ∈ {−1, +1} and a vector of discrete variables xt . Output: T , classification
tree.}
Create root node for T
If all items in X are positive (negative), return a single-node tree with label
“+” (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do

Let Xv be subset of X that have value v for A
if Xv is empty then

Below the root of T , add a leaf node with most common label in X
else

Below the root of T , add subtree ID3(Xv )
end if

end for
return T

Kai Puolamäki T-61.3050
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Entropy

X is a sample of training examples.

p+ is the proportion of positive and
p− = 1− p+ is the proportion of negative
samples in X .

Entropy measures impurity of X .

Entropy(X ) = −p+ log2 p+ − p− log2 p−
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Figure 9.2: Entropy function for a two-class problem.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Entropy

Entropy(X ) is the expected number of
bits needed to encode class (+1 or −1) of
randomly drawn member of X (under the
optimal, shortest-length code).

Information theory: the optimal (shortest
expected coding length) code for an event
with probability p is − log2 p bits.

Therefore, expected number of bits to
encode +1 or −1 of a random member of
X is

p+ (− log2 p+) + p− (− log2 p−) .

Entropy(X ) = −p+ log2 p+ − p− log2 p−
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Kai Puolamäki T-61.3050



AB

Clustering
Decision Trees

Introduction
Classification Trees
Regression Trees

Information Gain

Gain(X ,A) is the expected reduction in entropy due to
sorting on A.

Gain(X ,A) = Entropy(X )−
∑

v∈values(A)

|Xv |
|X |

Entropy(Xv ).

For ID3: attribute A that has the highest gain classifies the
examples X “best”.

Kai Puolamäki T-61.3050
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Selecting the Next Attribute

Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

  = .940 - (7/14).985 - (7/14).592
  = .151

  = .940 - (8/14).811 - (6/14)1.0
  = .048

Gain (S, Humidity ) Gain (S,          )Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:

Humidity provides greater information gain than Wind, relative to the target
classification. E stands for entropy and S for collection of examples. Figure 3.3

of Mitchell (1997).

Kai Puolamäki T-61.3050
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Example: Final Decision Tree

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

The final decision tree. Figure 3.1 of Mitchell (1997).
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Variations of ID3

Alternative impurity measures:

Entropy: −p+ log2 p+ − p− log2 p−.
Gini index: 2p+p−.
Misclassification error: 1−max (p+, p−).
All vanish for p+ ∈ {0, 1} and have a maximum at
p+ = p− = 1/2.

Continuous or ordered variables: sort x t
A for some attribute A

and find the best split xA ≤ w vs. xA > w .

Kai Puolamäki T-61.3050
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Rule Extraction from Trees
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Observations of ID3

Inductive bias:

Preference on short trees.
Preference on trees with high information gain near root.

Vanilla ID3 classifies the training data perfectly.

Hence, in presence of noise, vanilla ID3 overfits.

Kai Puolamäki T-61.3050
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Pruning

How to avoid overfitting?

Prepruning: stop growing when data split is not statistically
significant. For example: stop tree construction when node is
smaller than a given limit, or impurity of a node is below a
given limit θI . (faster)
Postpruning: grow the whole tree, then prune subtrees which
overfit on the pruning (validation) set. (more accurate)

Kai Puolamäki T-61.3050
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Pruning
Postpruning

Split data into training and pruning (validation) sets.

Do until further pruning is harmful:
1 Evaluate impact on pruning set of pruning each possible node

(plus those below it).
2 Greedily remove the one that most improves the pruning set

accuracy.

Produces smallest version of most accurate subtree.

Alternative: rule postpruning (commonly used, for example,
C4.5).

Kai Puolamäki T-61.3050
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Examples: Predicting woody cover in African savannas

Task: woody cover (% of surface covered by trees) as a
function of precipitation (MAP), soil characteristics (texture,
total nitrogen total and phosphorus, and nitrogen
mineralization), fire and herbivory regimes.

Result: MAP is the most important factor.

©!!""#!Nature Publishing Group!

!

below the MAP-controlled upper bound (Fig. 3). Woody cover is
higher, on average, where fires are infrequent (fire-return interval
.10.5 yr). In sites with more frequent fires, woody cover is typically
low, except on very sandy soils (mostly concentrated on the Kalahari
sand sheets), which tend to support higher woody cover (Fig. 3). The
dependence of fire frequency on MAP presumably arises because
increased grass production in mesic sites leads to greater fuel loads
that can support more frequent fires14 (Supplementary Fig. S2). Very
high sand content, which correlates with low nutrient availability
(Supplementary Table S1), may promote higher woody cover if the
positive effects of coarse-textured soils, such as lower wilting points19

and greater water percolation to soil layers below grass rooting
depths1,11,12, override the negative effects associated with lower
nutrient availability in these soils19.
Herbivore effects on woody cover are, however, less apparent.

Although we found a tendency for grazers to enhance woody cover
and browsers and mixed feeders to depress it, such effects were weak
and could not be generalized beyond our data set (see Methods;
measures of herbivore biomass were retained in the complete, but not
pruned, regression tree). The lack of consistent herbivore effects
across sites most probably reflects differences in herbivore guilds,
seasonality of herbivory, and variation in herbivore body-size distri-
butions across sites, features for which data were not available.
Larger, more detailed data sets will undoubtedly provide greater
resolution of how different driver variables interact to influence
mean woody cover.
These results have the power to inform savanna management

strategies because they bear directly on our ability to predict savanna
responses to changing environmental drivers. In particular, our data
indicate that woody encroachment, a phenomenon in which many
savannas across the world show a directional trend of increasing
woody cover1, may be a bounded process in savannas receiving a
MAP of ,650 ^ 134mm, ultimately limited by water availability.
For sites close to or at theMAP-controlled bound (Fig. 1), changes in
precipitation regimes that lead to increased water availability6 there-
foremay be a cause for concernwith respect to woody encroachment.
However, the enormous variation in woody cover, with most sites far
from the climatic bound (Fig. 1), suggests that processes other than
MAP regulate actual tree cover in many savannas of Africa. In
particular, our results suggest that if disturbances by fire, browsers

and humans were absent, then large sections of the African continent
would switch to a wooded state (hatched regions in Fig. 4).
The patterns described here for African savannas suggest that the

dominant ecological theories for tree–grass coexistence in these
systems need to be combined: it is clear that most savannas are
strongly affected by disturbances that maintain woody cover well
below the resource-limited upper bound. Disturbance-based models
do not consider and are unable to explain, however, the upper bound
to tree cover. The results emerging from this continental scale
analysis strongly indicate that water limits the maximum cover of
woody species inmany African savanna systems, but that disturbance
dynamics control savanna structure below the maximum. These
results have important implications both for our understanding of
the fundamental nature of African savanna systems and for our
ability to predict their responses to changing environmental drivers.
It remains to be established whether the patterns observed here for
African savannas also hold in other tropical savanna regions or in
temperate savannas where the effects of winter precipitation and
temperature on moisture distribution through the soil profile can
markedly alter water partitioning between woody and herbaceous
plants, and thus can influence maximum woody cover.

METHODS
Data collection. Data on projected woody cover (the percentage of ground
surface covered when crowns are projected vertically), MAP, soil characteristics
(texture, total nitrogen and phosphorus, and nitrogen mineralization), fire and
herbivory regimes were gathered from several sources for a range of sites across
Africa. We included only sites for which vegetation was sampled over sufficiently
large spatial scales (.0.25 ha for plot measurements and .100m for transect
sampling). Sites located in riparian or seasonally flooded areas, or in net water
run-on areas such as depressions, and sites in which trees were known to access
ground water resources (that is, sources of water not dependent on rainfall in the
immediate vicinity or in recent years) were excluded from the analysis because
MAP is not a relevant descriptor of water availability in these sites. We also
excluded sites that had been cultivated or harvested by humans ,10 yr before
sampling from the analysis.

Rainfall data included estimates from field measurements and regional
rainfall maps (n ¼ 469) and from fitted climatic grids (0.058 resolution,

Figure 4 |The distributions ofMAP-determined (‘stable’) and disturbance-
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (.784mmMAP); cross-hatched
areas show the transition between stable and unstable savannas (516–
784mm MAP); grey areas that are not hatched show the stable savannas
(,516mm MAP).

Figure 3 | Regression tree showing generalized relationships between
woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained,45.2% of the variance in woody cover, which is significantly
more than a random tree (P , 0.001). Of this, 31%was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.
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below the MAP-controlled upper bound (Fig. 3). Woody cover is
higher, on average, where fires are infrequent (fire-return interval
.10.5 yr). In sites with more frequent fires, woody cover is typically
low, except on very sandy soils (mostly concentrated on the Kalahari
sand sheets), which tend to support higher woody cover (Fig. 3). The
dependence of fire frequency on MAP presumably arises because
increased grass production in mesic sites leads to greater fuel loads
that can support more frequent fires14 (Supplementary Fig. S2). Very
high sand content, which correlates with low nutrient availability
(Supplementary Table S1), may promote higher woody cover if the
positive effects of coarse-textured soils, such as lower wilting points19

and greater water percolation to soil layers below grass rooting
depths1,11,12, override the negative effects associated with lower
nutrient availability in these soils19.
Herbivore effects on woody cover are, however, less apparent.

Although we found a tendency for grazers to enhance woody cover
and browsers and mixed feeders to depress it, such effects were weak
and could not be generalized beyond our data set (see Methods;
measures of herbivore biomass were retained in the complete, but not
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mean woody cover.
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should limit the potential tree cover that can be supported at any
given site, and maximum realizable woody cover should gradually
increase with MAP4,12. By contrast, if disturbances such as fire
and herbivory primarily maintain savannas4,5,15, then we expect an
abrupt, rather than gradual, increase in maximum realizable woody
cover with increasing MAP4: below a critical threshold of rainfall
sufficient to permit tree growth outside riparian areas or depressions,
grasslands should dominate; above this threshold, the maximum
woody cover should correspond to a closed-canopy woodland state4.
Depending on the level of disturbance, a particular location might
have reduced woody cover, but the upper bound would not depend
on MAP.
We evaluated relationships between woody cover and MAP, soil

characteristics (texture, percentage nitrogen, nitrogen mineraliza-
tion, total phosphorus) and disturbance regimes (fire-return inter-
vals, mammalian herbivore biomass) from 854 sites across Africa
(Supplementary Fig. S1 andMethods).Woody cover ranges from 0 to
90% across sites and tends to increase with MAP (Fig. 1). More
particularly, within a narrow range of MAP from ,100 to 650mm,
an upper bound exists on the maximum realizable woody cover
(Fig. 1). In these arid to semi-arid sites (,650 ^ 134mm MAP;
see Fig. 1), maximum realized woody cover increases with MAP
(Fig. 2a), but shows no relationship with fire-return intervals,
herbivore biomass or soil characteristics (Fig. 2b–f), suggesting
that the observed upper limit on woody cover in arid and semi-
arid African savannas is primarily a consequence of moisture
limitation. The presence of an upper bound on woody cover in
these savannas that is linked primarily to MAP is not consistent with
the view that savannas are inherently unstable systems maintained by
disturbances.
Within this MAP range (,650 ^ 134mm MAP), our analysis

suggests that tree–grass coexistence is stable to the extent that
disturbances such as fire and herbivory, although capable of modify-
ing tree to grass ratios, are not necessary for coexistence. In these
“climatically determined savannas”17 (,650 ^ 134mm MAP),
restrictions on maximumwoody cover as a result of water limitation
permit grasses to persist in the system. By contrast, in areas that

receive aMAP in excess of 650 ^ 134mm, water availability seems to
be sufficient to allow trees to approach canopy closure such that
grasses may be effectively excluded. These “disturbance-driven
savannas”17 represent unstable systems in which disturbances such
as fire, grazing and browsing are required to maintain both trees
and grasses in the system by buffering against transitions to a closed-
canopy state5,17.
Whereas MAP drives the upper bound onwoody cover in arid and

semi-arid savannas, disturbance regimes and soil characteristics
impose significant controls on savanna structure by influencing
woody cover below the bound. A regression tree analysis of mean
woody cover for a restricted subset of sites for which all data were
available (Fig. 3 and Methods) further highlights the importance of
MAP as a principal driver of savanna structure and suggests that
MAP also mediates the relative importance of other savanna drivers
such as fire and soil characteristics.
Below aMAPof,350mm,woody cover is typically low (Fig. 3). In

these sites, soil properties and disturbances such as fire and herbivory
rarely regulate woody cover. As MAP increases above this threshold,
fire in particular becomes a common factor that reduces woody cover

Figure 1 | Change in woody cover of African savannas as a function of
MAP. Maximum tree cover is represented by using a 99th quantile piece-
wise linear regression. The regression analysis identifies the breakpoint (the
rainfall at which maximum tree cover is attained) in the interval
650 ^ 134mm MAP (between 516 and 784mm; see Methods). Trees are
typically absent below 101mm MAP. The equation for the line quantifying
the upper bound on tree cover between 101 and 650mm MAP is
Cover(%) ¼ 0.14(MAP) 2 14.2. Data are from 854 sites across Africa.

Figure 2 | Woody cover as a function of MAP, soil properties and
disturbance regimes in arid and semi-arid savannas. Relationships
between woody cover and MAP (a; n ¼ 529), fire-return intervals
(b; n ¼ 302), herbivore biomass (c; n ¼ 145), percentage of clay
(d; n ¼ 234), nitrogen mineralization potential (e; n ¼ 109) and soil total
phosphorus (f; n ¼ 118) for savannas receiving ,650mm MAP. Unbroken
and broken lines represent the 99th and 90th linear quantiles, respectively.
Maximum woody cover increased with MAP, but showed no consistent
relationship with other variables. For MAP, both quantile slopes were
significantly different from zero. For fire-return intervals, herbivore
biomass, clay and nitrogen mineralization rates, neither regression line had
a significant non-zero slope. For total phosphorus, the 90th but not the 99th
quantile slope differed from zero.
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From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846–849.
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Implementations

There are many implementations, with sophisticated pruning
methods.
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