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Remaining Lectures

6 Nov: Dimensionality Reduction & Clustering (Aplaydin Ch
6&7)

13 Nov: Clustering & Algorithms in Data Analysis (PDF
chapter)

20 Nov: Assessing Algorithms & Decision Trees (Alpaydin Ch
14&9)

27 Nov: Machine Learning @ Google /TBA (additionally,
Google recruitment talk in afternoon in T1 at 16 o'clock, see
http://www.cis.hut.fi/googletalk07/)

4 Dec: Decision Trees & Linear Discrimination (Alpaydin Ch
10)

@ (7 Dec: last problem session.)

@ 11 Dec: Recap

@ The plan is preliminary (may still change) v
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About the Text Book

@ This course has Alpaydin (2004) as a text book.

@ The lecture slides (neither mine nor the ones on the Alpaydin’s
site) are not meant to be a replacement for the text book.

@ It is important also to read the book chapters.

@ Library has some reading room copies (they are planning to
order some more). If nothing else, you should probably at
least copy some key chapters.

X
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Outline

@ Dimensionality Reduction
@ Principal Component Analysis (PCA)
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Dimensionality Reduction Principal Component Analysis (PCA)
Linear Discriminant Analysis (LDA)

Principal Component Analysis (PCA)

@ PCA finds low-dimensional linear subspace such that when x
is projected there information loss (here defined as variance) is
minimized.

o Finds directions of maximal variance.

@ Projection pursuit: find direction w such that some measure
(here variance Var(w'x)) is maximized.

@ Equivalent to finding eigenvalues and -vectors of covariance or
correlation matrix.
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Dimensionality Reduction Principal Component Analysis (PCA)
Linear Discriminant Analysis (LDA)

Principal Component Analysis (PCA)

X 4

Figure 6.1: Principal components analysis centers
the sample and then rotates the axes to line up with
the directions of highest variance. If the variance on
z2 is too small, it can be ignored and we have
dimensionality reduction from two to one. From:

E. Alpaydin. 2004. Introduction to Machine
Learning. © The MIT Press.
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Principal Component Analysis (PCA)

o More formally: data X = {x}V_, xt ¢ RY.

o Center data: y* = x' —m, where m =3, x'/N.

@ Two options:

o Use covariance matrix S =Y, yy’ /N.
o Use correlation matrix R, where Rjj = S;;/1/SiiSj;.

e Diagonalize S (or R) using Singular Value Decomposition
(SVD): CTSC = D, where C is an orthogonal (rotation)
matrix satisfying CCT = CTC =1 and D is a diagonal
matrix whose diagonal elements are the eigenvalues
M>...>)\g>0.

@ ith column of C is the ith eigenvector.

@ Project data vectors y* to principal components z{ = CTy?
(equivalently y* = Cz%).

X
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Dimensionality Reduction

Principal Component Analysis (PCA)
Linear Discriminant Analysis (LDA)

Principal Component Analysis (PCA)

@ Observation: covariance matrix of

{zt}N | is a diagonal matrix D
whose diagonal elements are the
variances.

S, = ZZZT/N:ZCTnyC/N
t t

where the diagonal elements of
are the variances D;; = 02,

o Eigenvalues \; < variances a,-2.
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Figure 6.1: Principal components analysis centers
the sample and then rotates the axes to line up with
the directions of highest variance. If the variance on
22 is too small, it can be ignored and we have
dimensionality reduction from two to one. From.

E. Alpaydin. 2004. Introduction to Machine
Learning. © The MIT Press.
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Principal Component Analysis (PCA)

@ Idea: in the PC space (z space), k first principal components
explain the data well enough, where k < d.

@ “Well enough™ means here that the reconstruction error is
small enough. More formally:

@ Project the data vectors yt into R¥ using 2t = W Tyt, where
W € R9*k is a matrix containing the first k columns of C.
(“W <- C[,1:k]"). 2* is a representation of y* in k dimensions.

@ Project 2! back to y* space:
§'=wzt = ww'y!
What is the average reconstruction error

E=Y, 3 —y) (5t —y)/N?

X
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Principal Component Analysis (PCA)

@ What is the average reconstruction error
E=20"—y) 3 —y)/N?
& = T(E[F-y)F -y
= (1) o] (w7 1)

- Tr (WWTCDCTWWT) I T (CDCT) Ty (WTCDCTW)

where we have used the fact that S = CDCT = E [yy '] and
the cyclic property of the trace, Tr(AB) = Tr(BA).

X
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Principal Component Analysis (PCA)

@ Result: PCA is a linear projection of data from RY into R¥
such that the average reconstruction error
E=E [(9 -y - y)} is minimized.

@ Proportion of Variance (PoV) Explained:
PoV = Zf-;l Ai/ 27:1 Ai. Some rules of thumb to find a
good k: PoV =~ 0.9, or PoV curve has an elbow.

@ Dimension reduction: it may be sufficient to use 2! instead of
X! to train a classifier etc.

e Visualization: plotting the data to 2' using k = 2 (first thing
to do with new data).

e Data compression: instead of storing the full data vectors y! it

may be sufficient to store only 2' and then reconstruct the
original data using §* = W2!, if necessary. ¢
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Linear Discriminant Analysis (LDA)

Example: Optdigits

@ OPTDIGITS data set contains 5620 instances of digitized
handwritten digits in range 0-9.

e Each digit is a R% vector: 8 x 8 = 64 pixels, 16 grayscales.

Kai Puolamaki T-61.3050



Dimensionality Reduction Principal Component Analysis (PCA)
Linear Discriminant Analysis (LDA)

Example: Optdigits

(a) Scree graph for Optdigits
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Dimensionality Reduction Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Optdigits after PCA
30 PP vt est R TR
2%
20 : . :
3 855
27
s Y
28 573 2 :
10F B - : ;
i :
g5 5 ‘?DU 0
g a8, ot 0 6
§ or : :
3 6
0
& % 4%
s
g-10f i
4 1
w
—20}- e of 2
49 4 ; :
4 “4
i P,
_aok 2 e, 4 p
w0 ; ; ; ; ; ; ; ;
40 -30 -20 -10 0 10 20 20 10

First Eigenvector

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

ai Puolama il



Dimensionality Reduction Principal Component Analysis (PCA)
Linear Discriminant Analysis (LDA)

Example: Fossils

o Large European land mammals: 124 fossil find sites (dated
23-2 million years old), 139 taxa

@ Reconstruction of site vectors given PCA taxon representation
for different k: §y = W2z = WW 'y, or
x=WWT(x —m)+m.

Cenozoic Large Land Mammals. ‘Taxa - Proportion of Variance Explained

» 4 s w0 10 120 0 2 4 o 8w 100 120 140

K
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Dimensionality Reduction Principal Component Analysis (PCA)
Linear Discriminant Analysis (LDA)

Example: Fossils

o Large European land mammals: 124 fossil find sites (dated
23-2 million years old), 139 taxa

@ Reconstruction of site vectors given PCA taxon representation
for different k: §y = W2z = WW 'y, or
x=WWT(x —m)+m.

X (original data) X (reconstructed data with k=2) X (reconstructed data with k=52)

» 4 s w0 100 120

Kai Puolamaki T-61.3050



Dimensionality Reduction Principal Component Analysis (PCA)
Linear Discriminant Analysis (LDA)

Outline

@ Dimensionality Reduction

@ Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

e PCA is unsupervised method (class information is not usually
used).

@ Linear Discriminant Analysis (LDA) is supervised method for
dimensionality reduction in classification problems.

@ As PCA, LDA can be accomplished with standard matrix
algebra (eigenvalue decompositions etc.). This makes it
relatively simple and useful.

@ PCA is a good general purpose dimensionality reduction
method, LDA is a good alternative if we want to optimize the
separability of classes in a specific classification task, and are
happy with dimensionality of less than the number of classes
(k < K).

X
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Linear Discriminant Analysis (LDA)

Find a low-dimensional
space such that when x
is projected, classes m
are well-separated.

Find w that maximizes

Jw)= $° + 82 e

T t,.t X,
w'x'r
m, = 2 S;=) t(war —ml)zr"’

2"

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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Linear Discriminant Analysis (LDA)

o More formally: data X = {(r!,x)}N_;, where rf is one if x‘ is
in class i, zero otherwise, and xt € R¥,

e Within-class scatter: Sy, = Z,Kzl S;, where
Si=>,rf(xt —m;) (xt — m)".

@ Between-class scatter: Sg = Zlel N; (m; —m) (m; —m) ",
where N; = ", rf. (rank(Sg) < K)

e k =1: find w € R that maximizes Fisher’s discriminant

w’Sgw
Jw) = ———.
(w) w’Syw
@ K > k> 1: find W e Rk that maximizes Fisher's

discriminant
_WTssw|

= WsuW
@ The projection from RY to R is given by 2 = W T (x — m).

Kai Puolamaki T-61.3050
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Dimensionality Reduction Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

@ Find W € RY%k that maximizes Fisher's discriminant

_WTSsgw|
W) =wrs,wi

o Write V = S&fW € RI*K where 5‘%2 is a matrix such that
SWESHE = Swi (V) = | VTS, 2585, 2| VTV,

@ Determinant is a product of eigenvalues. To maximize J(V)
V' must contain the k largest eigenvectors of 5@1/2535;‘/1/2
(like in PCAl): VTS, 125p5, v = D &

WS, 25,2585, 2SUPW = D & WTS,1SgW = D.

@ = LDA is the k largest eigenvector decomposition of 5@153

(like PCA is of covariance matrix).

@ At most K — 1 non-zero eigenvalues, that is, one should
choose k < K. X
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@ Clustering
@ Introduction
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Introduction
K-means Clustering

Clustering EM Algorithm

Mixture densities

o p(x) = i, p(x | G)p(Ci)

o Classification: labels r* are known in training data. Task:
predict r for new data vectors x

o Clustering: data is unlabeled, that is, r! are unknown. Task:
assign a cluster label r for new data vectors x

e Gaussian mixture model:

3

From Figure 5.3 of Alpaydin (2004).
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Introduction
K-means Clustering

Clustering EM Algorithm

X ={x,r}, X ={x}
Classes C; i=1,...,K Clusters G;i=1,...,k

pix)- 3P ICPC)  PXI=DpxIG)PG)

Wherep(xlci)“'w(.”i’zi) Wherep(xlgi)Nw(”isZi)

D= {P(Cl); Hi, Zi}Ki:1 D= {P( Gi)’ His Z:i}ki:I
R Z ri[ z ritxt
P(C)=50- m = S Labels, 7, ?

t 1

tt t \r

> (x —m,.Xx —mi)
i t
2h
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@ Clustering

@ K-means Clustering
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Clustering EM Algorithm

k-means Clustering

@ The simplest Bayesian classifier was nearest mean classifier:
classify a data vector to class which has a nearest mean.

@ k-means clustering: find k prototype vectors m; (“means”)
which best represent data.

@ Error function:
N 2
E{miYi, | X) =) min |[xt — my|[~.
t=1

@ Task: find prototype vectors m; such that error
E({m;}_, | X) is minimized.
@ No direct probabilistic interpretation. Can be viewed as
approximation of the Bayesian nearest mean classifier where
data vector belongs to a class/cluster with probability 0 or 1
only. b
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Introduction
K-means Clustering
EM Algorithm

Clustering

k-means Clustering

@ The vectors are assigned to the nearest means.

e In R: cl <- kmeans(t(X),centers=3)

k-means (k=2) Cenozoic Large Land Mammals (k=3) Cenozoic Large Land Mammals (cluster prototypes)

’ TR TTT

fossil sites
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Introduction
Clustering

Clustering gorithm

k-means Clustering

e Compression: a real vector (image etc.) can be represented
with a number in {1,..., k}.

@ Dimensionality reduction: one can use cluster indexes instead
of the real vectors to train a classifier etc.

@ Interpretation of the data: clusters have often a meaning.
Taxa from various time periods, customer segments, etc.

@ Labeling of data: cluster indexes may be used as class labels.
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Clustering EM Algorithm

k-means Clustering

Example: image compression

S
7

Figure 9.3 of Bishop (2006).

Data set is the set of pixels.
Each pixel is a vector in three-dimensional RGB space.

K-means is applied to the data set of pixels of an image.

The compressed representation is then the prototype vectors,
and cluster index for each pixel. X
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Clustering

k-means Clustering
Lloyd'’s algorithm

Introduction
K-means Clustering
EM Algorithm

o Lloyd's algorithm: the most
famous algorithm to
minimize the k-means cost
function. Easy to
understand and implement.

@ Sensitive to initialization:
should be run on several
random initializations and
choose the result with the
smallest cost.

@ In practice one should
consider some more
advanced method (type
help(kmeans) in R for some

Initialize m;,i=1,..., k, for example, to k random a!
Repeat
For all t € X
yo b It —mil = ming " — my|
' 0 otherwise
For all m;,i=1,....k

mi Zt bimt/Zr b

Until m; converge

Figure 7.3: k-means algorithm. From: E. Alpaydin.
2004. Introduction to Machine Learning. © The MIT

Press.
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Clustering EM Algorithm

k-means Clustering
Lloyd'’s algorithm

Initialize m;, i =1,..., k, randomly.
repeat
forall t € {1,..., N} do {E step}

b 1, i:arg'min,-th—m,-H
0 , otherwise

end for
for all i € {1,...,k} do {M step}

tht t
2 e bj
end for
until the error £({m;}%_, | X) does not change

X
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Clustering EM Algorithm

means Clustering
Lloyd'’s algorithm

Figure 9.1 of Bishop (2006)
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Clustering EM Algorithm

k-means Clustering
Lloyd'’s algorithm

Observations:
o lteration cannot increase the error £({m;}%_; | X).
@ There are finite number, k", of possible clusterings.

o It follows that the algorithm always stops after a finite time.
(It can take no more than k" steps.)

@ Usually k-means is however relatively fast. “In practice the
number of iterations is generally much less than the number
of pOintS.” (Duda & Hart & Stork, 2000)

@ Worst-case running time with really bad data and really bad

initialization is however 22(VN) — luckily this usually does not
happen in real ||fe (David A, Vassilivitskii S (2006) How slow is the k-means method? In Proc
22nd SCG.)

X
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Introduction
K-means Clustering

Clustering EM Algorithm

k-means Clustering
Lloyd'’s algorithm

Observations:

@ The result can in the worst case be really bad.
e Example:
o Four data vectors (N = 4) from R in X: x! =(0,0,...,0)7,
x> =(1,0,...,0)7, x3=(0,1,...,1)" and
x4 =(1,1,...,1)T.
o Optimal clustering into two (k = 2) is given by the prototype
vectors my = (0.5,0,...,0)7 and my = (0.5,1,...,1)7, error
being £({m;}, | X) = 1.
o Lloyd's algorithm can however converge also to
m; = (0,0.5,...,0.5)7 and my = (1,0.5,...,0.5)7, error
being £({m;}%_, | &) = d — 1. (Check that iteration stops
here!)

X
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Clustering

k-means Clustering
Lloyd'’s algorithm

@ Example: cluster taxa into k = 6 clusters 1000 times with
Lloyd’s algorithm.

o The error £({m;}k_, | X) is different for different runs!

@ You should try several random initializations, and choose the

solution with smallest error.
@ For a cool initialization see Arthur D, Vassilivitskii S (2006) k-means+-: The Advantages of Careful

Seeding.
Error (1000 runs, k=6) Genozoic Large Land Mammals (k=6) Genozoic Large Land Mammls (cluster prototypes)
7 8 g g
L g 8
° WOITE 10T T
" " ; : T . ——
200 s 100 1m0 00 us0 2 4 @ w0 120 ® w0 o o w0 w20
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Outline

@ Clustering

e EM Algorithm
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EM Algorithm

e Expectation-Maximization algorithm (EM): soft cluster
assignments

@ Probabilistic interpretation
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Clustering EM Algorithm

EM Algorithm

-2 0o @ 2 -2 0 @ 2 -2 o n 2

Figure 9.8 of Bishop (2006)

@ EM algorithm is like k-means, except cluster assignments are
“soft”: each data point is a member of a given cluster with
certain probability.

o bt €{0,1} — ht € [0,1]. ¢
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Clustering EM Algorithm

EM Algorithm

@ Find maximum likelihood solution of the
mixture model £ = log H,’_y:l p(xt | 6), where
the parameters 6 are p;, ¥; and m; = P(G;).

@ Maximum likelihood solution is found by the
EM algorithm (which is essentially

generalization of the Lloyd's algorithm to soft @
cluster memberships)

)

o Idea: iteratively find the membership weights
of each data vector in clusters, and the
parameter values. Continue until
convergence.

z "\

o End result is intuitive.
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EM Algorithm

Example: soft Gaussian mixture, fixed shared diagonal covariance matrix ¥; = s%1

Initialize m; and 7, i = 1,..., k, randomly.
repeat
for all t € {1,..., N} do {E step}
rrexp [k [ — m[]

> miexp [— 5k [xt — my[|?]

end for
forall i € {1,...,k} do {M step}

Zt ht t
2 hi
2 hi
— =t
N

4y

end for
until convergence
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EM Algorithm

e For derivation, see Alpaydin (2004), section 7.4 (pages
139-144); for an alternative derivation, see Bishop (2006),
section 9.4 (pages 450-455). A sketch of follows.

@ Task: find an ML solution of a likelihood function given by

P(X[0)=>_zp(X,Z]0).
> logp(x'|6) > Zlogp (x* | 6) - ZKL (h || p(z" | x",6))

= Zthlogpx zt|0 —l—ZH (h}),

where we have used the Kullback-Leibler (KL) divergence

KL(q(i) || p(7)) = >_; q(i)log (q(i)/p(i)). KL divergence is

always non-negative and it vanishes only when the
distributions g and p are equal. The entropy is given by

H(q(i)) = —>_; q(i)log q(i). b
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Clustering EM Algorithm

EM Algorithm

e Expectation step (E Step): find h! by minimizing the KL
divergence.

e Maximization step (M Step): find 6 by maximizing the
expectation.

Inp(X|0)

gold guew

Figure 9.14 of Bishop (2006) <
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