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Otax Newsgroup opinnot.tik.t613050

@ The course has an Otax newsgroup opinnot.tik.t613050

@ Suitable topics for the newsgroup include:

e Questions, comments and discussion about the topics of the
course.

o Organization of the course.

e Announcements by the course staff.

o Other discussion related to the course.

@ The advantage of posting to the newsgroup instead of sending
us email is that everyone can see the question and participate
to the discussion. Therefore, you should consider posting your
question or comment to the newsgroup if you have a question
or comment that could benefit also other participants of the
course.

@ See http://www.cis.hut.fi/Opinnot/T-61.3050/0tax \
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Term Project: Web Spam Detection

@ You have to pass both the examination and the term project
(exercise work) to pass the course.

@ The term project will be graded and it will affect the total
grade you will get of the course.
@ Deadlines:

e 23 November 2007: predictions for the test set and a
preliminary version of your project report.
o 30 November 2007: a presentation about your solution (for
some of you).
e 2 January 2008: The final report.
@ See http:
//www.cis.hut.fi/0Opinnot/T-61.3050/2007/project
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Term Project: Web Spam Detection

Practical arrangements

o Classification task (see the course web site for details).
@ You can work either alone or in groups of two (preferred).
@ Both members of the group get the same grade for the term
project.
@ There is a non-serious competition:
@ In November, we will publish an unlabeled test set.
e Your task is to make predictions on the test set and preliminary
draft of the report and submit them by email by 23 November.
e Some of you are asked to describe shortly your approach on 30
November problem session.

@ The final report is due 2 January 2008.

@ The web spam detection can be as difficult as you want: you
should use some basic methods you understand and not to try
to duplicate complicates methods introduced in research
articles.
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Term Project: Web Spam Detection

@ Search engines (Google, Yahoo Search,
MSN Search etc.) classify a web page
more relevant more relevant pages link to
it.

a3
Age o

@ A good place in search results is
financially valuable (it brings visitors).
@ Web spam: a page crafted to increase

search engine rating of affiliated pages (or
itself).

o Creation of extraneous pages which link
to each other and target page (link

Figure from Ntoulas et
al. (2006) Detecting
spam web pages

stuffing). through content

o Content may be engineered to appear analysis. In Proc 15th
relevant to popular searches (keyword WWW. ¢
stuffing).
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Term Project: Web Spam Detection

Hints

@ Look at the data first. Look for simple correlations, structures
etc.

@ It may be useful to browse through articles discussing web
spam (hint: http://scholar.google.com/).

@ Probably feature selection is important (some features are
correlated, some do not really contain information about the
class).

@ However: use methods that you understand, do not try to
duplicate very complex methods discussed in some articles.

@ More important than the best possible classification result by
a complex method is that you have a principled approach and
you understand what you are doing (and that Antti
understands your report, too). x
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From Discrete to Continuous Random Variables

Example: Bernoulli probability 6 € [0,1] — infinite number of
hypothesis (one for every 6).

Probability density p(8): P(a < 6 < b) = [© dp(6).

Sum rule: P(X) =3y P(X,Y) — p(X) = [dYp(X,Y).
Expectation: Ep(x) [f(X)] = >_x P(X)f(X) —

Epx) [F(X)] = [ dXp(X)f(X).

Normalization: Y, P(X) =1 — [dXp(X) = 1.

(]

X
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Estimating the Sex Ratio

@ What is our degree of belief T Mo Po05D) e
in the gender ratio, before e e
seeing any data (prior
probability density p(6))?

@ What is our degree of belief
in the gender ratio, after
seeing data X (posterior .
probability density b Sttt
p(9 | X))? 0.0 0.2 0.4 0.6 0.8 1.0

p(9 ’ X) x p(@)p(?{ | 0)’ “True” 6 = 0.55 is shown by the red
dotted line. The densities have been
scaled to have a maximum of one.

Kai Puolamaki T-61.3050




Reminders
Estimators
Bias and Variance

Parametric Methods

Estimating the Sex Ratio
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Predictions from the Posterior Probability Density

@ Task: predict probability of xN*1, given
N observations in X. 6

@ Marginalizations:
o p(X,0) = [dxNT1p(xNt1 x, 0) =

p(X | 0)p(6).
o p(X) = [ dOp(X,6) = @ @
J dop(X | 0)p(0). N

o p(x"t1 X)) = [dOp(xN*t1, x,0) =

[ dop(xNTL| 0)p(X | 0)p(6). Joint distriR/ution
o Posterior: p(f | X) = p(X,6)/p(X). E)?(fx E{I’X;E)l);

° E(ri(,vitlo‘r ;?)r ie\l/)v(izi’p;;;;(x) _ p(xN*L | 0)p(X |
[ dop(xN*t1 | 9)p(X,0)/p(X) = 0)p(6).
J dOp(x"*1 [ 0)p(0 | X). .
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Point Estimators

@ The posterior p(f | X') represents our best knowledge.
@ Predictor for new data point:

p(xN+1 | X) = [ dop(xN+ | B)p(0 | X).
@ The calculation of the integral may be infeasible.

e Estimate 6 by  (or posterior by p(f | X) ~ §(6 — 0)) and use
the predictor

PN | X) & p(xM1 | B).

X
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Estimators from the Posterior

Definition (Maximum Likelihood
Estimate)

Maximum a Posteriori Estimate (N=8)

—— flat prior (P=0.83)
--- empirical prior (P=0.84)
boundary prior (P=0.85)

IS

O = arg max log p(X | ).

Definition (Maximum a Posteriori

Estimate)

é\MAP = arg mgaxlog p(0 | X) 0.0 02 04 06 08 10
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Gaussian Density

@ A real number x is Gaussian

o . NGO
(normal) distributed with Yl
mean y and variance ¢ or )
x ~ N(p,0?) if its density . ]
function is
oy 1 (x — p)’ 5
P(X|Ma0)—ﬁexp<*T‘2 .
L =log P(X | p,0%) 3
2
N Zivzl (Xt - “)
= —5Iog(2n)—N|oga—T. s1— | | | ‘
m=+ ZN xt
ML : Nl g
{ =3 0 (x" - m)2

p(x | p=0,0>=1)

X
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Bayes' Estimator

@ Bayes' estimator:
eBayes = Ep(9|X) [0] = f d@@p(@ | X)
e Example: xt ~ N(0,03), t € {1,..., N}, and

0 ~ N(u,c?), where u, 0% and o3 are known
constants. Task: estimate 6.

xt —0)°
p(X10) = (%Ulg)w exp <_Zt (205 ) >

_ ! (6 —n)’
@ It can be shown that p(6 | X') is Gaussian
distributed with

G—@®
e e

X

i N/od l/o?
Poaves = Eotor0 1= 112 ™ W 102
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Bias and Variance

(]

Setup: unknown parameter 6 is estimated
by d(X) based on a sample X.

Example: estimate 62 by d = s°.

[

e Bias: by(d) = E[d] — 6. '
@ Variance: E [(d —E [d])z] af ’
@ Mean square error of the estimator Elg
r(d7 9) bias
Figure 4.1 of Alpaydin
(2004).
r(d,0) = E|(d—0)]
= (E[d]-0)+E|(d - E[d))’]
= Bias? + Variance. .
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Bias and Variance

Unbiased estimator of variance

Estimator is unbiased if by(d) = 0.

Assume X is sampled from a Gaussian distribution.
Estimate 02 by s%: s2 = £ 57, (x! — m)*.

We obtain:

e 6 o6 o

N-1
Epxina) [$°] = =™

e s? is not unbiased estimator, but 52 = ;Y;s? is:

e s2 is however asymptotically unbiased (that is, bias vanishes
when N — o0). N
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Example: Lighthouse
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See Problem Set 4/2007, problem 3.
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About Estimators

@ Point estimates collapse information contained in the posterior
distribution into one point.
@ Advantages of point estimates:

e Computations are easier: no need to do the integral.

e Point estimate may be more interpretable.

o Point estimates may be good enough. (If the model is
approximate anyway it may make no sense to compute the
integral exactly.)

@ Alternative to point estimates: do the integral analytically or
using approximate methods (MCMC, variational methods
etc.).

@ One should always use test set to validate the results. The
best estimate is the one performing best in the validation/test
set. b
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Classification and Regression -
Parametric

Parametric Classification and Regression

@ Task: estimation of p(r | x, X)
(classification or regression), given data

X = {(x*, r')}iLy

@ Generative modeling (likelihood-based
approach): Marginalize: G @
p(rN+1 | XN+ x) = e
[ dop(rNFL | xNFL 0)p(0 | X), where N @

p(0 | X) o p(0) TTiL, p(x*. r* | 6).
Example: Bayes Classifier as solved in the
following slides.
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Parametric Classification and Regression

@ Task: estimation of p(r | x, X)
(classification or regression), given data
X ={(x*, r)HLy

@ Discriminative modeling

(discriminant-based approach): x does Q @
not depend on our model 6 (x is a
covariate, we do not model it):
p(rN—i-l | XN'H,X) —
[ dop(rN+L | xN+1 0)py(6 | X), where
pa(68 | X) o< p(6) TTI, p(r* | x°,0).
Example: Bayesian regression.

z
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Parametric Classification

@ Bayes Classifier: p(C; | x) o« p(x | G;)P(C;).
@ Discriminant function:

gi(x) = log p(x | Ci) + log P(C).
@ Assume p(x | C;) are Gaussian:

€

p(x | Gip,0%) =

27T0'I-2 i

z

@ The discriminant function becomes:

1 RY:
gi(x) = —5 log 2W—Iog0;—()<2(7/;')+log P(G).

]
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Parametric Classification

o Sample X = {(x%, r))}N ; xt € R, vt € {0,1}K.

rt =1if x* € G, rf = 0 otherwise.

e Maximum Likelihood (ML) estimates:

) ! t
tli

Py =2l |y = 2T

@ Discriminant becomes:

1 — m;)?
gi(x) = 5 log 2ﬂ—|ogs;—w

e +log P(C).

i
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Equal variances: single boundary

Likelihoods
0.4 : : : : : : : : :
03 /\ /\ |
I /
E 02F // // 4
=
/ /
o1b ; i |
; ; ; ; ; ; ; ; ;
R 0 2 4 3 8 10
X
Posteriors with equal priors
I ! ! ! ﬁ\ ! ﬁ T T T
08 \ / B
\
2068 \/ 7
< X
204 ; A i |
/:\
02} J \ B
L L L L \\¢ L L L
R T 6 4 2 0 2 4 6 8 10

Figure 4.2 of Alpaydin (2004).

P(C)=P(C) , oi =05 K
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Parametric Classification

Variances are different: two boundaries

Likelihoods
04 : T T T T T T T T
03 |
Soalk 4
=
01 1
0 i L i i - i i i S
-0 8 -6 -4 -2 0 2 4 6 3 10

X

Posteriors with equal priors

( A
0.4 . b : 1
-10 -8 -6 -4 -2 0 2

Figure 4.3 of Alpaydin (2004).

8 10

P(G) = P(G) , of # 03 ¢

1.30
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Parametric Regression

Parametric Regression: Bayesian Regression

e Estimator: r ~ g(x | 0). —
o blr | x,0) ~ N(g(x | 0).0%) @
o L(O]X)=log [T, p(xt, rt) = e
log [TV, p(rt | x*) + N @
log [T:L1 P(x").

@ L(0|X) = const — NlogV2ro? — R
Y[t - g(x* | )] /(202). o

e E(0|X)= = e
i [ - e (x| O, C

e Maximizing £(0 | X') or minimizing §
E(6 | X) is equivalent to ML o
estimate of 6. Figure 4.4 of Alpaydin (2004). 4
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Parametric Regression: Bayesian Regression

o Example: G @
_ k k
glx | wo,...,wi) =D i wix*. e
|~ N

(polynomial regression)

e Square error: E(0 | X) =
N 2

3 e [rf —g(x* | O)]".

)

@ Relative square error: « ElRIx]=wxw,
E B Zivzl [rt B g(xt ’ 0)]2 E[RI#] x S p(m)x
R T C
o R2: R2 =1- ERSE- " X

Figure 4.4 of Alpaydin (2004).

X
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Bias and Variance

E|(r - g(x)P 1 x)= E|(r - E[r IX]? 1 x|+ (E[r 1 x] - g(x))

noise squared error
EXI(E[I’ 1x]-g |XJ E[r | x]- Ex[g(x)]’ +EXl(g(X)—EX[g(X)])2J
bias variance

19
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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Estimating Bias and Variance

M samples X={x!;, 1}, i=1,...M
are used to fit g;(x), i =1,...,.M

Bias®(g) = %Z[ﬁ(xt)— flx)f

t

Variance(g) —ZZ[QI( )-glx)f
§(X)=MZ§L-(X)

20

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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Bias/Variance Dilemma

e Example: gi(x) = 2 has no variance and high bias,
gi(x) =, rf/N has lower bias with variance.
@ Bias/Variance dilemma: as we increase complexity,

o bias decreases (a better fit to data) and
e variance increases (fit varies more with data).

X
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(a) Function and data (b) Order 1

-5
0

22
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2sf Best fit “min error”

23
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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Polynomial Regression

(a) Data and fitted polynomials

0 05 1 15 2 25 3 35 4 45 5

(b) Error vs polynomial order

Best fit, “elbow”

24
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ai Puolamaki




Bias/Variance Dilemma
Model Selection Procedures

. Conclusion
Model Selection

Outline

@ Model Selection

@ Model Selection Procedures

Kai Puolamaki T-61.3050



Bias/Variance Dilemma
Model Selection Procedures
Conclusion

Model Selection

@ Cross-validation: most robust if there is enough data.

@ Structural risk minimization (SRM): used, for example, in
support vector machines (SVM).

@ Bayesian model selection: use prior and Bayes' formula.

@ Minimum description length (MDL): can be viewed as MAP
estimate.

@ Regularization: add penalty term for complex models (can be
obtained, for example, from prior).

o Latter four methods do not strictly require validation set (at
least if implicit modeling assumptions are satisfied, such as
that in Bayesian model selection the data is from the model
family; it is always a good idea to use a test set) and latter
three are related.

@ There is no single best way for small amounts of data (your
prior assumptions matter). x
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Cross-validation

Separate data into training and validation sets.

Learn using training set.

Use error on validation set to select a model.

You need a test set also if you want an unbiased estimate of
error on new data.

Question: what is a sufficient size for the validation set?

(b) Error vs polynomial order

25 Validation

Figure 4.7 of Alpaydin (2004). X
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Structural Risk Minimization (SRM)

@ According to the PAC theory, with probability 1 — 4,

VC(H) (Iog vey + 1) - Iog%
N Y

Etest < Erraiv +

where N is the size of the training data, VC(H) is the
VC-dimension of the hypothesis class and Etgst is the
expected error on new data and E7grasy is the error on the
training set, respectively.

@ SRM: Choose hypothesis class (for example, the degree of a
polynomial) such that the bound on Etgst is minimized.

e Often used to train the Support Vector Machines (SVM).

e (Vapnik (1995) contains more discussion of the SRM inductive
principle; it won't be discussed in this course in more detail.) -

Kai Puolamaki T-61.3050
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Bayesian Model Selection

@ Define prior probability over models, p(model).

p(data | model)p(model)
p(data)

p(model | data) =

@ Equivalent to regularization, when prior favors simpler models.

@ MAP: choose model which maximizes

L = log p(data | model) + log p(model)

X
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Regularization

@ Augment the cost by a term which penalizes more complex
models: E(0 | X) — E'(6 | X) = E(f | X) + A x complexity.
@ Example: in Bayesian linear regression, define a Gaussian prior
for the model parameters wy, wi: p(wp) ~ N(0,1/X),
p(wi) ~ N(0,1/X). The old ML function reads (if the error
has an unit variance)

N
Ly(0] X)= Zr—g tw)]
The MAP estimate gives an addltlonal term
1
ﬁMAP(G ’ X) = ,CM,_(H ‘ X) - E)\ (Wg + Wf) .

This is an example of regularization (the prior favours models
with small wp, wy).

Kai Puolamaki T-61.3050
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Minimum Description Length (MDL)

@ Information theory: the optimal (shortest expected coding
length) code for an event with probability p is — log, p bits.

@ MAP estimate finds a model that minimizes
—L = —log, p(data | model) — log, p(model)

e —log, p(model): number of bits it takes to describe the
model.

e —log, p(data | model): number of bits it takes to describe
the data, if the model is known.

@ —/L: the description length of the data.

@ MAP estimate can be seen as finding a shortest description of
the data (that is, the best compression of the data). é
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@ Next lecture: Alpaydin (2004) Ch 5.
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