T-61.3050 Machine Learning: Basic Principles Bayesian Networks

Kai Puolamäki

Laboratory of Computer and Information Science (CIS)
Department of Computer Science and Engineering
Helsinki University of Technology (TKK)

Autumn 2007

Outline

- Bayesian Networks
 - Reminders
 - Inference
 - Finding the Structure of the Network
- Probabilistic Inference
 - Bernoulli Process
 - Posterior Probabilities
- Estimating Parameters
 - Estimates from Posterior
 - Bias and Variance
 - Conclusion

Rules of Probability

- P(E,F) = P(F,E): probability of both E and F happening.
- $P(E) = \sum_{F} P(E, F)$ (sum rule, marginalization)
- $P(E, F) = P(F \mid E)P(E)$ (product rule, conditional probability)
- Consequence: $P(F \mid E) = P(E \mid F)P(F)/P(E)$ (Bayes' formula)
- We say E and F are independent if P(E,F) = P(E)P(F) (for all E and F).
- We say E and F are conditionally independent given G if $P(E, F \mid G) = P(E \mid G)P(F \mid G)$, or equivalently $P(E \mid F, G) = P(E \mid G)$.

Bayesian Networks

Bayesian network is a directed acyclic graph (DAG) that describes a joint distribution over the vertices X_1, \ldots, X_d such that

$$P(X_1,\ldots,X_d)=\prod_{i=1}^d P(X_i\mid \mathrm{parents}(X_i)),$$

where parents(X_i) are the set of vertices from which there is an edge to X_i .

$$P(A, B, C) = P(A \mid C)P(B \mid C)P(C)$$
.
(A and B are conditionally independent given C.)

Outline

- Bayesian Networks
 - Reminders
 - Inference
 - Finding the Structure of the Network
- Probabilistic Inference
 - Bernoulli Process
 - Posterior Probabilities
- Stimating Parameters
 - Estimates from Posterior
 - Bias and Variance
 - Conclusion

- When structure of the Bayesian network and the probability factors are known, one usually wants to do inference by computing conditional probabilities.
- This can be done with the help of the sum and product rules.
- Example: probability of the cat being on roof if it is cloudy, $P(F \mid C)$?

Figure 3.5 of Alpaydin (2004).

- Example: probability of the cat being on roof if it is cloudy, $P(F \mid C)$?
- S, R and W are unknown or hidden variables.
- F and C are observed variables.
 Conventionally, we denote the observed variables by gray nodes (see figure on the right).
- We use the product rule $P(F \mid C) = P(F, C)/P(C)$, where $P(C) = \sum_{F} P(F, C)$.
- We must sum over or marginalize over hidden variables S, R and W: $P(F,C) = \sum_{S} \sum_{R} \sum_{W} P(C, S, R, W, F)$.

$$P(C, S, R, W, F) = P(F \mid R)P(W \mid S, R)P(S \mid C)P(R \mid C)P(C)$$

$$P(F,C) = P(C,S,R,W,F) + P(C,-S,R,W,F) +P(C,S,-R,W,F) + P(C,-S,-R,W,F) +P(C,S,R,-W,F) + P(C,-S,R,-W,F) +P(C,S,-R,-W,F) + P(C,-S,-R,-W,F)$$

- We obtain similar formula for P(F, -C), P(-F, C) and P(-F, -C).
- Notice: we have used shorthand F to denote F = 1 and -F to denote F = 0.
- In principle, we know the numeric value of each joint distribution, hence we can compute the probabilities.

$$P(C, S, R, W, F) = P(F \mid R)P(W \mid S, R)P(S \mid C)P(R \mid C)P(C)$$

- There are 2⁵ terms in the sums.
- Generally: marginalization is NP-hard, the most staightforward approach would involve a computation of $O(2^d)$ terms.
- We can often do better by smartly re-arranging the sums and products.
 Behold:
- Do the marginalization over W first: $P(C, S, R, F) = \sum_{W} P(F \mid R) P(W \mid S, R) P(S \mid C) P(R \mid C) P(C) = P(F \mid R) \sum_{W} [P(W \mid S, R)] P(S \mid C) P(R \mid C) P(C) = P(F \mid R) P(S \mid C) P(R \mid C) P(C).$

$$P(C, S, R, W, F) = P(F \mid R)P(W \mid S, R)P(S \mid C)P(R \mid C)P(C)$$

- Now we can marginalize over S easily: $P(C, R, F) = \sum_{S} P(F \mid R)P(S \mid C)P(R \mid C)P(C) = P(F \mid R)\sum_{S} [P(S \mid C)]P(R \mid C)P(C) = P(F \mid R)P(R \mid C)P(C).$
- We must still marginalize over R: $P(C, F) = P(F \mid R)P(R \mid C)P(C) + P(F \mid -R)P(-R \mid C)P(C) = 0.1 \times 0.8 \times 0.5 + 0.7 \times 0.2 \times 0.5 = 0.11.$
- $P(C, -F) = P(-F \mid R)P(R \mid C)P(C) + P(-F \mid -R)P(-R \mid C)P(C) = 0.9 \times 0.8 \times 0.5 + 0.3 \times 0.2 \times 0.5 = 0.39.$
- P(C) = P(C, F) + P(C, -F) = 0.5.
- $P(F \mid C) = P(C, F)/P(C) = 0.22$.
- $P(-F \mid C) = P(C, -F)/P(C) = 0.78$.

$$P(C, S, R, W, F) = P(F \mid R)P(W \mid S, R)P(S \mid C)P(R \mid C)P(C)$$

Bayesian Networks: Inference

- To do inference in Bayesian networks one has to marginalize over variables.
- For example: $P(X_1) = \sum_{X_2} \dots \sum_{X_d} P(X_1, \dots, X_d)$.
- If we have Boolean arguments the sum has $O(2^d)$ terms. This is inefficient!
- Generally, marginalization is a NP-hard problem.
- If Bayesian Network is a tree: Sum-Product Algorithm (a special case being Belief Propagation).
- If Bayesian Network is "close" to a tree: Junction Tree Algorithm.
- Otherwise: approximate methods (variational approximation, MCMC etc.)

Sum-Product Algorithm

- Idea: sum of products is difficult to compute. Product of sums is easy to compute, if sums have been re-arranged smartly.
- Example: disconnected Bayesian network with d vertices, computing $P(X_1)$.
 - sum of products: $P(X_1) = \sum_{X_2} \dots \sum_{X_d} P(X_1) \dots P(X_d)$.
 - product of sums:

$$P(X_1) = P(X_1) \left(\sum_{X_2} P(X_2) \right) \dots \left(\sum_{X_d} P(X_d) \right) = P(X_1).$$

- Sum-Product Algorithm works if the Bayesian Network is directed tree.
- For details, see e.g., Bishop (2006).

Sum-Product Algorithm Example

$$P(A, B, C, D) = P(A \mid D)P(B \mid D)P(C \mid D)P(D)$$

Task: compute $\tilde{P}(D) = \sum_{A} \sum_{B} \sum_{C} P(A, B, C, D)$.

Sum-Product Algorithm Example

$$P(A, B, C, D) = P(A \mid D)P(B \mid D)P(C \mid D)P(D)$$

- Factor graph is composed of vertices (ellipses) and factors (squares), describing the factors of the joint probability.
- The Sum-Product Algorithm re-arranges the product (check!):

$$\tilde{P}(D) = \left(\sum_{A} P(A \mid D)\right) \left(\sum_{B} P(B \mid D)\right) \left(\sum_{C} P(C \mid D)\right) P(D)
= \sum_{A} \sum_{D} \sum_{A} P(A, B, C, D).$$
(1)

Observations

- Bayesian network forms a partial order of the vertices. To find (one) total ordering of vertices: remove a vertex with no outgoing edges (zero out-degree) from the network and output the vertex. Iterate until the network is empty. (This way you can also check that the network is DAG.)
- If all variables are Boolean, storing a full Bayesian network of d vertices or full joint distribution as a look-up table takes $O(2^d)$ bytes.
- If the highest number of incoming edges (in-degree) is k, then storing a Bayesian network of d vertices as a look-up table takes $O(d2^k)$ bytes.
- When computing marginals, disconnected parts of the network do not contribute.
- Conditional independence is "easy" to see.

Bayesian Network: Classification

Bayes' rule inverts the arc:

$$P(C \mid x) = \frac{p(x \mid C)P(C)}{p(x)}$$

Alpaydin (2004) Ch 3 / slides

Naive Bayes' Classifier

Figure 3.7 Alpaydin (2004).

- X^i are conditionally independent given C.
- $P(X, C) = P(x^1 \mid C)P(x^2 \mid C) \dots P(x^d \mid C)P(C)$.

Naive Bayes' Classifier

- Plate is used as a shorthand notation for repetition. The number of repetitions is in the bottom right corner.
- Gray nodes denote observed variables.

Outline

- Bayesian Networks
 - Reminders
 - Inference
 - Finding the Structure of the Network
- Probabilistic Inference
 - Bernoulli Process
 - Posterior Probabilities
- Stimating Parameters
 - Estimates from Posterior
 - Bias and Variance
 - Conclusion

Finding the Structure of the Network

- Often, the network structure is given by an expert.
- In probabilistic modeling, the network structure defines the structure of the model.
- Finding an optimal Bayesian network structure is NP-hard
- Idea: Go through all possible network structures M and compute the likelihood of data \mathcal{X} given the network structure $P(\mathcal{X} \mid M)$.
- Choose the network complexity appropriately.
- Choose network that, for a given network complexity, gives the best likelihood.
- The Bayesian approach: choose structure M that maximizes $P(M \mid \mathcal{X}) \propto P(\mathcal{X} \mid M)P(M)$, where P(M) is a prior probability for network structure M (more complex networks should have smaller prior probability).

Finding a Network

- Full Bayesian network of d vertices and d(d-1)/2 edges describes the training set fully and the test set probably poorly.
- As before, in finding the network structure, we must control the complexity so that the model generalizes.
- Usually one must resort to approximate solutions to find the network structure (e.g., DEAL package in R).
- A feasible exact algorithm exists for up to d=32 variables, with a running time of $o(d^22^{d-2})$.
- See Silander et al. (2006) A Simple Optimal Approach for Finding the Globally Optimal Bayesian Network Structure. In Proc 22nd UAI. (pdf)

Finding a Network

Network found by Bene at http://b-course.hiit.fi/bene

t	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
	Sunny	Warm	Normal	Strong	Warm	Same	1
2	Sunny	Warm	High	Strong	Warm	Same	1
3	Rainy	Cold	High	Strong	Warm	Change	0
4	Sunny	Warm	High	Strong	Cool	Change	1

Outline

- Bayesian Networks
 - Reminders
 - Inference
 - Finding the Structure of the Network
- Probabilistic Inference
 - Bernoulli Process
 - Posterior Probabilities
- Estimating Parameters
 - Estimates from Posterior
 - Bias and Variance
 - Conclusion

Boys or Girls?

Figure: Sex ratio by country population aged below 15. Blue represents more women, red more men than the world average of 1.06 males/female. Image from Wikimedia Commons, author Dbachmann, GFDLv1.2.

Bernoulli Process

- The world average probability that a newborn child is a boy (X=1) is about $\theta=0.512$ [probability of a girl (X=0) is then $1-\theta=0.488$].
- Bernoulli process:

$$P(X = x \mid \theta) = \theta^{x} (1 - \theta)^{1 - x}, x \in \{0, 1\}.$$

- Assume we observe the genders of N newborn children, $\mathcal{X} = \{x^t\}_{t=1}^N$. What is the sex ratio?
- Joint distribution: $P(x^1, ..., x^N, \theta) = P(x^1 \mid \theta) ... P(x^N \mid \theta) P(\theta).$
- Notice we must fix some prior for θ , $P(\theta)$.

Equivalently:

Outline

- Bayesian Networks
 - Reminders
 - Inference
 - Finding the Structure of the Network
- Probabilistic Inference
 - Bernoulli Process
 - Posterior Probabilities
- Stimating Parameters
 - Estimates from Posterior
 - Bias and Variance
 - Conclusion

Comparing Models

The likelihood ratio (Bayes factor) is defined by

$$BF(\theta_2; \theta_1) = \frac{P(\mathcal{X} \mid \theta_2)}{P(\mathcal{X} \mid \theta_1)}$$

• If we believe before seeing any data that the probability of model θ_1 is $P(\theta_1)$ and of model θ_2 is $P(\theta_2)$ then the ratio of their posterior probabilities is given by

$$\frac{P(\theta_2 \mid \mathcal{X})}{P(\theta_1 \mid \mathcal{X})} = \frac{P(\theta_2)}{P(\theta_1)} \times BF(\theta_1; \theta_2)$$

- This ratio allows us to compare our degrees of beliefs into two models.
- Posterior probability density allows us to compare our degrees of beliefs between infinite number of models after observing the data.

Discrete vs. Continuous Random Variables

- The Bernoulli parameter θ is a real number in [0,1].
- Previously we considered binary (0/1) random variables.
- Generalization to multinomial random variables that can have values 1, 2, ..., K is straightforward.
- Generalization to continuous random variable: divide the interval [0,1] to K equally sized intervals of width $\Delta\theta=1/K$. Define probability density $p(\theta)$ such that the probability of θ being in interval $S_i=[(i-1)\Delta\theta,i\Delta\theta],\ i\in\{1,\ldots,K\}$, is $P(\theta\in S_i)=p(\theta')\Delta\theta$, where θ' is some point in S_i .
- At limit $\Delta \theta \rightarrow 0$:

$$E_{P(\theta)}[f(\theta)] = \sum_{\theta} P(\theta)f(\theta) \longrightarrow E_{p(\theta)}[f(\theta)] = \int d\theta p(\theta)f(\theta).$$

Discrete vs. Continuous Random Variables

- $P(\theta \in [(i-1)\Delta\theta, i\Delta\theta]) = p(\theta')\Delta\theta$.
- At limit $\Delta \theta \rightarrow 0$:

$$E_{P(\theta)}[f(\theta)] = \sum_{\theta} P(\theta)f(\theta) \longrightarrow E_{p(\theta)}[f(\theta)] = \int d\theta p(\theta)f(\theta).$$

Estimating the Sex Ratio

- Task: estimate the Bernoulli parameter θ , given N observations of the genders of newborns in an unnamed country.
- Assume the "true" Bernoulli parameter to be estimated in the unnamed country is $\theta = 0.55$, the global average being 51.2%.
- Posterior probability density after seeing N newborns in $\mathcal{X} = \{x^t\}_{t=1}^N$:

$$p(\theta \mid \mathcal{X}) = \frac{p(\mathcal{X} \mid \theta)p(\theta)}{p(\mathcal{X})}$$

$$\propto p(\theta) \prod_{t=1}^{N} \left[\theta^{x^{t}} (1-\theta)^{1-x^{t}}\right].$$

Estimating the Sex Ratio

What is our degree of belief in the gender ratio, before seeing any data (prior probability density $p(\theta)$)?

- Very agnostic view: $p(\theta) = 1$ (flat prior).
- Something similar than elsewhere (empirical prior).
- Conspiracy theory prior: all newborns are almost all boys or all girls (boundary prior).

"True" $\theta = 0.55$ is shown by the red dotted line. The densities have been scaled to have a maximum of one.

N=0

N=1

N=2

N=3

N=4

N=16

N=32

Observations

- With few data points the results are strongly dependent on the prior assumptions (inductive bias).
- As the number of data points grow, the results converge to the same answer.
- The conspiracy theory fades out quickly as we notice that there are both male and female babies.
- The only zero posterior probability is on hypothesis $\theta=0$ and $\theta=1$.
- It takes quite a lot observations to pin the result down to a reasonable accuracy.
- The posterior probability can be very small number.
 Therefore, we usually work with logs of probabilities.

Outline

- Bayesian Networks
 - Reminders
 - Inference
 - Finding the Structure of the Network
- Probabilistic Inference
 - Bernoulli Process
 - Posterior Probabilities
- Stimating Parameters
 - Estimates from Posterior
 - Bias and Variance
 - Conclusion

Predictions from the Posterior

- The posterior represents our best knowledge.
- Predictor for new data point:

$$p(x \mid \mathcal{X}) = E_{p(\theta \mid \mathcal{X})}[p(x \mid \theta)] = \int d\theta p(x \mid \theta) p(\theta \mid \mathcal{X}).$$

- The calculation of the integral may be infeasible.
- ullet Solution: estimate heta by $\hat{ heta}$ and use the predictor

$$p(x \mid \mathcal{X}) \approx p(x \mid \hat{\theta}).$$

Estimations from the Posterior

Definition (Maximum Likelihood Estimate)

$$\hat{\theta}_{ML} = rg \max_{\theta} \log p(\mathcal{X} \mid \theta).$$

Definition (Maximum a Posteriori Estimate)

$$\hat{\theta}_{MAP} = rg \max_{\theta} \log p(\theta \mid \mathcal{X}).$$

(With flat prior MAP Estimate reduces to the ML Estimate.)

Maximum a Posteriori Estimate (N=8)

Bernoulli Density

• Two states, $x \in \{0,1\}$, one parameter $\theta \in [0,1]$.

$$P(X = x \mid \theta) = \theta^{x} (1 - \theta)^{1-x}.$$

$$P(\mathcal{X} \mid \theta) = \prod_{t=1}^{N} \theta^{x^{t}} (1 - \theta)^{1 - x^{t}}.$$

$$\mathcal{L} = \log P(\mathcal{X} \mid \theta) = \sum_{t} x^{t} \log \theta + \left(N - \sum_{t} x^{t}\right) \log (1 - \theta).$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0 \Rightarrow \hat{\theta}_{ML} = \frac{1}{N} \sum_{t} x^{t}.$$

Multinomial Density

- K states, $x \in \{1, ..., K\}$, K real parameters $\theta_i \ge 0$ with constraint $\sum_{k=1}^K \theta_k = 1$.
- One observation is an integer k in $\{1, \ldots, K\}$ and it is represented by $x_i = \delta_{ik}$.

$$P(X = i \mid \theta) = \prod_{k=1}^{K} \theta_{k}^{x_{k}}.$$

$$P(X \mid \theta) = \prod_{t=1}^{N} \prod_{k=1}^{K} \theta_{k}^{x_{k}^{t}}.$$

$$\mathcal{L} = \log P(X \mid \theta) = \sum_{t=1}^{N} \sum_{k=1}^{K} x_{k}^{t} \log \theta_{k}.$$

$$\frac{\partial \mathcal{L}}{\partial \theta_{k}} = 0 \Rightarrow \hat{\theta}_{kML} = \frac{1}{N} \sum_{t=1}^{K} x_{k}^{t}.$$

Gaussian Density

• A real number x is Gaussian (normal) distributed with mean μ and variance σ^2 or $x \sim N(\mu, \sigma^2)$ if its density function is

$$\begin{split} p(x \mid \mu, \sigma^2) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). \\ \mathcal{L} &= \log P(\mathcal{X} \mid \mu, \sigma^2) \\ &= -\frac{N}{2} \log (2\pi) - N \log \sigma - \frac{\sum_{t=1}^{N} \left(x^t - \mu\right)^2}{2\sigma^2}. \\ ML &: \left\{ \begin{array}{l} m &= \frac{1}{N} \sum_{t=1}^{N} x^t \\ s^2 &= \frac{1}{N} \sum_{t=1}^{N} \left(x^t - m\right)^2 \end{array} \right. \end{split}$$

Outline

- Bayesian Networks
 - Reminders
 - Inference
 - Finding the Structure of the Network
- Probabilistic Inference
 - Bernoulli Process
 - Posterior Probabilities
- Stimating Parameters
 - Estimates from Posterior
 - Bias and Variance
 - Conclusion

Bias and Variance

- Setup: unknown parameter θ is estimated by $d(\mathcal{X})$ based on a sample \mathcal{X} .
- Example: estimate σ^2 by $d = s^2$.
- Bias: $b_{\theta}(d) = E[d] \theta$.
- Variance: $E\left[\left(d-E\left[d\right]\right)^{2}\right]$.
- Mean square error of the estimator r(d, θ):

$$r(d, \theta) = E[(d - \theta)^2]$$

= $(E[d] - \theta)^2 + E[(d - E[d])^2]$
= $Bias^2 + Variance$.

Figure 4.1 of Alpaydin (2004).

Bias and Variance Unbiased estimator of variance

- Estimator is unbiased if $b_{\theta}(d) = 0$.
- ullet Assume ${\mathcal X}$ is sampled from a Gaussian distribution.
- Estimate σ^2 by s^2 : $s^2 = \frac{1}{N} \sum_t (x^t m)^2$.
- We obtain:

$$E_{p(x|\mu,\sigma^2)}[s^2] = \frac{N-1}{N}\sigma^2.$$

• s^2 is not unbiased estimator, but $\frac{N}{N-1}s^2$ is:

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{t=1}^{N} (x^t - m)^2.$$

• s^2 is however asymptotically unbiased (that is, bias vanishes when $N \to \infty$).

Bayes' Estimator

• Bayes' estimator:

$$\hat{\theta}_{\mathsf{Bayes}} = \mathsf{E}_{p(\theta \mid \mathcal{X})}\left[\theta\right] = \int \mathsf{d}\theta \mathsf{d}\rho (\theta \mid \mathcal{X}).$$

• Example: $x^t \sim N(\theta, \sigma_0^2)$, $t \in \{1, ..., N\}$, and $\theta \sim N(\mu, \sigma^2)$, where μ , σ^2 and σ_0^2 are known constants. Task: estimate θ .

$$p(\mathcal{X} \mid \theta) = \frac{1}{(2\pi\sigma_0^2)^{N/2}} \exp\left(-\frac{\sum_t (x^t - \theta)^2}{2\sigma_0^2}\right),$$

$$p(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\theta - \mu)^2}{2\sigma^2}\right).$$

• It can be shown that $p(\theta \mid \mathcal{X})$ is Gaussian distributed with

$$\hat{\theta}_{\mathsf{Bayes}} = \mathit{E}_{\mathit{p}(\theta|\mathcal{X})}\left[\theta\right] = \frac{\mathit{N}/\sigma_0^2}{\mathit{N}/\sigma_0^2 + 1/\sigma^2} \mathit{m} + \frac{1/\sigma^2}{\mathit{N}/\sigma_0^2 + 1/\sigma^2} \mathit{\mu}.$$

Outline

- Bayesian Networks
 - Reminders
 - Inference
 - Finding the Structure of the Network
- Probabilistic Inference
 - Bernoulli Process
 - Posterior Probabilities
- Stimating Parameters
 - Estimates from Posterior
 - Bias and Variance
 - Conclusion

About Estimators

- Point estimates collapse information contained in the posterior distribution into one point.
- Advantages of point estimates:
 - Computations are easier: no need to do the integral.
 - Point estimate may be more interpretable.
 - Point estimates may be good enough. (If the model is approximate anyway it may make no sense to compute the integral exactly.)
- Alternative to point estimates: do the integral analytically or using approximate methods (MCMC, variational methods etc.).
- One should always use test set to validate the results. The best estimate is the one performing best in the validation/test set.

Conclusion

- Next lecture: More about Model Selection (Alpaydin (2004) Ch 4)
- Problem session on 5 October.