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of Probability

P(E,F) = P(F,E): probability of both E and F happening.
P(E) =>"f P(E, F) (sum rule, marginalization)

e P(E,F)= P(F | E)P(E) (product rule, conditional
probability)

o Consequence: P(F | E) = P(E | F)P(F)/P(E) (Bayes'
formula)

e We say E and F are independent if P(E, F) = P(E)P(F) (for
all E and F).

We say E and F are conditionally independent given G if
P(E,F | G) = P(E | G)P(F | G), or equivalently
P(E | F,G)=P(E|G).

X
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Bayesian Networks

Bayesian network is a directed acyclic graph (DAG) that describes
a joint distribution over the vertices Xi,...,Xy such that

d
P(X4,..., Xa) = [ ] P(X; | parents(X))),
i=1
where parents(X;) are the set of vertices from which there is an
edge to X;.
P(A,B,C)=P(A| C)P(B| C)P(C).
(A and B are conditionally independent given C.) <
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Inference in Bayesian Networks

@ When structure of the
Bayesian network and the
probability factors are
known, one usually wants to
do inference by computing
conditional probabilities.

@ This can be done with the
help of the sum and product
rules.

o Example: probability of the
cat being on roof if it is
cloudy, P(F | C)?

Kai Puolamaki

P(C)=0.5

P(S1C)=0.1
P(S1~C)=0.5

P(R10)=0.8
P(R1~C)=0.1

P(WIR.$)=0.95
P(W I R,~S)=0.90
P(W 1 ~R,$)=0.90

P(WI ~R,~S)—0.1

Figure 3.5 of Alpaydin (2004).

P(FIR)=0.1
P(F1~R)=0.7
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Inference in Bayesian Networks

@ Example: probability of the cat being on
roof if it is cloudy, P(F | C)?

@ S, R and W are unknown or hidden
variables.

@ F and C are observed variables.
Conventionally, we denote the observed
variables by gray nodes (see figure on the

right).

@ We use the product rule
P(F | C)=P(F,C)/P(C), where P(C,S,R,W,F) =
P(C)=> g P(F,C). P(F | R)P(W |

@ We must sum over or marginalize over S,R)P(S | C)P(R |
hidden variables S, R and W: P(F,C) = C)P(C)
ZSZRZW'D(C)SvR?WvF)' h
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Inference in Bayesian Networks

P(F,C) =

P(C,S,R,W,F)+ P(C,—S,R,W,F)
+P(C,S5,—R,W,F)+ P(C,—S,—R,W,F)
+P(C,S5,R,—W,F)+ P(C,—S,R,—W,F)
+P(C,S,—-R,-W,F)+ P(C,—-S,—R,—W,F)

@ We obtain similar formula for P(F,—C),
P(—F,C) and P(—F,-C).

@ Notice: we have used shorthand F to P(C,S,R,W,F)=
denote F =1 and —F to denote F = 0. P(’F i R’)P(7W |

@ In principle, we know the numeric value of S R)P(S | C)P(R |
each joint distribution, hence we can C)P(C)
compute the probabilities. K
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Inference in Bayesian Networks

@ There are 2° terms in the sums.

@ Generally: marginalization is NP-hard, the @
most staightforward approach would

involve a computation of O(29) terms.

@ We can often do better by smartly @ @

re-arranging the sums and products.
Behold:

@ Do the marginalization over W first: @ @

P(C,S,R,F)=> wP(F|R)P(W|

P(C,S,R,W,F) =
S.R)P(S| C)P(R | O)P(C) = P(F | POF | RIP(W |
R)S,y [P(W | S, RIP(S | O)P(R| 5. RYP(S | OOP(R |
C)P(C) = P(F [ R)P(S | CO)P(R| PO

C)P(C).
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Inference in Bayesian Networks

o Now we can marginalize over S easily:
P(C,R,F) =25 P(FIR)P(S| C)P(R |
C)P(C) = P(F | R) s [P(S| O)IP(R |
C)P(C)=P(F| R)P(R| C)P(C).

o We must still marginalize over R:
P(C,F)=P(F| R)P(R|
C)P(C)+ P(F| —R)P(—R | O)P(C) =
0.1x0.8x05+0.7x0.2x0.5=0.11.

o P(C,—F)=P(~F | R)P(R | et grass
C)P(C)+P(=F | =R)P(=R| O)P(C) = p(C.5 R W, F) -
0.9 % 0.8 x 0.5+ 0.3 x 0.2 x 0.5 = 0.39. P(F | RYP(W |

o P(C)=P(C,F)+P(C,—F)=05. S,R)P(S| C)P(R |

o P(F| C)=P(C,F)/P(C)=0.22. C)P(C)

o P(—F | C)=P(C,—F)/P(C) =0.78. ;
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Bayesian Networks: Inference

@ To do inference in Bayesian networks one has to marginalize
over variables.

o For example: P(X1) =3y, ... D> x, P(X1,..., Xq).

o If we have Boolean arguments the sum has O(29) terms. This
is inefficient!

o Generally, marginalization is a NP-hard problem.

o If Bayesian Network is a tree: Sum-Product Algorithm (a
special case being Belief Propagation).

o If Bayesian Network is “close” to a tree: Junction Tree
Algorithm.

@ Otherwise: approximate methods (variational approximation,
MCMC etc.)

X
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Sum-Product Algorithm

@ Idea: sum of products is difficult to compute. Product of sums
is easy to compute, if sums have been re-arranged smartly.

@ Example: disconnected Bayesian network with d vertices,
computing P(X1).
o sum of products: P(X1) =)y ... > x, P(X1)... P(Xq).
e product of sums:
P(X1) = P(X1) (x, P(X2)) ... (Xox, P(Xa)) = P(X1).
@ Sum-Product Algorithm works if the Bayesian Network is
directed tree.

e For details, see e.g., Bishop (2006).

X
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Sum-Product Algorithm

Example

P(A,B,C,D)=P(A| D)P(B| D)P(C | D)P(D)

Task: compute P(D) =S, 35> P(A, B, C, D).
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Sum-Product Algorithm

Example

][] [reo] oo

D b

P(A,B,C,D)=P(A| D)P(B| D)P(C | D)P(D)

e Factor graph is composed of vertices (ellipses) and factors
(squares), describing the factors of the joint probability.
@ The Sum-Product Algorithm re-arranges the product (check!):

<Z P(A| D)) (Z P(B | D)) (Z P(C | D)) P(D)
A B C
A B C
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Observations

@ Bayesian network forms a partial order of the vertices. To find
(one) total ordering of vertices: remove a vertex with no
outgoing edges (zero out-degree) from the network and
output the vertex. lterate until the network is empty. (This
way you can also check that the network is DAG.)

o If all variables are Boolean, storing a full Bayesian network of
d vertices — or full joint distribution — as a look-up table
takes O(29) bytes.

o If the highest number of incoming edges (in-degree) is k, then
storing a Bayesian network of d vertices as a look-up table
takes O(d2¥) bytes.

@ When computing marginals, disconnected parts of the network
do not contribute.

o Conditional independence is “easy” to see. b
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Bayesian Network: Classification

P(C)
Bayes’ rule inverts the arc:

px|0) P(Clx):D(XLf—}z)HC)

Alpaydin (2004) Ch 3 / slides

X

Kai Puolamaki T-61.3050



Bayesian Networks Reminders
Inference
Finding the Structure of the Network

Naive Bayes' Classifier

Figure 3.7 Alpaydin (2004).

@ X' are conditionally independent given C.
o P(X,C)=P(x*| C)P(x*>| C)...P(x?| C)P(C).
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Naive Bayes' Classifier

Equivalently:

@ Plate is used as a shorthand notation for repetition. The
number of repetitions is in the bottom right corner.

@ Gray nodes denote observed variables.
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Finding the Structure of the Network

@ Often, the network structure is given by an expert.

@ In probabilistic modeling, the network structure defines the
structure of the model.

e Finding an optimal Bayesian network structure is NP-hard

@ Idea: Go through all possible network structures M and
compute the likelihood of data X’ given the network structure
P(X | M).

@ Choose the network complexity appropriately.

@ Choose network that, for a given network complexity, gives
the best likelihood.

@ The Bayesian approach: choose structure M that maximizes
P(M | X) < P(X | M)P(M), where P(M) is a prior
probability for network structure M (more complex networks
should have smaller prior probability).

Kai Puolamaki T-61.3050
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Finding a Network

e Full Bayesian network of d vertices and d(d — 1)/2 edges
describes the training set fully and the test set probably poorly.

@ As before, in finding the network structure, we must control
the complexity so that the the model generalizes.

@ Usually one must resort to approximate solutions to find the
network structure (e.g., DEAL package in R).

o A feasible exact algorithm exists for up to d = 32 variables,
with a running time of o(d?29-2).
@ See Silander et al. (2006) A Simple Optimal Approach for

Finding the Globally Optimal Bayesian Network Structure. In
Proc 22nd UAL. (pdf)

X
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Finding a Network

Network found by Bene at http://b-course.hiit.fi/bene

t ‘ Sky AirTemp  Humidity ~ Wind  Water  Forecast ‘ EnjoySport

1 | Sunny Warm Normal  Strong Warm Same 1

2 | Sunny Warm High Strong  Warm Same 1

3 | Rainy Cold High Strong  Warm  Change 0

4 | Sunny  Warm High Strong  Cool Change 1 ¢
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Boys or Girls?

Figure: Sex ratio by country population aged below 15. Blue represents
more women, red more men than the world average of 1.06 males/female.
Image from Wikimedia Commons, author Dbachmann, GFDLv1.2.
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Probabilistic Inference

Bernoulli Process

@ The world average probability that a newborn
child is a boy (X = 1) is about § = 0.512
[probability of a girl (X = 0) is then
1— 6 =0.488].

@ Bernoulli process:

P(X=x|0)=6(1-60)"" , xe{0,1}.

Equivalently:
@ Assume we observe the genders of N newborn
children, X = {x*}M_,. What is the sex ratio?
@ Joint distribution: @
P(xt,...,xN.0) = P(x'|6)...P(xN | 0)P(6). N

@ Notice we must fix some prior for 6, P(0).

X
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Comparing Models

@ The likelihood ratio (Bayes factor) is defined by

BF(62;61) = m

o If we believe before seeing any data that the probability of
model 0 is P(61) and of model 65 is P(62) then the ratio of
their posterior probabilities is given by

P02 | X) _ P(62)
= BF(601; 6
P x) P < OT )

@ This ratio allows us to compare our degrees of beliefs into two
models.

@ Posterior probability density allows us to compare our degrees
of beliefs between infinite number of models after observing
the data.
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Discrete vs. Continuous Random Variables

@ The Bernoulli parameter 6 is a real number in [0, 1].
@ Previously we considered binary (0/1) random variables.

@ Generalization to multinomial random variables that can have
values 1,2, ..., K is straightforward.

@ Generalization to continuous random variable: divide the
interval [0, 1] to K equally sized intervals of width Af = 1/K.
Define probability density p(#) such that the probability of ¢
being in interval S; = [(i — 1)A0,iAd], i € {1,...,K}, is
P(0 € Si) = p(0')AG, where #' is some point in S;.

o At limit A — O:

Epo [F(6)] = Y- PO)F(6) — Eno 1)) = [ dBp(0)F(0).
0

X
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Discrete vs. Continuous Random Variables

p(®)

[ ]

0 1

JAC]

PO

6

e P(Oe[(i—1)Ad,iA0]) = p(8)Ab.
e At limit A8 — 0:

Epo) [F(0)] = 3 P(O)F(6) — Enoy [£(6)] = / dOp(0)F(0).
0

X
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Estimating the Sex Ratio

@ Task: estimate the Bernoulli parameter 6, given N
observations of the genders of newborns in an unnamed
country.

@ Assume the “true” Bernoulli parameter to be estimated in the
unnamed country is § = 0.55, the global average being 51.2%.

@ Posterior probability density after seeing N newborns in

X = {x"}Hl
_ p(X[0)p(6)
N
x pO]] [9“(1—9)1*]

X
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Estimating the Sex Ratio

What is our degree of belief in

the gender ratio, before seeing T emprical o (b0 70)
. g boundary prior (P=0.51)

any data (prior probability

density p(6))?

@ Very agnostic view:
p(6) =1 (flat prior).

@ Something similar than
elsewhere (empirical prior).

o Conspiracy theory pl’iori a” 0_‘0 0‘.2 0‘4 0.‘6 0‘.8 1‘.0
newborns are almost all boys 0
or all girls (boundary prior). “True" 6 = 0.55 is shown by the red
dotted line. The densities have been
scaled to have a maximum of one. S
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Estimating the Sex Ratio

Posterior probability density

—— flat prior (P=0.55)
- - empirical prior (P=0.78)
boundary prior (P=0.51)
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

—— flat prior (P=0.30)
--- empirical prior (P=0.75)
boundary prior (P=0.07)




Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

Bernoulli Process
Posterior Probabilities

—— flat prior (P=0.57)
--- empirical prior (P=0.78)
boundary prior (P=0.55)
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

—— flat prior (P=0.76)
--- empirical prior (P=0.81)
boundary prior (P=0.79)
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

N=4

—— flat prior (P=0.59)
--- empirical prior (P=0.78)
boundary prior (P=0.58)
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

—— flat prior (P=0.83)
--- empirical prior (P=0.84)
boundary prior (P=0.85)
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

N=16

—— flat prior (P=0.47)
--- empirical prior (P=0.75)
boundary prior (P=0.45)
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

N=32

—— flat prior (P=0.72)
--- empirical prior (P=0.83)
boundary prior (P=0.71)
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

N=64

—— flat prior (P=0.86)
--- empirical prior (P=0.89)
boundary prior (P=0.85)
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Estimating the Sex Ratio

Posterior probability density

N=128

—— flat prior (P=0.91)
--- empirical prior (P=0.93)
boundary prior (P=0.90)
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

N=256

—— flat prior (P=0.80)
--- empirical prior (P=0.87)
boundary prior (P=0.80)

0.0 0.2 0.4 0.6 0.8 1.0 ~
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

N=512

—— flat prior (P=0.59)
--- empirical prior (P=0.70)
boundary prior (P=0.59)

T T T T T
0.0 0.2 0.4 0.6 0.8
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Probabilistic Inference

Estimating the Sex Ratio

Posterior probability density

N=1024

—— flat prior (P=0.36)
--- empirical prior (P=0.45)
boundary prior (P=0.36)

T T T T T
0.0 0.2 0.4 0.6 0.8
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Estimating the Sex Ratio

Posterior probability density

N=2048

—— flat prior (P=0.42)
--- empirical prior (P=0.49)
boundary prior (P=0.42)

T T T T T
0.0 0.2 0.4 0.6 0.8
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Estimating the Sex Ratio

Posterior probability density

N=4096

—— flat prior (P=0.12)
--- empirical prior (P=0.14)
boundary prior (P=0.11)

T T T T T
0.0 0.2 0.4 0.6 0.8
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Probabilistic Inference Posterior Probabilities

Observations

With few data points the results are strongly dependent on
the prior assumptions (inductive bias).

@ As the number of data points grow, the results converge to
the same answer.

@ The conspiracy theory fades out quickly as we notice that
there are both male and female babies.

@ The only zero posterior probability is on hypothesis § = 0 and
=1

@ It takes quite a lot observations to pin the result down to a
reasonable accuracy.

@ The posterior probability can be very small number.
Therefore, we usually work with logs of probabilities.

X
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Predictions from the Posterior

The posterior represents our best knowledge.

Predictor for new data point:

p(x | X) = Exoy [p(x | 6)] = / dop(x | O)p(0 | X).

The calculation of the integral may be infeasible.

Solution: estimate 6 by 6 and use the predictor
p(x | X) ~ p(x | B).

X
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Estimations from the Posterior

Definition (Maximum
Likelihood Esti mate) Maximum a Posteriori Estimate (N=8)

—— flat prior (P=0.83)
--- empirical prior (P=0.84)

HML = arg meax Iog p(X | 9) boundary prior (P=0.85)

"
o

Definition (Maximum a
Posteriori Estimate)

Orap = arg mg]xlog p(0 ] X).

(With flat prior MAP ‘ — ‘
Estimate reduces to the ' ' ' ' '
ML Estimate.) b

o’
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Bernoulli Density

e Two states, x € {0,1}, one parameter 6 € [0, 1].
P(X =x|0)=6<(1-6)"".

N
P(X | 0) = H -

L=logP(X |0)= Zx Iog9+<N Zx)log (1-9).

oL A 1«
%_O:}HML_NZ:X

X

Kai Puolamaki T-61.3050



Estimates from Posterior
Bias and Variance
Estimating Parameters Conclusion

Multinomial Density

e K states, x € {1,...,K}, K real parameters 6; > 0 with
constraint S°K_ 6, = 1.

@ One observation is an integer k in {1,..., K} and it is
represented by x; = Jjx.

K
P(X=1il0)=]]0
k=1
N K o
P o) =TI I] o
t=1 k=1
N K
L=logP(X|0)=> ) x{logb.
t=1 k=1
oL . 1 .
89k—0:>9kML—N¥Xk. C
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Gaussian Density

@ A real number x is Gaussian
(normal) distributed with
mean j and variance o2 or
x ~ N(u,c?) if its density
function is

1 — 1)? o
op (M) e
\V2mo? 202

L =log P(X | p,c°) 3

N t 2
xt—
- *glog(2ﬂ')*N|0gU*W. g1 T T T T T

1 N -4 -2 0 2 4
1 t
ML.{mNZt—IX x

=15 xt —m)’
N 2ee ( ) p(x],u:O,azzl)

N(0,1)

p(x | p,0%) =

X
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Bias and Variance

]

Setup: unknown parameter 6 is estimated
by d(X) based on a sample X

Example: estimate 02 by d = s°.

[

@ Bias: by(d) = E[d] — 6. .
o Variance: E [(d —E [d])z] n 7
@ Mean square error of the estimator E[g
r(d, 9) bias
Figure 4.1 of Alpaydin
(2004).

r(d,0) = E|(d—0)]
— (E[d]-0)°+E|(d - E[))’]

= Bias® + Variance.

X
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Bias and Variance

Unbiased estimator of variance

Estimator is unbiased if by(d) = 0.
Assume X is sampled from a Gaussian distribution.
Estimate 02 by s%: s> = 4 >, (xt — m)?.
We obtain: N1

21 _ WN—1 »
Ep(xiuo?) [5°] = ==~

@ s2 is not unbiased estimator, but 152 is:

e s2 is however asymptotically unbiased (that is, bias vanishes
when N — o0). N
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Bayes' Estimator

o Bayes' estimator:
HBayes = Ep(9|X) [9] = f d@@p(@ ‘ X)
e Example: xt ~ N(0,03), t € {1,..., N}, and

0 ~ N(u,c?), where u, 0% and o3 are known
constants. Task: estimate 6.

Zt (Xt _9)2>7

1
PXLO) = oy P (‘ 203

@
e e

p(0)

1 (6 —n)’
e (-0,

@ It can be shown that p(6 | X) is Gaussian
distributed with

y

A N/ao3 1/0?
Isares = Epto) V) = 702 12 ™ o+ 177 ;
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About Estimators

@ Point estimates collapse information contained in the posterior
distribution into one point.
@ Advantages of point estimates:

e Computations are easier: no need to do the integral.

e Point estimate may be more interpretable.

o Point estimates may be good enough. (If the model is
approximate anyway it may make no sense to compute the
integral exactly.)

@ Alternative to point estimates: do the integral analytically or
using approximate methods (MCMC, variational methods
etc.).

@ One should always use test set to validate the results. The
best estimate is the one performing best in the validation /test
set. X
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Conclusion

@ Next lecture: More about Model Selection (Alpaydin (2004)
Ch 4)

@ Problem session on 5 October.
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