4.18 Supervised Learning Viewed as an Optimization
Problem

e The supervised training of a multilayer perceptron (MLP) is now viewed
as a numerical optimization problem.

e The error surface of a MLP is a highly nonlinear function of the weight
vector w.

o Let &,,(w) denote the cost function, averaged over the training sample
set.



Recall now from Section 3.3 the Taylor series expansion of a scalar
function £(w) of (the components of) the vector w:

E(w+Aw) = Ew)+glAw + %(AW)THAW + -

Here Aw is a (small) correction or update term.

g is the gradient vector of £(w), and H its Hessian matrix, both
evaluated at the point w.

When applied to &,,(w) with dependences on n included, the Taylor
series expansion becomes

Ea(W(n) + Aw(n)) = Eun(w(n)) + g’ (n)Aw(n)

+ —Aw'(n)H(n)Aw(n) + - - -
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The local gradient g(n) is defined by evaluating the quantity

agav (W)

g(n) = T ow

at the point w = w(n).
The local Hessian matrix H(n) is similarly defined by

0?E,, (W)
ow? '’

evaluated also at the operating point w = w(n).

H(n) =

Because the ensemble averaged cost function &,,(w) is used here, a
batch mode of learning is presumed.

In the steepest descent method, the adjustment Aw(n) applied to the
weight vector w(n) is defined by the negative gradient vector

Aw(n) = -ng(n)

where 7 is the learning-rate parameter.



An example of this is the back-propagation algorithm in the batch
mode.

In effect, the steepest descent method uses a linear approximation of
the cost function around the operating point Aw(n).

There the gradient vector is the only source of local information about
the error surface.

Advantage: simplicity of implementation.
Drawback: convergence can be very slow in large-scale problems.

Inclusion of the momentum term is a crude attempt to use some
second-order information about the error surface.

It helps somewhat, but makes the training process more delicate to
manage.

Reason: the designer must “tune” one more parameter.



For improving significantly the convergence speed of MLP training, one
must use higher-order information.

This can be done by using a quadratic approximation of the error
surface around the current point w(n).

It is easy to see that the optimum value of the update Aw(n) of the
weight vector w(n) is

Here it is assumed that the inverse H™!(n) of the Hessian matrix H(n)
exists.

The above formula is the essence of Newton's method (Section 3.3)

However, the practical application of Newton's method to supervised
training of MLP's is handicapped by the following factors:

— One must calculate the inverse Hessian H™!(n), which can be

computationally expensive.
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— The Hessian matrix H(n) must be nonsingular so that H™!(n)
exists. This condition does not necessarily always hold.

— When the cost function &,,(w) is nonquadratic, there is no gua-
rantee for the convergence of Newton's method.

Some of these difficulties can be overcome by using a quasi-Newton
method.

This requires an estimate of the gradient vector g only.

However, even the quasi-Newton methods are computationally too ex-
pensive except for the training of very small-scale neural networks.

They are described at the end of Section 4.18; skipped in our course.

Another class of second-order optimization methods: conjugate-gradient
methodes.

Somewhat intermediate between the steepest descent and Newton's
method.



They need not the Hessian matrix, avoiding the difficulties associated
with its evaluation, storage, and inversion.

Essential idea of conjugate-gradient methods: a more sophisticated
update direction than the gradient is used.

Conjugate-gradient methods are applicable also to large-scale problems
involving hundreds or thousands of adjustable parameters.

They are well suited for the training of a MLP network, too.



Nonlinear Conjugate Gradient Algorithm for the Training of an MLP

e |nitialization

e Computation

1.

For w(0), use back-propagation to compute the gradient vector
g(0).

2. Set s(0) =r(0) = —g(0).
3. At time step n, use a line search to find 7(n) that minimizes

Eav(n) sufficiently, representing &,,(n) expressed as a function of
7 for fixed w and s.

. Test to determine if Euclidean norm of the residual r(n) has fallen

below a specified value, that is a small fraction of the initial value.

Update the weight vector:
w(n+1) = w(n) +n(n)s(n)

For w(n + 1), use backprop to compute the updated gradient

vector g(n + 1).
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7. Setr(n+1)=—gn+1).
8. Use Polak-Ribiére method to calculate 5(n + 1):

r’(n+1)(r(n+1) —r(n)) O}

B+ 1) = max |

9. Update the direction vector:
sin+1)=r(n+1)+ B(n+ 1)s(n)
10. Set n =n + 1, and go back to step 3.

e Stopping criterion. Terminate the algorithm when the following condi-
tion is satisfied:
|Ir(n)[| < el[r(0)]]

where ¢ is a prescribed small number.



o Note: The Gauss-Newton method discussed in Section 3.3 is available
in MATLAB for training MLP networks.

e The stabilized Gauss-Newton formula (3.23) is called there Levenberg-
Marquardt's algorithm.
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5.

5.1

Radial-Basis Function Networks

Introduction

Back-propagation algorithm may be viewed as a stochastic approxima-
tion technique for supervised training of a MLP network.

Now a completely different viewpoint is taken on the design of a neural
network.

It is treated as a curve-fitting (approximation) problem in a high-
dimensional space.

Learning is then equivalent to finding a surface in a multidimensional
space that provides the best fit to the training data (in some statistical
sense).
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Generalization is equivalent to using the found surface to interpolate
the test data.

Such a philosophy lies behind the method of radial-basis functions.

The hidden units provide a set of “functions” that constitute an arbit-
rary basis for the input vectors (patterns).

These functions are called radial-basis functions.

The radial basis functions were first introduced in the solution of the
real multivariate interpolation problem.

They are currently one of the main fields of research in numerical ana-
lysis.
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Network
inputs

Network
outputs

e A basic radial-basis function (RBF) network consists of three layers
having entirely different roles:
1. Input layer is made up of source nodes (sensory units).

2. The hidden layer applies a nonlinear transformation from the input
space to the hidden space.

- RBF networks have only one, often high-dimensional hidden
layer.

3. A linear output layer.
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The hidden space is usually chosen high-dimensional because of two
reasons:

1. Pattern vectors are more likely to be linearly separable in a high-
dimensional space.

2. The approximation ability of the network is the better the more
there are hidden units.

In this course, we concentrate on basic RBF networks.
We go through the first and last sections of Chapter 5.

Most of the regularization theory (Sections 5.5-5.9) will be skipped.
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5.2 Cover’'s Theorem on the Separability of Patterns

e Consider the use of a RBF network for a complex pattern classification
task.

e The problem is basically solved by transforming it into a high-dimensional
space in a nonlinear manner.

e Justification: Cover’s theorem on the separability of patterns:

e A complex pattern classification problem cast in a high-dimensional
space nonlinearly is more likely to be linearly separable than in a low-
dimensional space.

e If the patterns are linearly separable, the classification problem is fairly
easy to solve.

e In the following, the separability of patterns is studied.
e This yields a lot of insight into the operation of RBF networks.

e Consider a family of surfaces.
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Each surface divides an input space into two regions.

H = {x1,X2,...,Xy} is a set of N pattern vectors.

Each pattern vector belongs to one of the two classes H; or Ho.
This kind of binary partition is called a dichotomy.

A dichotomy is called separable with respect to a family of surfaces if
there exists a surface separating the points in class H; from those in
class Hs.

Let 1(x), p2(X), ..., ©m, (x) be a set of m; real-valued functions.

Using these functions, we can define for each pattern x € H the vector

f(x) = [p1(x), 02(x), ..., om, (x)]"

Assume now that x is a mg-dimensional vector.

Then the function f(x) maps points in mg-dimensional input space
into corresponding points in a new space of dimension m;.



wi(x) is referred to as a hidden function.

The space spanned by the functions ¢1(x), ..., omn, (x) is called the
hidden space or feature space.

The hidden functions have a similar role as hidden units in an MLP
network.

A dichotomy [H1, Hz] of H is said to be ¢ — separable if there exists
an mq-dimensional vector w satisfying the condition

wlf(x)

> 0, xeH;
wif(x) < 0

, X €H,

The hyperplane defined by the equation
wlf(x) =0

describes the separating surface in the hidden (-space.
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The inverse image of this subspace, that is,
x: wif(x)=0
defines the separating surface in the input space.

Consider a class of mappings defined by a linear combination of r-wise
products of the pattern vector coordinates.

(Kasitelladn kuvausta, jonka madrittelee r:n hahmovektorin koordi-
naattien tulojen lineaarikombinaatiot)

The separating surface corresponding to such a mapping is given by
the rth degree homogenous equation

E aim._i,,,xilxb e ZEZ'7, = O

0<ii<...<ir<mg

Here x; is the 1th component of the input vector x having mg compo-
nents.

X is set to unity for expressing the equation in homogenous form.



e Such surfaces are called rth-order rational varieties.

e An rth order product x;,x;, ... x;. of entries x; of x is called a mono-
mial.
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e Examples of rational varieties are:

- hyperplanes (first-order rational varieties)

- quadrics (second-order rational varieties)

- hyperspheres (second-order rational varieties with certain linear con-
straints on the coefficients).

e Three examples of y-separable dichotomies of different sets of five
points in 2D.

X X [o]
% o
X X X x
% o
o

(a) Linearly (b) spherically (c) quadrically
separable dichotomy

e In general, linear separability implies spherical separability which implies
quadric separability.
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The converses are not necessarily true.

Consider now the probability that a particular dichotomy picked at
random is (-separable.

The higher is the dimension m; of the hidden space, the closer is this
probability to unity.

The required assumptions and the result are described somewhat in
more detail on pp. 259-260 in Haykin's book.

Even though here the hidden-unit surfaces have a polynomial form, the
result is generally applicable.
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e Summarizing, Cover's theorem on the separability of patterns has two
basic ingredients:

1. Nonlinear formulation of the hidden functions ¢;(x), i = 1,2,...,m;.

2. High dimensionality of the hidden space compared to the input
space.

e Sometimes the use of nonlinear mapping alone without increasing the
dimensionality is sufficient for producing linear separability.
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Example 5.1: The XOR Problem

e For illustrating the importance of y-separability, consider again the
simple yet important XOR problem.

e Four points (patterns) (1,1), (0,1), (0,0), and (1,0) in a two-dimensional
input space .

e Requirement: construct a binary classifier with output:
- 0 for the inputs (1,1) or (0,0)
- 1 for the inputs (1,0) or (0,1).

e Recall that the XOR problem is not linearly separable in the original
input space.

e Define a pair of Gaussian hidden functions
pr(x) = exp(— | x =t [|*),  t:=[1,1]"
pa(x) = exp(— | x = t2 [|*),  t2=[0,0]"
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e The 4 input patterns are mapped onto the (; - 5 plane as shown in
the table and figure on the right.

10 e(.1)
08| \\\\
06 \\\?i‘l;i(sait?r?dary
01 (1,1 i s
- ©,1) N
. - (1.0)
02+ = i
(0,0) (1,0) e e e,
® PY 0 02 04 06 08 1.0 12
Input Pattern  First Hidden Function Second Hidden Function
X p1(x) ©2(x)
(1,1) 1 0.1353
(0,1) 0.3678 0.3678
(0,0) 0.1353 1
(1,0) 0.3678 0.3678

e In this hidden space, the XOR problem becomes linearly separable.
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e In this simple problem, the hidden space has the same dimensionality
as the input space.

Separating Capacity of a Surface

e Assume that we have a set of randomly assigned pattern vectors
X1,Xo,...,Xy in a multidimensional space.

e In this subsection, the expected maximum number of linearly separable
patterns is studied.

e Using probability theory and the definition of a negative binomial di-
stribution, the following result can be derived.

e The expected maximum number of randomly assigned vectors that are
linearly separable in a space of dimensionality my is equal to 2m,.

e This is the celebrated asymptotic corollary of Cover's theorem (1965).
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e See Haykin, pp. 261-262 for a derivation.
e Think of a family of decision surfaces having m; degrees of freedom.

e The corollary suggests that 2m; is a natural definition of the separating
capacity of this family.
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5.3

Interpolation Problem
The important point emerging from Cover's theorem:

One can often gain practical benefit by mapping the input space non-
linearly into a sufficiently high-dimensional space.

In this way, a nonlinearly separable classification problem can be trans-
formed into a linearly separable one.

Similarly, we may use a nonlinear mapping in filtering.

A difficult nonlinear filtering problem can possibly be handled using
linear filtering in a higher-dimensional space.

Consider now a feedforward network with an input layer, a single hidden
layer, and an output layer.

The output layer has only one neuron for simplicity.

The network is designed to perform a nonlinear mapping from the input
space to the hidden space (layer).
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This is followed by a linear mapping from the hidden space to the
output space (layer).

The overall input-output mapping
s: R™ — R!
is from mg-dimensional input space to one-dimensional output space.

The map s can be thought as a hypersurface I in a my+ 1 dimensional
space.

Example: a function s : R! — R!, where s(z) = z?, is parabola in
R? space.

The hypersurface I' is a multidimensional plot of the output as a func-
tion of the input vector.

In a practical situation, I' is usually unknown, and the training data
are noisy.

Then the learning process can be viewed as follows:
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In the training phase, the surface I is fitted to the known input-output
pairs (training data).

A suitable optimization technique is used in fitting.

The generalization phase corresponds to interpolation between the data
points.

The interpolation is performed on the found optimal approximation of
the true surface I'.

This procedure leads to the theory of multivariate interpolation in high-
dimensional space.

In the strict sense the interpolation problem can be stated:

Given a set of N different mg-dimensional points x1,Xs,...,Xy and
a corresponding set of N real numbers dy,ds, ..., dy.

Find a function F : R™ — R! satisfying the interpolation condition:

F(Xi):di, i:1,2,...,N
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Hence in strict interpolation no error is permitted.

That is, the interpolating surface F' must pass through all the training
data points.

The radial-basis functions (RBF) technique uses a function F' with the
following form:

N
F(x) =Y wip(ll x = |])
i=1
Here o(]| x —x; ||), i =1,..., N, is a set of arbitrary nonlinear radial-
basis functions.
Usually || . || is the Euclidean norm.

The known data points X, Xs, ..., Xy are taken as the centers of the
radial-basis functions.

The interpolation conditions yield for solving the coefficients (weights)
w1, Wo, . .., wy of RBF's linear equations
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Y11 P12 o PIN w1 dy
Y21 Y22 "t PanN Wa dy
YN1 ¥YN2 " PNN wN dn

e These equations can be written conveniently in the matrix-vector form

dw =d

e Here

W = [wy,wy, ..., wy

is the linear weight vector, and
d=[d,dy,... dy]"
is the desired response vector.

e N is the size of the training sample.
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e The elements ¢;; of the N x N interpolation matrix ® are defined by
wii =l x5 — i )
e Assuming that ® is nonsingular, the weight vector can be solved easily:
w=>®&1d

e Errors in Haykin's formulas (5.15) and (5.16): x must be replaced by
d:dw=d, w=d!d
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Michelli’'s Theorem

e The interpolating matrix ® is nonsingular for a large class of radial-
basis functions.

e Michelli's theorem (1986):
o letxy,Xsy,...,Xy be a set of distinct points in R"™°.

e Then the N x N interpolating matrix ®, whose ji-th element is
(|| x; —x; ||), is nonsingular.
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e Michelli's theorem covers the following functions used often in RBF
networks:

1. Multiquadrics:

o(r) = (r*+ 02)1/2 forsomec>0andr € R

2. Inverse multiquadrics:

1

o(r) = mforsomec>0andr€7€
r2 +c

3. Gaussian functions:

T2

o(r) = exp <—@> forsome o >0andr € R

e The inverse multiquadrics and Gaussian function are localized func-
tions: p(r) — 0 as r — oo.

e For both functions, the interpolation matrix ® is positive definite.
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e In contrast, the multiquadrics are nonlocal since (1) becomes un-
bounded as » — oo.

e The interpolating matrix is not positive definite but anyway nonsingu-
lar.

e Radial-basis functions that grow at infinity approximate better a smooth
input-output mapping.

— Compared with those using a positive definite interpolation mat-
rix.

— A remarkable result.
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5.4 Supervised Learning as an lll-Posed Hypersurface
Reconstruction Problem

e The strict interpolation strategy described in Section 5.3 is not always
a good strategy for training RBF networks.

e Reason: we must use as many radial-basis functions as data points.
o If there are many data points, this leads easily to overfitting.

e Then the RBF network models also the noise in the data.

e Consider now the overfitting problem and how to cure it.

e Recall the basic philosophy behind the RBF networks:

e Learning is viewed as a problem of hypersurface reconstruction, given
a set of data points that may be sparse.

e There often exist two related problems called direct problem and inverse
problem.
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e An example: find a mapping y = f(x) and the inverse mapping

z=f"(y).
e A problem of interest may be well-posed or ill-posed.

e Consider specifically the problem of reconstructing a fixed but unknown
mapping f between two metric spaces.

M.ippint_
——— ﬁ F(t)
F(x)
Domain X Range ¥
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This problem is well-posed if the following three conditions are satisfied:

1. Existence. For every input vector x, there does exist
an output y = f(x).

2. Uniqueness. f(x) = f(t) if and only if x = t.

3. Continuity (stability). The mapping is continuous:
a small change in x leads to a finite change in v.

If any of these conditions is not satisfied, the problem is said to be
ill-posed.

In our case, the physical phenomenon responsible for generating the
training data is a well-posed direct problem.

However, the hypersurface reconstruction problem for the training data
is an ill-posed inverse problem.

It can happen that all the three conditions required for a well-posed
problem are violated.
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In particular, if the learning problem lacks the property of continuity,
the computed input-output mapping may have nothing to do with the
true solution to the learning problem.

This may happen if there is too much noise in the input vectors.

The only solution to this is to have more information about the input-
output mapping.

The lack of information cannot be remedied by any mathematical tric-
kery (Lanczos, 1964).

An ill-posed problem can be made into a well-posed one by using a
suitable regularization technique.
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