
4.18 Supervised Learning Viewed as an Optimization
Problem

• The supervised training of a multilayer perceptron (MLP) is now viewed
as a numerical optimization problem.

• The error surface of a MLP is a highly nonlinear function of the weight
vector w.

• Let Eav(w) denote the cost function, averaged over the training sample
set.

1

• Recall now from Section 3.3 the Taylor series expansion of a scalar
function E(w) of (the components of) the vector w:

E(w + ∆w) = E(w) + gT ∆w +
1

2
(∆w)TH∆w + · · ·

• Here ∆w is a (small) correction or update term.

• g is the gradient vector of E(w), and H its Hessian matrix, both
evaluated at the point w.

• When applied to Eav(w) with dependences on n included, the Taylor
series expansion becomes

Eav(w(n) + ∆w(n)) = Eav(w(n)) + gT (n)∆w(n)

+
1

2
∆wT (n)H(n)∆w(n) + · · ·

2

• The local gradient g(n) is defined by evaluating the quantity

g(n) =
∂Eav(w)

∂w

at the point w = w(n).

• The local Hessian matrix H(n) is similarly defined by

H(n) =
∂2Eav(w)

∂w2
,

evaluated also at the operating point w = w(n).

• Because the ensemble averaged cost function Eav(w) is used here, a
batch mode of learning is presumed.

• In the steepest descent method, the adjustment ∆w(n) applied to the
weight vector w(n) is defined by the negative gradient vector

∆w(n) = −ηg(n)

where η is the learning-rate parameter.
3

• An example of this is the back-propagation algorithm in the batch
mode.

• In effect, the steepest descent method uses a linear approximation of
the cost function around the operating point ∆w(n).

• There the gradient vector is the only source of local information about
the error surface.

• Advantage: simplicity of implementation.

• Drawback: convergence can be very slow in large-scale problems.

• Inclusion of the momentum term is a crude attempt to use some
second-order information about the error surface.

• It helps somewhat, but makes the training process more delicate to
manage.

• Reason: the designer must “tune” one more parameter.

4

• For improving significantly the convergence speed of MLP training, one
must use higher-order information.

• This can be done by using a quadratic approximation of the error
surface around the current point w(n).

• It is easy to see that the optimum value of the update ∆w(n) of the
weight vector w(n) is

∆w∗(n) = H−1(n)g(n)

• Here it is assumed that the inverse H−1(n) of the Hessian matrix H(n)
exists.

• The above formula is the essence of Newton’s method (Section 3.3)

• However, the practical application of Newton’s method to supervised
training of MLP’s is handicapped by the following factors:

– One must calculate the inverse Hessian H−1(n), which can be
computationally expensive.

5

– The Hessian matrix H(n) must be nonsingular so that H−1(n)
exists. This condition does not necessarily always hold.

– When the cost function Eav(w) is nonquadratic, there is no gua-
rantee for the convergence of Newton’s method.

• Some of these difficulties can be overcome by using a quasi-Newton
method.

• This requires an estimate of the gradient vector g only.

• However, even the quasi-Newton methods are computationally too ex-
pensive except for the training of very small-scale neural networks.

• They are described at the end of Section 4.18; skipped in our course.

• Another class of second-order optimization methods: conjugate-gradient
methods.

• Somewhat intermediate between the steepest descent and Newton’s
method.

6

• They need not the Hessian matrix, avoiding the difficulties associated
with its evaluation, storage, and inversion.

• Essential idea of conjugate-gradient methods: a more sophisticated
update direction than the gradient is used.

• Conjugate-gradient methods are applicable also to large-scale problems
involving hundreds or thousands of adjustable parameters.

• They are well suited for the training of a MLP network, too.

7

Nonlinear Conjugate Gradient Algorithm for the Training of an MLP

• Initialization

• Computation

1. For w(0), use back-propagation to compute the gradient vector
g(0).

2. Set s(0) = r(0) = −g(0).

3. At time step n, use a line search to find η(n) that minimizes
Eav(η) sufficiently, representing Eav(η) expressed as a function of
η for fixed w and s.

4. Test to determine if Euclidean norm of the residual r(n) has fallen
below a specified value, that is a small fraction of the initial value.

5. Update the weight vector:

w(n + 1) = w(n) + η(n)s(n)

6. For w(n + 1), use backprop to compute the updated gradient
vector g(n + 1).

8

7. Set r(n + 1) = −g(n + 1).

8. Use Polak-Ribiére method to calculate β(n + 1):

β(n + 1) = max

{
rT (n + 1)(r(n + 1)− r(n))

rT (n + 1)r(n)
, 0

}
9. Update the direction vector:

s(n + 1) = r(n + 1) + β(n + 1)s(n)

10. Set n = n + 1, and go back to step 3.

• Stopping criterion. Terminate the algorithm when the following condi-
tion is satisfied:

||r(n)|| ≤ ε||r(0)||

where ε is a prescribed small number.

9

• Note: The Gauss-Newton method discussed in Section 3.3 is available
in MATLAB for training MLP networks.

• The stabilized Gauss-Newton formula (3.23) is called there Levenberg-
Marquardt’s algorithm.

10

5. Radial-Basis Function Networks

5.1 Introduction

• Back-propagation algorithm may be viewed as a stochastic approxima-
tion technique for supervised training of a MLP network.

• Now a completely different viewpoint is taken on the design of a neural
network.

• It is treated as a curve-fitting (approximation) problem in a high-
dimensional space.

• Learning is then equivalent to finding a surface in a multidimensional
space that provides the best fit to the training data (in some statistical
sense).

11

• Generalization is equivalent to using the found surface to interpolate
the test data.

• Such a philosophy lies behind the method of radial-basis functions.

• The hidden units provide a set of “functions” that constitute an arbit-
rary basis for the input vectors (patterns).

• These functions are called radial-basis functions.

• The radial basis functions were first introduced in the solution of the
real multivariate interpolation problem.

• They are currently one of the main fields of research in numerical ana-
lysis.

12

• A basic radial-basis function (RBF) network consists of three layers
having entirely different roles:

1. Input layer is made up of source nodes (sensory units).

2. The hidden layer applies a nonlinear transformation from the input
space to the hidden space.

- RBF networks have only one, often high-dimensional hidden
layer.

3. A linear output layer.

13

• The hidden space is usually chosen high-dimensional because of two
reasons:

1. Pattern vectors are more likely to be linearly separable in a high-
dimensional space.

2. The approximation ability of the network is the better the more
there are hidden units.

• In this course, we concentrate on basic RBF networks.

• We go through the first and last sections of Chapter 5.

• Most of the regularization theory (Sections 5.5-5.9) will be skipped.

14

5.2 Cover’s Theorem on the Separability of Patterns

• Consider the use of a RBF network for a complex pattern classification
task.

• The problem is basically solved by transforming it into a high-dimensional
space in a nonlinear manner.

• Justification: Cover’s theorem on the separability of patterns:

• A complex pattern classification problem cast in a high-dimensional
space nonlinearly is more likely to be linearly separable than in a low-
dimensional space.

• If the patterns are linearly separable, the classification problem is fairly
easy to solve.

• In the following, the separability of patterns is studied.

• This yields a lot of insight into the operation of RBF networks.

• Consider a family of surfaces.
15

• Each surface divides an input space into two regions.

• H = {x1,x2, . . . ,xN} is a set of N pattern vectors.

• Each pattern vector belongs to one of the two classes H1 or H2.

• This kind of binary partition is called a dichotomy.

• A dichotomy is called separable with respect to a family of surfaces if
there exists a surface separating the points in class H1 from those in
class H2.

• Let ϕ1(x), ϕ2(x), . . . , ϕm1(x) be a set of m1 real-valued functions.

• Using these functions, we can define for each pattern x ∈ H the vector

f(x) = [ϕ1(x), ϕ2(x), . . . , ϕm1(x)]T

• Assume now that x is a m0-dimensional vector.

• Then the function f(x) maps points in m0-dimensional input space
into corresponding points in a new space of dimension m1.

16

• ϕi(x) is referred to as a hidden function.

• The space spanned by the functions ϕ1(x), . . . , ϕm1(x) is called the
hidden space or feature space.

• The hidden functions have a similar role as hidden units in an MLP
network.

• A dichotomy [H1,H2] of H is said to be ϕ− separable if there exists
an m1-dimensional vector w satisfying the condition

wT f(x) > 0, x ∈ H1

wT f(x) < 0, x ∈ H2

• The hyperplane defined by the equation

wT f(x) = 0

describes the separating surface in the hidden ϕ-space.

17

• The inverse image of this subspace, that is,

x : wT f(x) = 0

defines the separating surface in the input space.

• Consider a class of mappings defined by a linear combination of r-wise
products of the pattern vector coordinates.
(Käsitellään kuvausta, jonka määrittelee r:n hahmovektorin koordi-
naattien tulojen lineaarikombinaatiot)

• The separating surface corresponding to such a mapping is given by
the rth degree homogenous equation∑

0≤i1≤...≤ir≤m0

ai1i2...irxi1xi2 . . . xir = 0

• Here xi is the ith component of the input vector x having m0 compo-
nents.

• x0 is set to unity for expressing the equation in homogenous form.
18

• Such surfaces are called rth-order rational varieties.

• An rth order product xi1xi2 . . . xir of entries xi of x is called a mono-
mial.

19

• Examples of rational varieties are:

- hyperplanes (first-order rational varieties)
- quadrics (second-order rational varieties)
- hyperspheres (second-order rational varieties with certain linear con-
straints on the coefficients).

• Three examples of ϕ-separable dichotomies of different sets of five
points in 2D.

(a) Linearly (b) spherically (c) quadrically
separable dichotomy

• In general, linear separability implies spherical separability which implies
quadric separability.

20

• The converses are not necessarily true.

• Consider now the probability that a particular dichotomy picked at
random is ϕ-separable.

• The higher is the dimension m1 of the hidden space, the closer is this
probability to unity.

• The required assumptions and the result are described somewhat in
more detail on pp. 259-260 in Haykin’s book.

• Even though here the hidden-unit surfaces have a polynomial form, the
result is generally applicable.

21

• Summarizing, Cover’s theorem on the separability of patterns has two
basic ingredients:

1. Nonlinear formulation of the hidden functions ϕi(x), i = 1, 2, . . . ,m1.

2. High dimensionality of the hidden space compared to the input
space.

• Sometimes the use of nonlinear mapping alone without increasing the
dimensionality is sufficient for producing linear separability.

22

Example 5.1: The XOR Problem

• For illustrating the importance of ϕ-separability, consider again the
simple yet important XOR problem.

• Four points (patterns) (1,1), (0,1), (0,0), and (1,0) in a two-dimensional
input space .

• Requirement: construct a binary classifier with output:
- 0 for the inputs (1,1) or (0,0)
- 1 for the inputs (1,0) or (0,1).

• Recall that the XOR problem is not linearly separable in the original
input space.

• Define a pair of Gaussian hidden functions

ϕ1(x) = exp(− ‖ x− t1 ‖2), t1 = [1, 1]T

ϕ2(x) = exp(− ‖ x− t2 ‖2), t2 = [0, 0]T

23

• The 4 input patterns are mapped onto the ϕ1 - ϕ2 plane as shown in
the table and figure on the right.

Input Pattern First Hidden Function Second Hidden Function
x ϕ1(x) ϕ2(x)

(1,1) 1 0.1353
(0,1) 0.3678 0.3678
(0,0) 0.1353 1
(1,0) 0.3678 0.3678

• In this hidden space, the XOR problem becomes linearly separable.

24

• In this simple problem, the hidden space has the same dimensionality
as the input space.

Separating Capacity of a Surface

• Assume that we have a set of randomly assigned pattern vectors
x1,x2, . . . ,xN in a multidimensional space.

• In this subsection, the expected maximum number of linearly separable
patterns is studied.

• Using probability theory and the definition of a negative binomial di-
stribution, the following result can be derived.

• The expected maximum number of randomly assigned vectors that are
linearly separable in a space of dimensionality m1 is equal to 2m1.

• This is the celebrated asymptotic corollary of Cover’s theorem (1965).

25

• See Haykin, pp. 261-262 for a derivation.

• Think of a family of decision surfaces having m1 degrees of freedom.

• The corollary suggests that 2m1 is a natural definition of the separating
capacity of this family.

26

5.3 Interpolation Problem

• The important point emerging from Cover’s theorem:

• One can often gain practical benefit by mapping the input space non-
linearly into a sufficiently high-dimensional space.

• In this way, a nonlinearly separable classification problem can be trans-
formed into a linearly separable one.

• Similarly, we may use a nonlinear mapping in filtering.

• A difficult nonlinear filtering problem can possibly be handled using
linear filtering in a higher-dimensional space.

• Consider now a feedforward network with an input layer, a single hidden
layer, and an output layer.

• The output layer has only one neuron for simplicity.

• The network is designed to perform a nonlinear mapping from the input
space to the hidden space (layer).

27

• This is followed by a linear mapping from the hidden space to the
output space (layer).

• The overall input-output mapping

s : Rm0 → R1

is from m0-dimensional input space to one-dimensional output space.

• The map s can be thought as a hypersurface Γ in a m0+1 dimensional
space.

• Example: a function s : R1 → R1, where s(x) = x2, is parabola in
R2 space.

• The hypersurface Γ is a multidimensional plot of the output as a func-
tion of the input vector.

• In a practical situation, Γ is usually unknown, and the training data
are noisy.

• Then the learning process can be viewed as follows:
28

• In the training phase, the surface Γ is fitted to the known input-output
pairs (training data).

• A suitable optimization technique is used in fitting.

• The generalization phase corresponds to interpolation between the data
points.

• The interpolation is performed on the found optimal approximation of
the true surface Γ.

• This procedure leads to the theory of multivariate interpolation in high-
dimensional space.

• In the strict sense the interpolation problem can be stated:

• Given a set of N different m0-dimensional points x1,x2, . . . ,xN and
a corresponding set of N real numbers d1, d2, . . . , dN .

• Find a function F : Rm0 → R1 satisfying the interpolation condition:

F (xi) = di, i = 1, 2, . . . , N
29

• Hence in strict interpolation no error is permitted.

• That is, the interpolating surface F must pass through all the training
data points.

• The radial-basis functions (RBF) technique uses a function F with the
following form:

F (x) =
N∑

i=1

wiϕ(‖ x− xi ‖)

• Here ϕ(‖ x−xi ‖), i = 1, . . . , N , is a set of arbitrary nonlinear radial-
basis functions.

• Usually ‖ . ‖ is the Euclidean norm.

• The known data points x1,x2, . . . ,xN are taken as the centers of the
radial-basis functions.

• The interpolation conditions yield for solving the coefficients (weights)
w1, w2, . . . , wN of RBF’s linear equations

30


ϕ11 ϕ12 · · · ϕ1N

ϕ21 ϕ22 · · · ϕ2N
...

...
...

...
ϕN1 ϕN2 · · · ϕNN




w1

w2
...

wN

 =


d1

d2
...

dN


• These equations can be written conveniently in the matrix-vector form

Φw = d

• Here
w = [w1, w2, . . . , wN]T

is the linear weight vector, and

d = [d1, d2, . . . , dN]T

is the desired response vector.

• N is the size of the training sample.

31

• The elements ϕji of the N ×N interpolation matrix Φ are defined by

ϕji = ϕ(‖ xj − xi ‖)

• Assuming that Φ is nonsingular, the weight vector can be solved easily:

w = Φ−1d

• Errors in Haykin’s formulas (5.15) and (5.16): x must be replaced by
d: Φw = d, w = Φ−1d

32

Michelli’s Theorem

• The interpolating matrix Φ is nonsingular for a large class of radial-
basis functions.

• Michelli’s theorem (1986):

• Let x1,x2, . . . ,xN be a set of distinct points in Rm0 .

• Then the N ×N interpolating matrix Φ, whose ji-th element is
ϕ(‖ xj − xi ‖), is nonsingular.

33

• Michelli’s theorem covers the following functions used often in RBF
networks:

1. Multiquadrics:

ϕ(r) = (r2 + c2)1/2 for some c > 0 and r ∈ R

2. Inverse multiquadrics:

ϕ(r) =
1

(r2 + c2)1/2
for some c > 0 and r ∈ R

3. Gaussian functions:

ϕ(r) = exp

(
− r2

2σ2

)
for some σ > 0 and r ∈ R

• The inverse multiquadrics and Gaussian function are localized func-
tions: ϕ(r) → 0 as r →∞.

• For both functions, the interpolation matrix Φ is positive definite.

34

• In contrast, the multiquadrics are nonlocal since ϕ(r) becomes un-
bounded as r →∞.

• The interpolating matrix is not positive definite but anyway nonsingu-
lar.

• Radial-basis functions that grow at infinity approximate better a smooth
input-output mapping.

– Compared with those using a positive definite interpolation mat-
rix.

– A remarkable result.

35

5.4 Supervised Learning as an Ill-Posed Hypersurface
Reconstruction Problem

• The strict interpolation strategy described in Section 5.3 is not always
a good strategy for training RBF networks.

• Reason: we must use as many radial-basis functions as data points.

• If there are many data points, this leads easily to overfitting.

• Then the RBF network models also the noise in the data.

• Consider now the overfitting problem and how to cure it.

• Recall the basic philosophy behind the RBF networks:

• Learning is viewed as a problem of hypersurface reconstruction, given
a set of data points that may be sparse.

• There often exist two related problems called direct problem and inverse
problem.

36

• An example: find a mapping y = f(x) and the inverse mapping
x = f−1(y).

• A problem of interest may be well-posed or ill-posed.

• Consider specifically the problem of reconstructing a fixed but unknown
mapping f between two metric spaces.

37

• This problem is well-posed if the following three conditions are satisfied:

1. Existence. For every input vector x, there does exist
an output y = f(x).

2. Uniqueness. f(x) = f(t) if and only if x = t.

3. Continuity (stability). The mapping is continuous:
a small change in x leads to a finite change in y.

• If any of these conditions is not satisfied, the problem is said to be
ill-posed.

• In our case, the physical phenomenon responsible for generating the
training data is a well-posed direct problem.

• However, the hypersurface reconstruction problem for the training data
is an ill-posed inverse problem.

• It can happen that all the three conditions required for a well-posed
problem are violated.

38

• In particular, if the learning problem lacks the property of continuity,
the computed input-output mapping may have nothing to do with the
true solution to the learning problem.

• This may happen if there is too much noise in the input vectors.

• The only solution to this is to have more information about the input-
output mapping.

• The lack of information cannot be remedied by any mathematical tric-
kery (Lanczos, 1964).

• An ill-posed problem can be made into a well-posed one by using a
suitable regularization technique.

39

	Supervised Learning Viewed as an Optimization Problem
	Radial-Basis Function Networks
	Introduction
	Cover's Theorem on the Separability of Patterns
	Interpolation Problem
	Supervised Learning as an Ill-Posed Hypersurface Reconstruction Problem

