4.12 Generalization

e In back-propagation learning, as many training examples as possible
are typically used.

e It is hoped that the network so designed generalizes well.

e A network generalizes well when its input-output mapping is (almost)
correct also for test data.

e The test data is not used in creating or training the network.

e Assumption: test data comes from the same population (distribution)
as the training data.



Training of a neural network may be viewed as a curve fitting (nonlinear
mapping) problem.

The network can simply be considered as a nonlinear input-output
mapping.

Generalization can be studied in terms of the nonlinear interpolation
ability of the network.

MLP networks with continuous activation functions perform useful in-
terpolation because they have continuous outputs.



e An example of good generalization for a data vector not used in trai-
ning.

Nonlinear
mapping

Generalization

Output

O
o e ad e
data \\

Input




e Using too many training examples may lead to a poor generalization
ability.

e This is called overfitting or overtraining.

e The network then learns even unwanted noise present in the training
data.

Training data

hutput = Nonlinear

mapping
e X
/ \/X
0

Generalization ——

X \
X

Input

e More generally, it learns “features” which are present in the training
4



set but actually not in the underlying function to be modeled.

Basic reason for overfitting: there are more hidden neurons than neces-
sary in the network.

Similar phenomena appear in other modeling problems if the chosen
model is too complicated, containing too many free parameters.

For example least-squares fitting, autoregressive modeling, etc.

Occam'’s razor principle in model selection: select the simplest model
which describes the data adequately.

In the neural network area, this implies choosing the smoothest func-
tion that approximates the input-output mapping for a given error
criterion.

Such a choice generally demands the fewest computational resources.



Sufficient Training Set Size for a Valid Generalization

e Three factors affect generalization:
1. The size and representativeness of the training set.
2. The architecture of the neural network.
3. The physical complexity of the problem at hand.

e Only the first two factors can be controlled.

e The issue of generalization may be viewed from two different perspec-
tives:

— The architecture of the network is fixed. Determine the size of
the training set for a good generalization.
— The size of the training set is fixed. Determine the best architec-

ture of network for achieving a good generalization.

e Here we focus on the first viewpoint, hoping that the fixed architecture
matches the complexity of the problem.



e Distribution-free, worst-case formulas are available for estimating the
size of sufficient training set for a good generalization performance.

e See section 2.14; skipped in this course.

e However, these formulas give often poor results.



A practical condition for a good generalization:

The size N of the training set must satisfy the condition

wo(t)

Here W is the total number of free parameters (weights and biases)
in the network.

¢ denotes the fraction of classification errors permitted on test data
(as in pattern classification).

O(.) is the order of quantity enclosed within it.

Example: If an error of 10% is permitted, the number of training
examples should be about 10 times the number of free parameters.

Justifications for this empirical rule are presented in the next section.



4.13 Approximations of Functions

e A MLP network trained with back-propagation is a practical tool for
performing a general nonlinear input-output mapping.

e Let mg be the number of input nodes (neurons), and M = my, the
number of output nodes.

e The input-output mapping of the MLP network is from my-dimensional
input space to M-dimensional output space.

e If the activation function is infinitely continuously differentiable, the
mapping is also.

e A fundamental question: What is the minimum number of hidden layers
in a MLP network providing an approximate realization of any conti-
nuous mapping?



Universal Approximation Theorem

e The universal approximation theorem for a nonlinear input-output map-
ping provides the answer.

e The theorem is presented in Haykin's book, pp. 208-209.
e Its essential contents are as follows:

e Let p(.) be a nonconstant, bounded, and monotonically increasing
continuous function.

o LetI,,, denote the my-dimensional unit hypercube [0, 1], and C(I,,,)
the space of continuous functions on I, .

e For any given function f € C(1,,,) and € > 0, there exist an integer
M and sets of real constants «;, b;, and w;;, wherei =1,...,my and
j=1,...,mq so that:

10



The function

mi mo
F(ry,.. ) = Y i (Z wijx; + bi) (1)
i=1 j=1

is an approximate realization of the function f(.).

That is,
| F(21, .y Tmg) — f(21, 0 Tmg) | < €

for all 1, x4, ...z, that lie in the input space.

The universal approximation theorem is directly applicable to multilayer
perceptrons.

The logistic function ¢(v) = 1/[1 4+ exp(—v)] is a nonconstant, boun-
ded, and monotonically increasing function.

Furthermore, Eq. (1) represent the output of a MLP network described
as follows:

11



1. The network has mg input nodes with inputs z;, zo, . . ., T, and
a single hidden layer consisting of m; neurons.

2. Hidden neuron ¢ has synaptic weights w1, .. ., Winy,, and bias b;.

3. The network output is a linear combination of the outputs of
the hidden neurons, with aq, . .., a,,, defining the weights of the
output layer.

e The universal approximation theorem is an existence theorem.

e In effect, the theorem states that a MLP network with a single hidden
layer is sufficient for uniform approximation with accuracy ¢.

e However, the theorem does not say that a single hidden layer is optimal
with respect to:
- learning time
- ease of implementation
- generalization ability (most important property).

12



Bounds on Approximation Errors

e This theoretical treatment is not essential in this course.

e A result worth mentioning: the size of the hidden layer m; must be
large for getting a good approximation.

13



Curse of Dimensionality

e This part is skipped, too, though it contains some interesting results.

e One important matter: multilayer perceptrons are more effective than
for example polynomials or trigonometric functions in approximation.

e That is, the number of terms required for sufficient approximation
grows slower with the dimension of the problem.

e The reason is basically that nonlinearities are used in an efficient way
in MLP networks.

14



Practical Considerations

e The universal approximation theorem is important from a theoretical
viewpoint.

e |t gives a rigorous mathematical foundation for using multilayer percept-
rons in approximating nonlinear mappings.

e However, the theorem is not constructive.

e It does not actually tell how to specify a MLP network with the stated
approximation properties.

e Some assumptions made in the theorem are unrealistic in most practical
applications:
- The continuous function to be approximated is given.
- A hidden layer of unlimited size is available.

e A problem with MLP’s using a single hidden layer:
the hidden neurons tend to interact globally.

15



e In complex situations, improving the approximation at one point ty-
pically worsens it at some other point.

e With two hidden layers, the approximation (nonlinear mapping) process
becomes more manageable.

e One can proceed as follows:

1. Local features are extracted in the first hidden layer.
- The input space is divided into regions by some neurons.
- Other neurons in the first hidden layer learn the local features
characterizing these regions.

2. Global features corresponding to each region are extracted in the
second hidden layer.
- Neurons in this layer combine the outputs of the neurons desc-
ribing certain region.

e This procedure somehow corresponds to piecewise polynomial (spline)
approximation in curve fitting.

16



4.14 Cross-Validation

e |t is hoped that an MLP network trained with back-propagation learns
enough from the past to generalize to the future.

e How the network parameterization should be chosen for a specific data
set?

e This is a model selection problem: choose the best one of a set of
candidate model structures (parameterizations).

e A useful statistical technique for model selection: cross-validation.

e The available data set is first randomly partitioned into a training set
and a test set.

e The training set is further partitioned into two disjoint subsets:
— Estimation subset, used to select the model.

— Validation subset, used to test or validate the model.

17



The motivation is to validate the model on a data set different from
the one used for parameter estimation.

In this way, the training set can be used to assess the performance of
various model.

The “best” of the candidate models is then chosen.

This procedure ensures that a model which might in the worst case
end up with overfitting the validation subset is not chosen.

The use of cross-validation is appealing when one should design a large
network with good generalization ability.

For MLP networks, cross-validation can be used to determine:
- the optimal number of hidden neurons.
- when it is best to stop training.

18



These matters are described in the next subsections:
- Model Selection

- Early Stopping Method of Training

- Variants of Cross-Validation

They are skipped in this course.

19



4.16 Virtues and Limitations of Back-Propagation Lear-
ning

e Back-propagation (BP) is the most popular algorithm for supervised
training of multilayer perceptrons (and neural networks in general).

e It is basically a gradient (derivative) technique, not an optimization
method.

e Back-propagation has two distinct properties:

— It is simple to compute locally.

— It performs stochastic gradient descent in weight space.

e These two properties are responsible for the advantages and disadvan-
tages of back-propagation learning.

20



Connectionism

e BP is an example of connectionist paradigms.

e They use local computations only for processing information in a neural
network.

e Locality constraint: a computing neuron needs information only from
neurons connected physically to it.

e Local computations are preferred in the design of artificial neural networks
for three principal reasons:
1. Biological neural networks use local computations.
2. Local computations are fault-tolerant against hardware errors.
3. Local computations favor the use of computationally efficient pa-

rallel architectures.

e BP has been realized using VLSI architectures and parallel computers
(point 3).
21



e Also point 2 holds on certain conditions.

e However, back-propagation learning is not biologically plausible (point
1) for several reasons given in Haykin's book, p. 227.

e Anyway, BP learning is important from an engineering point of view.

22



Feature Detection

e The hidden neurons of a multilayer perceptron trained by BP act as
feature detectors (Section 4.9).

e This property can be exploited by using a MLP network as a replicator
or identity map.

Multilayer perceptron

Estimate of
input Eignai
X

Replicator network with a single
hidden layer used as an encoder.
23



Multilayer perceptron

Estimate of

Input £ 3
input signal
2

signal
X

e Structural constraints:
- The input and output layers have the same size, m.
- The size of the hidden layer, M, is smaller than m.
- The network is fully connected.

e The desired response is the same as the input vector x.

e The actual output X is the estimate of x.

24



The network is trained otherwise normally by using as an error vector
e=X—X.

Actually this is a form of unsupervised learning (there is no teacher).

The replicator network performs data compression in its hidden layer.

After learning, the network provides a coding/decoding system for the
input vectors x.

Multilayer
perceptron

!

S

e Block diagram for the supervised training of the replicator network

25



e Decoder part of the replicator network

26



Function Approximation

e A multilayer perceptron trained with the back-propagation algorithm
is a nested sigmoidal scheme.

e lts output vector y can be written in the form

y=FxW)=£f(Wrf {(Wr_1f, o(...£1(W;ix))))

e W, ..., W, are the weight matrices of the L layers of the network,
including bias terms.

e f;(.) are vector-valued functions; their each component is the common
sigmoid activation function ¢(.).

e W denotes the set of all the weight matrices.

e The dimensions of the weight matrices W; and vectors f; are generally
different in different layers = 1,...., L.

e However, they must fit each other.
27



e The mapping F(x, W) is an universal approximator.

e Multilayer perceptrons can approximate not only smooth, continuously
differentiable functions, but also piecewise differentiable functions.

28



Computational Efficiency

e The computational complexity of an algorithm is usually measured by
counting the number of multiplications, additions and storage required
per iteration.

e The back-propagation algorithm is computationally efficient.

e This means that its computational complexity is polynomial as a func-
tion of adjustable parameters.

e If a MLP network contains a total of W weights, the computational
complexity of the BP algorithm is linear in W.

29



Sensitivity Analysis

e The sensitivity analysis of the input-output mapping provided by BP
can be carried out efficiently.

e A more detailed discussion of this property is skipped in our course.

Robustness

e The back-propagation algorithm is locally robust on certain conditions.

e This means that disturbances with small energy can only give rise to
small estimation errors.

30



Convergence

e The back-propagation algorithm uses an instantaneous estimate of the
gradient of the error surface.

e The direction of the instantaneous gradient fluctuates from iteration
to iteration.

e Such stochastic approximation algorithms converge slowly.
e Some fundamental causes of the slow convergence:
1. If the error surface is fairly flat along a weight dimension, many

iterations may be required to reduce the error significantly.

2. The direction of the negative instantaneous gradient vector may
point away from the minimum.
- This leads to a correction in a wrong direction for that iteration.

e The slow convergence of the back-propagation algorithm may make it
computationally excruciating.

31



Basic reason: large-scale neural network training problems are inhe-
rently very difficult and ill-conditioned.

No supervised learning strategy is alone feasible.
Suitable preprocessing may be necessary in practice.
For example Principal Component Analysis or whitening.

See Haykin's Chapter 8, and a problem in exercises.

32



Local Minima

e The error surface has local minima in addition to the global minimum.

e It is clearly undesirable if the learning process terminates at a local
minimum.

- Especially if this is located far above the global minimum.
e Basic reason for the existence of local minima: nonlinearities.

e If linear activation functions were used in BP, no local minima exist,
but the network can then learn only linear mappings.

33



Scaling

e Scaling problem: How well the network behaves as the computational
task increases in size and complexity?

e One can typically consider:
- The time required for training.
- The best attainable generalization performance.

e There exists many possible ways to measure the complexity or size of
a computational task.

e Most useful measure: predicate order.

e Predicate is a binary function ¥(X) having only two values 0 and 1,
or FALSE and TRUE.

34



An empirical study: how well a MLP network trained with back-propagation
learns the parity function

P(X) =1, if | X | is an odd number
Y(X) =0, if | X | is an even number
The order of the parity function is equal to the number of inputs.

It turned out that the time BP required to learn the parity function
scales exponentially with the number of inputs.

An effective method of alleviating the scaling problem:

— Incorporate prior knowledge into the design of the network.

35



	Generalization 
	Approximations of Functions 
	Cross-Validation 
	Virtues and Limitations of Back-Propagation Learning 

