4.4 Summary of the Back-Propagation Algorithm

- The initial values of the weights and biases can be chosen from a uniform distribution with zero mean unless some prior information is available.

\[
\begin{pmatrix}
\text{Weight correction} \\
\Delta w_{ij}(n)
\end{pmatrix} = \begin{pmatrix}
\text{Learning parameter} \\
\eta
\end{pmatrix} \begin{pmatrix}
\text{Local gradient} \\
\delta_j(n)
\end{pmatrix} \begin{pmatrix}
\text{Input signal of neuron} j \\
y_i(n)
\end{pmatrix}
\]

- The local gradient is given by

\[
\delta_j(n) = e_j(n)\varphi'_j(v_j(n))
\] (4.14)

when the neuron \(j \) is in the output layer.

- In the hidden layer, the local gradient is

\[
\delta_j(n) = \varphi'_j(v_j(n)) \sum_k \delta_k(n)w_{kj}(n)
\] (4.24)
The Two Passes of Computation

- In applying the back-propagation algorithm, two distinct passes of computation are distinguished.

- **Forward pass**
 - The weights are not changed in this phase.
 - The function signal appearing at the output of neuron \(j \) is computed as
 \[
 y_j(n) = \varphi(v_j(n))
 \]
 (1)
 - Here the local field \(v_j(n) \) of neuron \(j \) is
 \[
 v_j(n) = \sum_{i=0}^{m} w_{ji}(n)y_i(n)
 \]
 (2)
 - In the first hidden layer, \(m = m_0 \) is the number of input signals \(x_i(n), i = 1, \ldots, m_0 \), and in Eq. (2)
 \[
 y_i(n) = x_i(n)
 \]
In the output layer, \(m = m_L \) is the number of outputs Eq. (1).

The outputs (components of the output vector) are denoted by

\[
y_j(n) = o_j(n)
\]

These outputs are then compared with the respective desired responses \(d_j(n) \), yielding the error signals \(e_j(n) \).

In the forward pass, computation starts from the first hidden layer and terminates at the output layer.
• **Backward pass**

 – In the backward pass, computation starts at the output layer, and ends at the first hidden layer.

 – The local gradient δ is computed for each neuron by passing the error signal through the network layer by layer.

 – The delta rule of Eq. (4.25) is used for updating the synaptic weights.

 – The weight updates are computed recursively layer by layer.

• The input vector is fixed through each round-trip (forward pass followed by a backward pass).

• After this, the next training (input) vector is presented to the network.
4.5 XOR Problem

- The exclusive OR (XOR) problem has been discussed already in exercises.
- The patterns in the first class are (1,1) and (0,0).
- The patterns in the second class are (0,1) and (1,0).
- A single-layer perceptron is not sufficient for solving this problem.
- Reason: the classes are not linearly separable.
- However, the problem may be solved by adding a hidden layer.
- McCulloch-Pitts neuron model (a hard-limiting nonlinearity) is used here.
- In Haykin’s book, the XOR problem and its solution are presented in detail.
- The weight vectors given in the book differ somewhat from those in our exercise solution.
• Both the solutions are correct; recall that the weight vectors found by perceptron are not unique.

• This is especially true in this kind of problem where there are only four widely separated training examples.

• You may read Section 4.5 in the book for understanding the solution thoroughly.
4.6 Heuristics for Making Back-Propagation Perform Better

- Design of a MLP network using back-propagation learning is partly art, not science.

- Numerous heuristic methods have been proposed for improving the learning speed and performance of back-propagation.

- Some good heuristic methods are discussed below.
1. Sequential versus batch update

- Sequential learning mode is computationally faster than the batch mode.
- This is especially true when the training data set is large and highly redundant.
2. Maximizing information content

- Every training example should be chosen so that it contains as much as possible useful information for the learning task.

- Two ways of achieving this aim are:
 - Using an example that results in the largest training error.
 - Using an example that is radically different from the previously used ones.

- The training examples should be presented in randomized order in different epochs.

- A more refined technique is to emphasize difficult patterns in learning.

- However, this has problems also:
 - Distribution of the training data is distorted.
 - Outliers may have a catastrophic effect on performance.
3. Activation function

- An MLP network trained with backpropagation typically learns faster if an antisymmetric sigmoid function is used.

- An activation function $\varphi(v)$ is antisymmetric (odd) if $\varphi(-v) = -\varphi(v)$.

- The standard logistic function $a/[1 + \exp(-bv)]$ is nonsymmetric, but $\tanh(bv)$ is antisymmetric.
• A good choice for an activation function:

$$\varphi(v) = a \tanh(bv)$$

where $a = 1.7159$ and $b = 2/3$.

• Then $\varphi(1) = 1$, $\varphi(-1) = -1$, and the first and second derivatives of $\varphi(v)$ have suitable values.
4. Target values

- The target values (desired responses) should be chosen within the range of the sigmoid activation function.

- The desired responses should be somewhat smaller than the extremal (saturation) values of the activation function.

- Otherwise, the back-propagation algorithm tends to drive the free parameters of the networks to infinity.

- This slows down the learning process by driving the hidden neurons into saturation.

- For example, for the activation function $\varphi(v) = 1.716 \tanh(0.667v)$ discussed before, convenient target values are $d_j = \pm 1$.
5. Normalizing the inputs

• For speeding up back-propagation learning, the input vectors (variables) should be *preprocessed*.

• Recommended preprocessing steps for the training patterns:

 1. The mean value of the training vectors should be made zero (or small enough).
 - prevents slow, zigzagging type learning.

 2. The input variables (different components of training vectors) should be uncorrelated.
 - Can be realized using Principal Components Analysis (Chapter 8).
 - Removes second-order statistical redundancies.
3. The decorrelated input variables should be scaled to have approximately the same variances.
 - Ensures that different synaptic weights learn with roughly the same speed.
Original set of data points

Mean removal

Error! Mean removed only in one direction

Decorrelation

Covariance equalization
6. Initialization

- Good initial values for the synaptic weights and thresholds (biases) of the network can help tremendously in designing a good network.

- Assume first that the synaptic weights have large initial values.

- Then it is likely that the neurons will be driven into saturation.

- Results in slow learning.

- Assume now that synaptic weights are assigned small initial values.

- Then the back-propagation algorithm may operate on a very flat area around the origin of the error surface.

- Unfortunately, this is a *saddle point*.

- There the gradient of the error surface is zero, but the saddle point is not a maximum nor minimum point.
• The proper choice of initialization lies somewhere between these two extreme cases.

• Assume now that:
 – The input variables have zero mean and unit variance.
 – They are mutually uncorrelated.
 – The tanh nonlinearity is used.
 – The thresholds (biases) are set to zero for all neurons.
 – The initial values of the synaptic weights are drawn from a uniform distribution with zero mean and the same variance σ_w^2.

• It is then fairly easy to show (see Haykin, pp. 183-184) that:

• For the activation function $\varphi(v) = 1.716 \tanh(0.667v)$ discussed earlier, we should choose $\sigma_w^2 = m^{-1}$.

• Here m is the number of synaptic connections of a neuron.
7. Learning from hints

- The training examples are used for learning an approximation of an unknown input-output mapping \(f(\cdot) \).
- This may be generalized to include learning from hints.
- There possible prior information about the function \(f(\cdot) \) is utilized in learning.
- For example invariances, symmetries etc. may be used.
- Such prior information accelerates learning speed and improves the quality of the final estimate.
8. Learning rates

- Ideally, all the neurons in a MLP network should learn with the same rate.

- In practice, the last layers should typically use a smaller learning-rate parameter η.

- Reason: their local gradients tend to be larger.

- For a given neuron, the learning rate η_j can be chosen inversely proportional to the square root of m.

- Again, m is the number of synaptic connections of that neuron.
4.7 Output Representation and Decision Rule

- In theory, we need M outputs for an M-class classification problem to represent all possible classification decisions.

- Let x_j denote the jth m-dimensional prototype to be classified by a multilayer perceptron (MLP) network.

- Let us denote by C_k the kth class.

- Denote the kth output of the network by

$$y_{k,j} = F_k(x_j), \quad k = 1, \ldots, M$$

 corresponding to the prototype x_j.

- The function $F_k(\cdot)$ is the corresponding input-output mapping learned by the network.
\[y_{k,j} = F_k(x_j), \quad k = 1, 2, \ldots, M \]

Block diagram of a pattern classifier

- We can present these \(M \) mappings conveniently in vector form

\[
y_j = F(x_j)
\]

where

\[
y_j = [y_{1,j}, y_{2,j}, \ldots, y_{M,j}]^T,
\]

\[
F(x_j) = [F_1(x_j), F_2(x_j), \ldots, F_M(x_j)]^T.
\]

- Basic question: what should be the optimum decision rule for classifying the \(M \) outputs of a MLP network after training?
• The continuous vector-valued function \(y = F(x) \) minimizes the *empirical risk functional*

\[
R = \frac{1}{2N} \sum_{j=1}^{N} \| d_j - F(x_j) \|^2
\]

• Here \(d_j \) is again the desired (target) output pattern for the prototype \(x_j \).

• \(N \) is the total number of training vectors (prototypes).

• The risk \(R \) is in essence similar to the average squared error \(E_{av} \).

• \(E_{av} \) was used as a cost function in deriving the back-propagation algorithm in Section 4.3.

• Typically, binary target values are used:

\[
\begin{align*}
 d_{k,j} &= 1 \text{ when } x_j \text{ belongs to class } C_k, \\
 d_{k,j} &= 0 \text{ when } x_j \text{ does not belong to class } C_k.
\end{align*}
\]
Thus the class C_k is represented by the M-dimensional target vector

$$[0, \ldots, 0, 1, 0, \ldots, 0]^T$$

This is the kth unit vector; only the kth element 1 is nonzero.

In Haykin's book (pp. 185-186), justifications are given showing that a MLP classifier approximates the *a posteriori* class probabilities.

A posteriori probability for the class C_j is the probability that a vector x with an unknown class actually belongs to the jth class.

Prerequisites for this result:
- The logistic nonlinearity is used.
- The size of the training set is large enough.
- Back-propagation learning does not get stuck at a local minimum.
• Hence an appropriate decision rule is the (approximate) Bayes rule generated by the a posteriori class probability estimates:

• **Classify** \(x \) **to the class** \(C_k \) **if**

\[
F_k(x) > F_j(x) \quad \text{for all } j \neq k
\]

• If the underlying posterior class distributions are distinct, a unique largest output value exists with probability 1.

• Some less important comments on the derived approximate Bayes rule have been presented at the end of the section 4.7.
4.8 Computer Experiment

- A computer experiment is discussed thoroughly in this section.
- The example illustrates the learning behavior and performance of a multilayer perceptron in a simple pattern classification problem.
- Two overlapping, two-dimensional, Gaussian distributed pattern classes.
- The classes have different means and spherical covariance matrices.
Probability density function of class 1.

Probability density function of class 2.
Scatterplots of (a) class 1 and (b) class 2. (c) Combined scatterplot.
• Assume that:
 - the two classes are equiprobable.
 - the costs of correct classifications are zero.
 - the costs of misclassifications are equal.

• After straightforward calculations, it turns out that the optimal Bayes decision boundary is a circle.

• The centre of the circle is at \([-2/3, 0]^T\) and its radius is approximately \(r = 2.34\).

• The vectors \(x\) falling inside the circle are classified to the first class \(C_1\), otherwise to the second class \(C_2\).

• See Haykin pp. 188-191 for a more detailed derivation.

• Furthermore, one can numerically evaluate for the probability of correct classification \(P_c\) and misclassification \(P_e\)

\[
P_c = 0.8151, \quad P_e = 0.1849
\]
Experimental Determination of Optimal Multilayer Perceptron

- Parameters of multilayer perceptron

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typical Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hidden neurons</td>
<td>m_1</td>
<td>$(2, \infty)$</td>
</tr>
<tr>
<td>Learning-rate parameter</td>
<td>η</td>
<td>$(0, 1)$</td>
</tr>
<tr>
<td>Momentum constant</td>
<td>α</td>
<td>$(0, 1)$</td>
</tr>
</tbody>
</table>

- First, the optimal number of hidden neurons is studied

- The smallest number of hidden neurons that yields a performance sufficiently close the Bayes classifier is chosen
• Simulation results for 2 hidden neurons \((\eta = 0.1, \alpha = 0)\)

<table>
<thead>
<tr>
<th>Run No</th>
<th>Training Set Size</th>
<th>Number of Epochs</th>
<th>MSE</th>
<th>Probability of Correct Classification, (P_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>320</td>
<td>0.2375</td>
<td>80.36%</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>80</td>
<td>0.2341</td>
<td>80.33%</td>
</tr>
<tr>
<td>3</td>
<td>8000</td>
<td>20</td>
<td>0.2244</td>
<td>80.47%</td>
</tr>
</tbody>
</table>

• Simulation results for 4 hidden neurons \((\eta = 0.1, \alpha = 0)\)

<table>
<thead>
<tr>
<th>Run No</th>
<th>Training Set Size</th>
<th>Number of Epochs</th>
<th>MSE</th>
<th>Probability of Correct Classification, (P_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>320</td>
<td>0.2199</td>
<td>80.80%</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>80</td>
<td>0.2108</td>
<td>80.81%</td>
</tr>
<tr>
<td>3</td>
<td>8000</td>
<td>20</td>
<td>0.2142</td>
<td>80.19%</td>
</tr>
</tbody>
</table>

• It turns out that 2 hidden neurons perform equally well as 4
 \(\Rightarrow\) 2 hidden neurons are used

• Then the learning parameter \(\eta\) and momentum parameter \(\alpha\) are studied

 \[- \eta = 0.01, 0.1, 0.5 \text{ or } 0.9 \text{ and } \alpha = 0.0, 0.1, 0.5 \text{ or } 0.9\]
\(\eta = 0.01\)

\(\eta = 0.1\)
• $\eta = 0.5$

• $\eta = 0.9$
• From each subfigure, the best learning curve is selected

\[\eta_{opt} = 0.1, \quad \alpha_{opt} = 0.5 \]
• Configuration of Optimized MLP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum number of hidden neurons</td>
<td>m_{opt}</td>
<td>2</td>
</tr>
<tr>
<td>Optimum learning-rate parameter</td>
<td>η_{opt}</td>
<td>0.1</td>
</tr>
<tr>
<td>Optimum momentum constant</td>
<td>α_{opt}</td>
<td>0.5</td>
</tr>
</tbody>
</table>

• For these values and $m = 2$ hidden neurons, 20 MLPs are trained independently to evaluate the performance.

• In each of the 20 training sets, 1000 samples are chosen randomly for learning.

• The test set contains 32,000 samples.
• The classification boundaries of the 3 best MLP networks
• Similarly, the decision boundaries of the 3 poorest MLP networks

• The average performance of the 20 learned MLP networks is

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of correct classification</td>
<td>79.70%</td>
<td>0.44%</td>
</tr>
<tr>
<td>Final mean-square error</td>
<td>0.2277</td>
<td>0.0118</td>
</tr>
</tbody>
</table>