4.4 Summary of the Back-Propagation Algorithm

e The initial values of the weights and biases can be chosen from a
uniform distribution with zero mean unless some prior information is

available.
Weight Learning Local Input signal
correction | = | parameter gradient of neuron j
Awg;(n) Ul d;(n) yi(n)

e The local gradient is given by
9j(n) = e;(n)g;(v;(n)) (4.14)

when the neuron j is in the output layer.

e In the hidden layer, the local gradient is
0;(n) = @i(v;(n Zék n)w; (n (4.24)

The Two Passes of Computation

e In applying the back-propagation algorithm, two distinct passes of com-
putation are distinguished.

e Forward pass

The weights are not changed in this phase.

The function signal appearing at the output of neuron j is com-
puted as

yi(n) = @(v;(n)) (1)

Here the local field v;(n) of neuron j is

vj(n) = ijl(n)y’b(n) (2)

In the first hidden layer, m = my is the number of input signals
xi(n), i=1,...,mg, and in Eq. (2)

yi(n) = xi(n)
2

In the output layer, m = my, is the number of outputs Eq. (1).

The outputs (components of the output vector) are denoted by

These outputs are then compared with the respective desired res-
ponses d;(n), yielding the error signals e;(n).

In the forward pass, computation starts from the first hidden layer
and terminates at the output layer.

e Backward pass

— In the backward pass, computation starts at the output
layer, and ends at the first hidden layer.

The local gradient ¢ is computed for each neuron by passing
the error signal through the network layer by layer.

The delta rule of Eq. (4.25) is used for updating the
synaptic weights.

The weight updates are computed recursively layer by layer.

e The input vector is fixed through each round-trip (forward pass followed
by a backward pass).

e After this, the next training (input) vector is presented to the network.

4.5

XOR Problem

The exclusive OR (XOR) problem has been discussed already in exerci-
ses.

The patterns in the first class are (1,1) and (0,0).

The patterns in the second class are (0,1) and (1,0).

A single-layer perceptron is not sufficient for solving this problem.
Reason: the classes are not linearly separable.

However, the problem may be solved by adding a hidden layer.

McCulloch-Pitts neuron model (a hard-limiting nonlinearity) is used
here.

In Haykin's book, the XOR problem and its solution are presented in
detail.

The weight vectors given in the book differ somewhat from those in

our exercise solution.
5

e Both the solutions are correct; recall that the weight vectors found by
perceptron are not unique.

e This is especially true in this kind of problem where there are only four
widely separated training examples.

e You may read Section 4.5 in the book for understanding the solution
thoroughly.

4.6 Heuristics for Making Back-Propagation Perform
Better

e Design of a MLP network using back-propagation learning is partly art,
not science.

e Numerous heuristic methods have been proposed for improving the
learning speed and performance of back-propagation.

e Some good heuristic methods are discussed below.

1. Sequential versus batch update

e Sequential learning mode is computationally faster than the batch mo-
de.

e This is especially true when the training data set is large and highly
redundant.

2. Maximizing information content

e Every training example should be chosen so that it contains as much
as possible useful information for the learning task.

e Two ways of achieving this aim are:

— Using an example that results in the largest training error.
— Using an example that is radically different from the previously
used ones.

e The training examples should be presented in randomized order in
different epochs.

e A more refined technique is to emphasize difficult patterns in learning.

e However, this has problems also:
- Distribution of the training data is distorted.
- Outliers may have a catastrophic effect on performance.

3. Activation function

e An MLP network trained with backpropagation typically learns faster
if an antisymmetric sigmoid function is used.

e An activation function ¢(v) is antisymmetric (odd) if p(—v) = —p(v).

e The standard logistic function a/[1 + exp(—bv)] is nonsymmetric, but
tanh(bv) is antisymmetric.

P(v) o(v)
a=1.7159 |--—————=
a
1.0}--
|
|
1.0 |
|
} 10 v al2
|
{40
________ a=-1.7159 Y

10

e A good choice for an activation function:
o(v) = atanh(bv)
where ¢ = 1.7159 and b = 2/3.

e Then p(1) =1, p(—1) = —1, and the first and second derivatives of
©(v) have suitable values.

11

4. Target values

e The target values (desired responses) should be chosen within the
range of the sigmoid activation function.

e The desired responses should be somewhat smaller than the extremal
(saturation) values of the activation function.

e Otherwise, the back-propagation algorithm tends to drive the free pa-
rameters of the networks to infinity.

e This slows down the learning process by driving the hidden neurons
into saturation.

e For example, for the activation function ¢(v) = 1.716 tanh(0.667v)
discussed before, convenient target values are d; = £1

12

5. Normalizing the inputs

e For speeding up back-propagation learning, the input vectors (va-
riables) should be preprocessed.

e Recommended preprocessing steps for the training patterns:

1.

The mean value of the training vectors should be made zero (or
small enough).
- prevents slow, zigzagging type learning.

The input variables (different components of training vectors)
should be uncorrelated.

- Can be realized using Principal Components Analysis (Chapter
8).

- Removes second-order statistical redundancies.

13

. The decorrelated input variables should be scaled to have approxi-
mately the same variances.

- Ensures that different synaptic weights learn with roughly the
same speed.

14

-
* .
. °
. °
[] o
. o o
*
PR
*
Y L J
L]
X1
Original sct of
data points
X5
o @
LI
o °
e e® oo
o e Xy
* o

Error!
Mean removed only
Mean in one direction
removal . L]
L]
e o o
® .
L] []
—e * - -
* ® X
P L]
'Y []
]

| Decorrelation

Covariance
equalization

15

6. Initialization

e Good initial values for the synaptic weights and thresholds (biases) of
the network can help tremendously in designing a good network.

e Assume first that the synaptic weights have large initial values.

e Then it is likely that the neurons will be driven into saturation.

e Results in slow learning.

e Assume now that synaptic weights are assigned small initial values.

e Then the back-propagation algorithm may operate on a very flat area
around the origin of the error surface.

e Unfortunately, this is a saddle point.
e There the gradient of the error surface is zero, but the saddle point is

not a maximum nor minimum point.

16

e The proper choice of initialization lies somewhere between these two
extreme cases.

e Assume now that:

— The input variables have zero mean and unit variance.
— They are mutually uncorrelated.

— The tanh nonlinearity is used.

— The thresholds (biases) are set to zero for all neurons.

— The initial values of the synaptic weights are drawn from a uni-
form distribution with zero mean and the same variance o2

E

e It is then fairly easy to show (see Haykin, pp. 183-184) that:

e For the activation function ¢(v) = 1.716 tanh(0.667v) discussed ear-

lier, we should choose 02 = m™!.

e Here m is the number of synaptic connections of a neuron.

17

7. Learning from hints

e The training examples are used for learning an approximation of an
unknown input-output mapping f(.).

e This may be generalized to include learning from hints.

e There possible prior information about the function f(.) is utilized in
learning.

e For example invariances, symmetries etc. may be used.

e Such prior information accelerates learning speed and improves the

quality of the final estimate.

18

8. Learning rates

e |deally, all the neurons in a MLP network should learn with the same
rate.

e In practice, the last layers should typically use a smaller learning-rate
parameter 7.

e Reason: their local gradients tend to be larger.

e For a given neuron, the learning rate 7; can be chosen inversely pro-
portional to the square root of m.

e Again, m is the number of synaptic connections of that neuron.

19

4.7

Output Representation and Decision Rule

In theory, we need M outputs for an M-class classification problem to
represent all possible classification decisions.

Let x; denote the jth m-dimensional prototype to be classified by a
multilayer perceptron (MLP) network.

Let us denote by Cy, the kth class.
Denote the kth output of the network by

yr; = Fr(x;), k=1,...,M
corresponding to the prototype x;.

The function Fj(.) is the corresponding input-output mapping learned
by the network.

20

yk,j:Fk(xj)a k=1,2,...M

Multil 0
ultilayer Y2
perceptron: .7
W :
[yM’ j

Block diagram of a pattern classifier
e We can present these M mappings conveniently in vector form
y; = F(x;)
where

Yy, = [?/1,3‘, Y2,55- - - J/M,j]T

F(x;) = [F1(x)), Fa(x;), .., Far(x;)]".

)

e Basic question: what should be the optimum decision rule for classifying
the M outputs of a MLP network after training?

21

The continuous vector-valued function y = F(x) minimizes the empi-
rical risk functional

- 2Nan)P

Here d; is again the desired (target) output pattern for the prototype
Xj.
N is the total number of training vectors (prototypes).

The risk R is in essence similar to the average squared error &,,.

Eav Was used as a cost function in deriving the back-propagation algo-
rithm in Section 4.3.

Typically, binary target values are used:

dr; = 1 when x; belongs to class Cy,
dr; = 0 when x; does not belong to class Cj.
22

Thus the class Cy, is represented by the M-dimensional target vector

0,...,0,1,0,...,0"

This is the kth unit vector; only the kth element 1 is nonzero.

In Haykin's book (pp. 185-186), justifications are given showing that
a MLP classifier approximates the a posteriori class probabilities.

A posteriori probability for the class C; is the probability that a vector
x with an unknown class actually belongs to the jth class.

Prerequisites for this result:

- The logistic nonlinearity is used.

- The size of the training set is large enough.

- Back-propagation learning does not get stuck at a local minimum.

23

e Hence an appropriate decision rule is the (approximate) Bayes rule
generated by the a posteriori class probability estimates:

e (lassify x to the class Cy, if

Fi(x) > Fj(x) for all j # k

If the underlying posterior class distributions are distinct, a unique
largest output value exists with probability 1.

Some less important comments on the derived approximate Bayes rule
have been presented at the end of the section 4.7.

24

4.8 Computer Experiment
e A computer experiment is discussed thoroughly in this section.

e The example illustrates the learning behavior and performance of a
multilayer perceptron in a simple pattern classification problem.

e Two overlapping, two-dimensional, Gaussian distributed pattern clas-
ses.

e The classes have different means and spherical covariance matrices.

25

5 i
L) -10 -10 > 5

Probability density function of class 1.

% 1073

s
ssesoss
. s 2es%s
27 Ry e

5 G
SIS
ST,

Probability density function of class 2.

26

10

0

in

Scatterplots of (a) class 1 and (b

Combined scatterplot.

)

C

class 2. (

)

27

Assume that:

- the two classes are equiprobable.

- the costs of correct classifications are zero.
- the costs of misclassifications are equal.

After straightforward calculations, it turns out that the optimal Bayes
decision boundary is a circle.

The centre of the circle is at [—2/3,0]” and its radius is approximately
r = 2.34.

The vectors x falling inside the circle are classified to the first class Cy,
otherwise to the second class Cs.

See Haykin pp. 188-191 for a more detailed derivation.

Furthermore, one can numerically evaluate for the probability of correct
classification P. and misclassification P,

P.=0.8151, P, =0.1849

28

Experimental Determination of Optimal Multilayer Perceptron

e Parameters of multilayer perceptron

Parameter Symbol Typical Range
Number of hidden neurons my (2,00)
Learning-rate parameter n 0,1)
Momentum constant o (0,1)

e First, the optimal number of hidden neurons is studied

e The smallest number of hidden neurons that yields a performance suf-
ficiently close the Bayes classifier is chosen

29

Simulation results for 2 hidden neurons (n = 0.1, a = 0)
Run Training Number MSE Probability of Correct

No Set Size of Epochs Classification, P,
1 500 320 0.2375 80.36%
2 2000 80 0.2341 80.33%
3 8000 20 0.2244 80.47%

Simulation results for 4 hidden neurons (n = 0.1, & = 0)
Run Training Number MSE Probability of Correct

No Set Size of Epochs Classification, P.
1 500 320 0.2199 80.80%
2 2000 80 0.2108 80.81%
3 8000 20 0.2142 80.19%

It turns out that 2 hidden neurons perform equally well as 4
= 2 hidden neurons are used

Then the learning parameter n and momentum parameter « are studied
- n=20.01, 0.1, 0.5 0or 0.9 and a = 0.0, 0.1, 0.5 or 0.9
30

e 7 =0.01

Mean-
squared 0.3
error

Mean-
squared
error

o
@
53
o

0.28

— ==y

0.26
0.24 -

022

02
0

200 300 400 500 600 700
Number of epochs

Number of epochs

31

e

0.5

Mean-
squared
error

Mean-
squared
error

04 : y

038

bhmo

034 |
|

032

e
Nty g |
N N LY W N AN s

024

02 : 0

Number of epochs

04 T T T T ! 2

— a=00

——a=09

NSEAVIAA S s v\ r P m i e

v

N L
T 200 300 400 500 600
Number of epochs

32

700

e From each subfigure, the best learning curve is selected

044 T T T T T T T T
0.38 Learning-note Momentum | |
5 parameter, y constant, &
0.01 0.9 |
0.36 0s
0.1 J
0.34 0.0
0.32 o
Mean-
squared 0.3 A
error

0.26

0.24

0.22

02 L .) . L . L . L
0 10 20 30 40 50 60 70 80 90 100

Number of epochs

e the optimal values are chosen to be 7,,: = 0.1, gy = 0.5

33

Configuration of Optimized MLP
Parameter Symbol Value
Optimum number of hidden neurons M, 2
Optimum learning-rate parameter Nopt 0.1
Optimum momentum constant Qlopt 0.5

For these values and m = 2 hidden neurons, 20 MLPs are trained
independently to evaluate the performance

In each of the 20 training sets, 1000 samples are chosen randomly for
learning.

The test set contains 32.000 samples

34

T T
— 80.39%

————— 80.40%
-—-— 80.43%

-2r Optimum
decision
sk boundary

e The classification boundaries of the 3 best MLP networks

35

-2F Optimum
decision
ol boundary

e Similarly, the decision boundaries of the 3 poorest MLP networks

e The average performance of the 20 learned MLP networks is

Performance Measure Mean | Standard Deviation
Probability of correct classification | 79.70% 0.44%
Final mean-square error 0.2277 0.0118

36

	Summary of the Back-Propagation Algorithm
	XOR Problem
	Heuristics for Making Back-Propagation Perform Better
	Output Representation and Decision Rule
	Computer Experiment

