
4.4 Summary of the Back-Propagation Algorithm

• The initial values of the weights and biases can be chosen from a
uniform distribution with zero mean unless some prior information is
available.

 Weight
correction
∆wij(n)

 =

 Learning
parameter

η

  Local
gradient
δj(n)

  Input signal
of neuron j

yi(n)


• The local gradient is given by

δj(n) = ej(n)ϕ′
j(vj(n)) (4.14)

when the neuron j is in the output layer.

• In the hidden layer, the local gradient is

δj(n) = ϕ′
j(vj(n))

∑
k

δk(n)wkj(n) (4.24)

1



The Two Passes of Computation

• In applying the back-propagation algorithm, two distinct passes of com-
putation are distinguished.

• Forward pass

– The weights are not changed in this phase.

– The function signal appearing at the output of neuron j is com-
puted as

yj(n) = ϕ(vj(n)) (1)

– Here the local field vj(n) of neuron j is

vj(n) =
m∑

i=0

wji(n)yi(n) (2)

– In the first hidden layer, m = m0 is the number of input signals
xi(n), i = 1, . . . ,m0, and in Eq. (2)

yi(n) = xi(n)
2



– In the output layer, m = mL is the number of outputs Eq. (1).

– The outputs (components of the output vector) are denoted by

yj(n) = oj(n)

– These outputs are then compared with the respective desired res-
ponses dj(n), yielding the error signals ej(n).

– In the forward pass, computation starts from the first hidden layer
and terminates at the output layer.

3



• Backward pass

– In the backward pass, computation starts at the output
layer, and ends at the first hidden layer.

– The local gradient δ is computed for each neuron by passing
the error signal through the network layer by layer.

– The delta rule of Eq. (4.25) is used for updating the
synaptic weights.

– The weight updates are computed recursively layer by layer.

• The input vector is fixed through each round-trip (forward pass followed
by a backward pass).

• After this, the next training (input) vector is presented to the network.

4



4.5 XOR Problem

• The exclusive OR (XOR) problem has been discussed already in exerci-
ses.

• The patterns in the first class are (1,1) and (0,0).

• The patterns in the second class are (0,1) and (1,0).

• A single-layer perceptron is not sufficient for solving this problem.

• Reason: the classes are not linearly separable.

• However, the problem may be solved by adding a hidden layer.

• McCulloch-Pitts neuron model (a hard-limiting nonlinearity) is used
here.

• In Haykin’s book, the XOR problem and its solution are presented in
detail.

• The weight vectors given in the book differ somewhat from those in
our exercise solution.

5



• Both the solutions are correct; recall that the weight vectors found by
perceptron are not unique.

• This is especially true in this kind of problem where there are only four
widely separated training examples.

• You may read Section 4.5 in the book for understanding the solution
thoroughly.

6



4.6 Heuristics for Making Back-Propagation Perform
Better

• Design of a MLP network using back-propagation learning is partly art,
not science.

• Numerous heuristic methods have been proposed for improving the
learning speed and performance of back-propagation.

• Some good heuristic methods are discussed below.

7



1. Sequential versus batch update

• Sequential learning mode is computationally faster than the batch mo-
de.

• This is especially true when the training data set is large and highly
redundant.

8



2. Maximizing information content

• Every training example should be chosen so that it contains as much
as possible useful information for the learning task.

• Two ways of achieving this aim are:

– Using an example that results in the largest training error.

– Using an example that is radically different from the previously
used ones.

• The training examples should be presented in randomized order in
different epochs.

• A more refined technique is to emphasize difficult patterns in learning.

• However, this has problems also:
- Distribution of the training data is distorted.
- Outliers may have a catastrophic effect on performance.

9



3. Activation function

• An MLP network trained with backpropagation typically learns faster
if an antisymmetric sigmoid function is used.

• An activation function ϕ(v) is antisymmetric (odd) if ϕ(−v) = −ϕ(v).

• The standard logistic function a/[1 + exp(−bv)] is nonsymmetric, but
tanh(bv) is antisymmetric.

10



• A good choice for an activation function:

ϕ(v) = a tanh(bv)

where a = 1.7159 and b = 2/3.

• Then ϕ(1) = 1, ϕ(−1) = −1, and the first and second derivatives of
ϕ(v) have suitable values.

11



4. Target values

• The target values (desired responses) should be chosen within the
range of the sigmoid activation function.

• The desired responses should be somewhat smaller than the extremal
(saturation) values of the activation function.

• Otherwise, the back-propagation algorithm tends to drive the free pa-
rameters of the networks to infinity.

• This slows down the learning process by driving the hidden neurons
into saturation.

• For example, for the activation function ϕ(v) = 1.716 tanh(0.667v)
discussed before, convenient target values are dj = ±1

12



5. Normalizing the inputs

• For speeding up back-propagation learning, the input vectors (va-
riables) should be preprocessed.

• Recommended preprocessing steps for the training patterns:

1. The mean value of the training vectors should be made zero (or
small enough).
- prevents slow, zigzagging type learning.

2. The input variables (different components of training vectors)
should be uncorrelated.
- Can be realized using Principal Components Analysis (Chapter
8).
- Removes second-order statistical redundancies.

13



3. The decorrelated input variables should be scaled to have approxi-
mately the same variances.
- Ensures that different synaptic weights learn with roughly the
same speed.

14



15



6. Initialization

• Good initial values for the synaptic weights and thresholds (biases) of
the network can help tremendously in designing a good network.

• Assume first that the synaptic weights have large initial values.

• Then it is likely that the neurons will be driven into saturation.

• Results in slow learning.

• Assume now that synaptic weights are assigned small initial values.

• Then the back-propagation algorithm may operate on a very flat area
around the origin of the error surface.

• Unfortunately, this is a saddle point.

• There the gradient of the error surface is zero, but the saddle point is
not a maximum nor minimum point.

16



• The proper choice of initialization lies somewhere between these two
extreme cases.

• Assume now that:

– The input variables have zero mean and unit variance.

– They are mutually uncorrelated.

– The tanh nonlinearity is used.

– The thresholds (biases) are set to zero for all neurons.

– The initial values of the synaptic weights are drawn from a uni-
form distribution with zero mean and the same variance σ2

w.

• It is then fairly easy to show (see Haykin, pp. 183-184) that:

• For the activation function ϕ(v) = 1.716 tanh(0.667v) discussed ear-
lier, we should choose σ2

w = m−1.

• Here m is the number of synaptic connections of a neuron.

17



7. Learning from hints

• The training examples are used for learning an approximation of an
unknown input-output mapping f(.).

• This may be generalized to include learning from hints.

• There possible prior information about the function f(.) is utilized in
learning.

• For example invariances, symmetries etc. may be used.

• Such prior information accelerates learning speed and improves the
quality of the final estimate.

18



8. Learning rates

• Ideally, all the neurons in a MLP network should learn with the same
rate.

• In practice, the last layers should typically use a smaller learning-rate
parameter η.

• Reason: their local gradients tend to be larger.

• For a given neuron, the learning rate ηj can be chosen inversely pro-
portional to the square root of m.

• Again, m is the number of synaptic connections of that neuron.

19



4.7 Output Representation and Decision Rule

• In theory, we need M outputs for an M -class classification problem to
represent all possible classification decisions.

• Let xj denote the jth m-dimensional prototype to be classified by a
multilayer perceptron (MLP) network.

• Let us denote by Ck the kth class.

• Denote the kth output of the network by

yk,j = Fk(xj), k = 1, . . . ,M

corresponding to the prototype xj.

• The function Fk(.) is the corresponding input-output mapping learned
by the network.

20



Block diagram of a pattern classifier

• We can present these M mappings conveniently in vector form

yj = F(xj)

where
yj = [y1,j, y2,j, . . . , yM,j]

T ,

F(xj) = [F1(xj), F2(xj), . . . , FM(xj)]
T .

• Basic question: what should be the optimum decision rule for classifying
the M outputs of a MLP network after training?

21



• The continuous vector-valued function y = F(x) minimizes the empi-
rical risk functional

R =
1

2N

N∑
J=1

‖ dj − F(xj) ‖2

• Here dj is again the desired (target) output pattern for the prototype
xj.

• N is the total number of training vectors (prototypes).

• The risk R is in essence similar to the average squared error Eav.

• Eav was used as a cost function in deriving the back-propagation algo-
rithm in Section 4.3.

• Typically, binary target values are used:

dkj = 1 when xj belongs to class Ck,

dkj = 0 when xj does not belong to class Ck.

22



• Thus the class Ck is represented by the M -dimensional target vector

[0, . . . , 0, 1, 0, . . . , 0]T

• This is the kth unit vector; only the kth element 1 is nonzero.

• In Haykin’s book (pp. 185-186), justifications are given showing that
a MLP classifier approximates the a posteriori class probabilities.

• A posteriori probability for the class Cj is the probability that a vector
x with an unknown class actually belongs to the jth class.

• Prerequisites for this result:
- The logistic nonlinearity is used.
- The size of the training set is large enough.
- Back-propagation learning does not get stuck at a local minimum.

23



• Hence an appropriate decision rule is the (approximate) Bayes rule
generated by the a posteriori class probability estimates:

• Classify x to the class Ck if

Fk(x) > Fj(x) for all j 6= k

• If the underlying posterior class distributions are distinct, a unique
largest output value exists with probability 1.

• Some less important comments on the derived approximate Bayes rule
have been presented at the end of the section 4.7.

24



4.8 Computer Experiment

• A computer experiment is discussed thoroughly in this section.

• The example illustrates the learning behavior and performance of a
multilayer perceptron in a simple pattern classification problem.

• Two overlapping, two-dimensional, Gaussian distributed pattern clas-
ses.

• The classes have different means and spherical covariance matrices.

25



Probability density function of class 1.

Probability density function of class 2.

26



Scatterplots of (a) class 1 and (b) class 2. (c) Combined scatterplot.

27



• Assume that:
- the two classes are equiprobable.
- the costs of correct classifications are zero.
- the costs of misclassifications are equal.

• After straightforward calculations, it turns out that the optimal Bayes
decision boundary is a circle.

• The centre of the circle is at [−2/3, 0]T and its radius is approximately
r = 2.34.

• The vectors x falling inside the circle are classified to the first class C1,
otherwise to the second class C2.

• See Haykin pp. 188-191 for a more detailed derivation.

• Furthermore, one can numerically evaluate for the probability of correct
classification Pc and misclassification Pe

Pc = 0.8151, Pe = 0.1849

28



Experimental Determination of Optimal Multilayer Perceptron

• Parameters of multilayer perceptron
Parameter Symbol Typical Range
Number of hidden neurons m1 (2,∞)
Learning-rate parameter η (0, 1)
Momentum constant α (0, 1)

• First, the optimal number of hidden neurons is studied

• The smallest number of hidden neurons that yields a performance suf-
ficiently close the Bayes classifier is chosen

29



• Simulation results for 2 hidden neurons (η = 0.1, α = 0)
Run Training Number MSE Probability of Correct
No Set Size of Epochs Classification, Pc

1 500 320 0.2375 80.36%
2 2000 80 0.2341 80.33%
3 8000 20 0.2244 80.47%

• Simulation results for 4 hidden neurons (η = 0.1, α = 0)
Run Training Number MSE Probability of Correct
No Set Size of Epochs Classification, Pc

1 500 320 0.2199 80.80%
2 2000 80 0.2108 80.81%
3 8000 20 0.2142 80.19%

• It turns out that 2 hidden neurons perform equally well as 4
⇒ 2 hidden neurons are used

• Then the learning parameter η and momentum parameter α are studied

– η = 0.01, 0.1, 0.5 or 0.9 and α = 0.0, 0.1, 0.5 or 0.9

30



• η = 0.01

• η = 0.1

31



• η = 0.5

• η = 0.9

32



• From each subfigure, the best learning curve is selected

• the optimal values are chosen to be ηopt = 0.1, αopt = 0.5

33



• Configuration of Optimized MLP
Parameter Symbol Value
Optimum number of hidden neurons mopt 2
Optimum learning-rate parameter ηopt 0.1
Optimum momentum constant αopt 0.5

• For these values and m = 2 hidden neurons, 20 MLPs are trained
independently to evaluate the performance

• In each of the 20 training sets, 1000 samples are chosen randomly for
learning.

• The test set contains 32.000 samples

34



• The classification boundaries of the 3 best MLP networks

35



• Similarly, the decision boundaries of the 3 poorest MLP networks

• The average performance of the 20 learned MLP networks is

Performance Measure Mean Standard Deviation
Probability of correct classification 79.70% 0.44%
Final mean-square error 0.2277 0.0118

36


	Summary of the Back-Propagation Algorithm 
	XOR Problem 
	Heuristics for Making Back-Propagation Perform Better 
	Output Representation and Decision Rule 
	Computer Experiment 

