9.7

Learning Vector Quantization

In vector quantization, the data (input) space is divided into a number
of distinct regions.

For each region, a reconstruction vector is defined.
For a new incoming data vector, its region is determined at first.

The data vector is then represented by using the reproduction vector
for that region.

Using an encoded version of this reproduction vector, considerable sa-
vings in storage or transmission bandwidth can be realized.

The collection of possible reproduction vectors is called the code book
of the vector quantizer.

Its members are called code words.

A vector quantizer with minimum encoding distortion is called a Vo-
ronoi or nearest-neighbor quantizer.



e Voronoi cells are partition cells provided by the nearest-neighbor rule
based on the Euclidean metric.

. e An example of 4 Voronoi cells
with their associated recon-
struction (Voronoi) vectors.




e The SOM method provides an approximate method for computing the
Voronoi cells in an unsupervised manner.

e Computation of the SOM feature map can be viewed as the first stage
of adaptively solving a pattern classification problem.

e The second stage is learning vector quantization, which fine tunes the
SOM feature map.

Input

Self-organizing
feature map

Learning
vector
quantizer

s Class

labels

Teacher



Learning vector quantization (LVQ) is a supervised learning technique.

Using class information, it moves the Voronoi vectors slightly for im-
proving the decision regions of the classifier.

Take an input vector x at random from the data space.

If the class labels of x and a Voronoi vector w agree, w is moved in
the direction of x.

If the class labels of x and w are different, w is moved away from the
input vector x.

Assumption: there are many more input (data) vectors xy, ..., xy than
Voronoi vectors wy, ..., w; (N > ).



The Learning Vector Quantization (LVQ) algorithm:
e Suppose that the Voronoi vector w,. is the closest to the input vector
X;.
o Let Cy, denote the class of w,. and Cy, the class of x;.
e The Voronoi vector w,. is adjusted as follows:
— If the classes are the same: Cy,, = Cx,, then
we.(n+1)= w.n)+ a,[x; — we(n)]
— If the classes are different: Cy, # Cx,, then
w.(n+1)= w.(n) — ayx; — we(n)]

e The other (non-closest) Voronoi vectors are not changed.

e The learning parameter «,, usually decreases monotonically with the

number of iterations n.
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e For example, o, may decrease linearly from its initial value 0.1.

e The Voronoi vectors typically converge after several epochs.



9.8

Computer Experiment:
Adaptive Pattern Classification

A pattern classification task can be divided into feature selection (ext-
raction) and actual class assignment steps.

In feature selection, a reasonably small set of features containing the
essential information needed for classification is sought.

This important step is usually performed using some unsupervised met-
hod.

The self-organizing map is well suited to feature selection.
It can extract nonlinear features describing the data.
After feature extraction, any suitable classification method can be used.

Usually some supervised classifier trained using known prototype pat-
terns is applied for achieving the best performance.



e An adaptive hybrid pattern classification approach: SOM + LVQ.
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e Recall the classification test problem introduced in Section 4.8.

e Two two-dimensional overlapping Gaussian distributed classes.
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(a) Labeled  two-
dimensional 5 x 5 SOM
map after training.

(b) decision boundary
given by SOM only.

(c) Labeled map after
LVQ fine tuning.

(d) decision boundary
given by combined use
of SOM and LVQ.

e A comparison of Fig. a with ¢ and Fig. b with d shows qualitatively

the advantage of fine tuning using LVQ.



e Summary of the Classification Performances (percentage) for
the Computer Experiment on Overlapping Two-Dimensional Gaussian
Distribution Using 5 x 5 Lattice

Trial SOM Cascade combination
of SOM and LVQ

1 79.05 80.18
2 79.79 80.56
3 79.41 81.17
4 79.38 79.84
5 80.30 80.43
6 79.55 80.36
7 79.79 80.86
8 78.48 80.21
9 80.00 80.51
10 80.32 81.06
Average 79.61 80.52

e The use of LVQ improves the performance in all the 10 trials.
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e The average percentage of correct classification is:
- 79.61% for SOM only
- 80.52% for combined SOM and LVQ
- 81.51% for the optimal Bayes classifier.
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9.11 Summary and Discussion
e This section describes briefly some theoretical results derived for SOM.
e Generally, it is very difficult to analyze SOM rigorously.

e The results on convergence etc. are mainly for one-dimensional lattices
only.
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