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Introduction

• Input-output relation of an LTI system can be 
realized using different computational 
algorithms 

• Basic realization forms of FIR and IIR digital 
filters are considered

• Mitra’s book covers also various more 
sophisticated realizations of digital filters, e.g. 
lattice structures, allpass sections, and state 
space structures, not discussed in this course
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Time-Domain Characterizations
Convolution Sum:

Linear Constant Coefficient Difference Equation:

State-Space Equations:
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Basic Building Blocks

• Adder: +
][1 nx

][2 nx
][][ 21 nxnx +

• Multiplier: ][nx ][nax
a

• Unit delay: D][nx ]1[ −nx

• Branch node: ][nx

][nx

][nx
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Basic Operations
• Addition / Subtraction
• Multiplication (constant coefficient)
• Delay (memory)

• Example: First-order digital filter
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Analysis of Block Diagrams
• Example: Analyze the cascaded lattice structure 

shown below where the z-dependence of signal 
variables are not shown for brevity

21 SXW α−= 112 SWW δ−=

213 WSW ε+=21 SWY γ+β=
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• The signal 
values in the 
delay outputs 
are:
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Analysis of Block Diagrams
• Substituting the values of delay elements in the 

first four equations we get

3
1

1 WzXW −α−=

2
1

12 WzWW −δ−=
22

1
3 WWzW ε+= −

3
1

1 WzWY −γ+β=

)1/( 1
12

−δ+= zWW

2
1

3 )( WzW −+ε=

• Solving W2 from the second equation we get

and solving W3 from the third equation we get
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Analysis of Block Diagrams
• Combining the last two equations we get

• Substituting the above equation in the first 
and fourth equation gives

we finally arrive at
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The Delay-Free Loop Problem
• A block diagram containing delay-free loops is 

physically non-realizable

• Example: ( ){ }][][][][ nvnynwABny ++=

A

][nv][ny

][nu+][nw

+B

][][ nynw +
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The Delay-Free Loop Problem

• Solving for y[n]: ][
1

][
1

][ nv
AB

Bnw
AB

ABny
−

+
−

=

A

][nv][ny

][nu][nw +

+ B

Delay-free loop realization
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Equivalent Structures
• Two digital filter structures are defined to be 

equivalent if they have the same transfer 
function 

• Generation of an equivalent structure via the 
transpose operation:

1) Reverse all paths,
2) Replace pick-off (branching) nodes by adders, 

and vice versa,
3) Interchange the input and output nodes

The original structure and the transposed 
structure have the same transfer function
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Basic FIR Digital Filter Structures
• Transfer function of a causal FIR filter of length M: 

H(z) is a polynomial in z-1 of degree M-1

• The output y[n] is the weighted sum of the input 
x[n] and and its M-1previous values

• The weights are the the values of the unit impulse 
response h[n]
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Direct Form FIR Filter Structure
]1[ −nx

][ny+

][nx z-1 z-1 z-1 z-1

]2[ −nx ]3[ −nx ]4[ −nx

++ +
]0[h ]1[h ]2[h ]3[h ]4[h

• The products h[k]x[n-k] are accumulated to 
form the output y[n]

• The structure is called a tapped delay line or 
a transversal filter
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Transposed Direct Form FIR 
Filter Structure

][ny

][nx

]0[h]1[h]2[h]3[h]4[h

z-1 z-1+ ++

z-1 z-1+

• Both direct form structures are canonic with 
respect to delays

• Direct form FIR structures are computationally 
efficient when using modern signal processors
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Polyphase Realization
• Polyphase decomposition of the FIR transfer 

function results in a parallel structure of an FIR 
filter
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• Expressing the above equation as a sum of two 
terms, one containing the even-indexed 
coefficients and the other containing the odd-
indexed coefficients
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Polyphase Realization
• Using the notations

H(z) can be written as:
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• Similarly, by grouping the terms differently, the 
transfer function can be rewritten as
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Polyphase Decomposition
• In general, an L-branch polyphase decomposition 

of the transfer function H(z) of order M-1 is of the 
form
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• The subfilters Ek(zL) are also FIR filters
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Polyphase Realization
• A realization of the transfer function H(z) based 

on the polyphase decomposition is called a 
polyphase realization

Polyphase realizations of an FIR transfer function: 
Four-branch (a), three-branch (b), and two-branch (c) structures

(a)
(b) (c)
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Linear-Phase FIR Structures
• Linear-phase FIR filter of length M is 

characterized by the symmetric impulse response

]1[][ nMhnh −−=

• An antisymmetric impulse response condition

]1[][ nMhnh −−−=

results in a constant group delay and “almost 
linear-phase” property
Symmetry of the impulse response coefficients can 
be used to reduce the number of multiplications
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Linear-Phase FIR Structures
• Length M is odd (M=7)
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Linear-Phase FIR Structures
• Length M is even (M=8)
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Basic IIR Filter Structures
• The transfer function is rational
• Direct forms: Coefficients are directly the transfer 

function coefficients
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• Considering the numerator and denominator 
separately
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Basic IIR Filter Structures

)(zX
)(zW

)(1 zH )(zY)(2 zH

• H1(z) realizes the zeros and H2(z) realizes the 
poles of the transfer function H(z)
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Direct Form I
• Considering the basic cascade realization 

results in Direct form I :

Zeros Poles

)(
1)()(
zD

zPzH ⋅=
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Direct Form II

)(
)(

1
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1)()( zP
zDzD

zPzH ⋅=⋅=

• Changing the order of blocks in cascade results in 
direct form II

][nx ][ny

Poles Zeros
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Canonic Structure
• The number of delays can be reduced by noticing 

that the same signal value w2[n] is stored into 
both delay lines

][nx ][ny

][2 nw
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Canonic Direct Form II Structure

Canonic structure with respect to delays

][nx ][ny
][2 nw
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Additional Direct Form I Structures
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Direct Form II Structures

Direct Form II and Direct Form II transposed 
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Cascade Realizations

)()()(
)()()()(
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zDzDzD
zPzPzPzH =

• Factoring the numerator and denominator

• Various alternatives in pairing the poles and zeros
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Cascade Realizations
• Various alternatives in ordering the sections

• Different realizations behave differently under 
finite wordlength constraints
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First and Second Order Blocks 
in Cascade

• Usually the polynomials are factored into a 
product of first and second order polynomials

• For a first-order section α2k=β2k=0
• Realizing complex conjugate poles and zeros with 

second order blocks results in real coefficients
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First and Second Order Blocks 
in Cascade

• Example: Third order transfer function
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• General structure:
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Parallel Realizations
• Parallel realizations are obtained by making use 

of the partial fraction expansion of the transfer 
function
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Parallel Realizations
• General structure: )(1 zH

)(2 zH

)(2/ zHN

+

• Easy to realize:
• No choices in section ordering and
• No choices in pole and zero pairing
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State-Space Structures
• A second-order IIR digital 

filter can be described by 
the state-space equations:
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Large number of 
arithmetic operations 
needed (when 
compared to direct 
form second order 
blocks)
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Digital Oscillators
• There are applications where a digital oscillator 

or frequency synthesizer is required to generate 
a discrete-time sinusoid of programmable 
frequency ω0

• A second-order recursive digital filter with poles 
on the unit circle is “marginally stable”

• With non-zero initial conditions, it ideally 
produces a sinusoidal output

• The frequency ω0 of the sinusoid is determined 
by the angle of the unit-circle poles
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Recursive Quadrature Oscillators
• A quadrature oscillator generates two sinusoidal 

outputs of the same frequency and amplitude but 
the phase differs by 90o

)cos( 0nA ω

)sin( 0nA ω
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Digital Sine-Cosine Generator
• Consider two causal impulse responses

[ ] [ ]nnAnh μω )cos( 01 =

[ ] [ ]nnAnh μω )sin( 02 =

• The corresponding system functions (without 
gain A) are
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Digital Sine-Cosine Generator
• A two-output recursive structure below has the 

system functions H1(z) and H2(z)

[ ] )cos( 01 nAnh ω=

[ ] )sin( 02 nAnh ω=
[ ]nAδ
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Digital Sine-Cosine Generator
• Solving the signal values from the structure

[ ]nx

[ ]nw1

[ ]nw2

[ ]ny1

[ ]ny2

[ ] [ ]112 −= nwnw

[ ] [ ] [ ] [ ]nxnwnwnw +−−−= 11)cos(2 2101 ω

[ ] [ ]1)cos( 101 −−= nwnw ω

[ ]1)sin( 10 −= nwω

[ ] [ ] [ ] [ ]nxnwnwnw +−−−= 21)cos(2 1101 ω
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Digital Sine-Cosine Generator
• Using the z-transform and solving W1(z)

)()()()cos(2)( 1
2

1
1

01 zXzWzzWzzW +−= −−ω

[ ] )()cos(21)( 21
01 zXzzzW =+− −−ω

• Taking the z-transform of the outputs gives 

)()cos()()( 1
1

011 zWzzWzY −−= ω

)()sin()( 1
1

02 zWzzY −= ω

• Substituting W1(z) into the above equations   
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Digital Sine-Cosine Generator
• Equations for Y1(z) and Y2(z) are now
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• Solving the system functions H1(z) and H2(z) gives
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Digital Sine-Cosine Generator
• Substituting now x[n]=Aδ[n] we notice that X(z)=A
• The expressions for the outputs Y1(z) and Y2(z)

are now
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• The oscillator outputs are obtained, e.g., from the 
inverse z-transform tables


