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T-61.3010 Digital Signal Processing and
Introduction
« Time-domain classification of a digital filter
transfer function based on the length of its
: -1 impulse response leads to the finite impulse
LTI DlSCf:e'l'e Tlme response (FIR) and the infinite impulse
Sys']’ems in The response (lIR) transfer functions
T . « In the frequency-domain, four types of ideal
ransform Domain filters with frequency-selective frequency
responses are usually defined
« The definition is based on the shape of the
magnitude function |H(el®)|
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Ideal Filters Ideal Filters
Hip(el) it Hgp(€) Bandpass filter:
Lowpass nilter:
1 Lowpass filter 1 » Passband o, <w<a,
FT + Passband 0< o< a, . Stopbands 0< w< @,
-LI -0, 0 o 1‘[ ? : StOpband wc< =y -‘7( —0g 0y 0 oy o T‘( and CUC2< o7
Hup(e”) ) _ Hes() Bandstop filter:
Highpass filter:
1 Highpass filter 1 - Passbands 0< o< @,
T r * Stopband 0< w< o, j e and o, < o<z
,‘n o o o ,‘[ ® * Passband Q. <O T M -0n —0y 0 0y Op T . Stopband 0 < W< O,
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Impulse Response of
the Ideal Lowpass Filter

he[n] =i IHLP (e’ "dw =i Ie””ndw

—a,

_sinwn
m

He") .
» The impulse response
;

is a sinc function
T N

h[n]=#0, forn<0

» The impulse response

i) is not causal and
its oscillatory behavior
1 is not desired
)
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Ideal Filter Characteristics

« All the ideal filters are characterized by doubly
infinite, non-causal impulse responses

* As a result, ideal filters with “brick wall” frequency
domain characteristics cannot be realized by an
LTI with a transfer function of finite order

« In order to develop stable and realizable transfer
functions, a finite transition band in introduced
between the passband and stopband

» The magnitude response is allowed to vary by a
specified amount both in the passband and in the
stopband
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Ideal Filter Characteristics

 Typical magnitude specifications for the design of
lowpass filters:

(b) Normalized magnitude
specifications

(a) Magnitude specifications
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Bounded Real Transfer Functions

A causal real-coefficient H(z) is defined as a
bounded real (BR) transfer function if

‘H(ej‘”)‘gl, for all valuesof @

» Note that any stable real-coefficient transfer
function can be made into a BR function by
appropriate scaling
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H(z) are X(el®) and Y(ei®), respectively, then

2

e <|xe)

transfer function can be viewed as a passive
structure
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Bounded Real Transfer Functions

« If the Fourier transforms of the input and output of a
digital filter characterized by a BR transfer function

« In other words, for all finite-energy inputs, the output
energy is less than or equal to the input energy

« This implies that a digital filter characterized by a BR

Lossless Bounded Real Transfer
Functions

« If the BR condition is satisfied with the equality sign

‘H(ej“’) =1, for all valuesof o

the output energy is equal to the input energy

« Such a digital filter is a lossless system

« A causal stable real-coefficient transfer function
H(z) with frequency response H(ei®) of unity
magnitude is called a lossless bounded real
(LBR) transfer function
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Allpass Transfer Functions

Definition:

response for all frequencies, i.e.,
|A(ei?))2=1, forall @
is called an allpass transfer function

transfer function is of the form

LY +d, 2 e d g M

Tltd izt +dy, 2 M d, 2

A@)=
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An IR transfer function A(z) with unity magnitude

« Now an Mt order causal real-coefficient allpass

Allpass Transfer Functions

« If we denote the denominator polynomial of the
allpass function A,(z) as Dy, (2)

D, (2)=1+dz " +-+dy, 2" +d,, 2"

« It follows that A,(z) can be written as

-M —1
A== 28
D@
* Note from above that if z=rei? is a pole of A,,(z) then
it has a zero at z=(1/r)e’?, i.e., D\(z!) is a mirror-
image polynomial of Dy,(z), and vice versa
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Allpass Transfer Functions

« Poles and zeros of a real coefficient allpass
function exhibit mirror-image symmetry in the

z-plane
15
» Example: 1°
The pole-zero .. /\
diagram of a g o
third order Eos \J
allpass function 1
(e}
-15
-1 o 1 2 3
Real Part
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Allpass Transfer Functions

* To show that A (ei®) is indeed equal to one for all
o, it follows from Ay,(z) that

A\/I (Z) =+ ZiM I:}\/I (Zil) - A»/I (Zfl) —+ ZM I:}\/I (Z)

Du(@ T 0w
* Therefore 5 _2"Du@) "0
AOAE) =50 ST
* Hence o
A =A@AEY . =1
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Allpass Transfer Function

A Simple Application

« A simple but often used application of an
allpass filter is as a delay equalizer

« Let G(z) be the transfer function of a digital
filter designed to meet a prescribed
magnitude response

* The nonlinear phase response of G(z) can be
corrected by cascading it with an allpass filter
A(2) so that the overall cascade has a
constant group delay in the band of interest
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Allpass Filter as a Delay Equalizer

e | A

* Since |A(el?)|=1, we have
Ge*)AE!)I=IG(e!)]
 Overall group delay is then given by the sum of
the group delays of G(z) and A(z)
» The allpass section is designed so that the overall

group delay is approximately constant in the
frequency range of interest
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Zero-Phase Transfer Functions

» Frequency response of the filter is real and non-
negative
=> zero-phase characteristics

 Impossible to design a causal digital filter with zero
phase

» Non-real time processing of finite length, zero-phase
filtering can be implemented if the causality
requirement is relaxed:

* The finite-length input data is processed by a causal
real coefficient filter H(z) whose output is then time-
reversed and processed by the same filter once again
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Zero-Phase Filtering

x[n] —> H(z) — v[n] uln]—> H(z) |—> win]

uln]=v[xn], y[n]=w{+n]
e Let v[-n]=u[n]
I:> V(Ee!”)y=H(Ee”)X ("), W(E"”)=HE"")UE!")
UE)=V*E™),  Y(E")=W*(e")
D Y(E")=W (") =H* (") *(e")
=H*@E“V(E”)=H*@E")H(E)X (')
= HE™) [ X (")
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Linear-Phase Transfer Function

* In the case of a causal LTI system with nonzero
phase response, the phase distortion can be
avoided by allowing the output to be a delayed
version of the input

yIn]=x[n-D]
« The Fourier transform gives Y (el®)=e 1P X (e1?)
» The frequency response is

o) L) e
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Linear-Phase Transfer Functions

» The frequency response has a unity magnitude and
a linear phase with a group delay of D samples at
all frequencies

H(E)=1 7(0)=D

 The output of this filter to an input x[n]=Aei*" is the
given by

y[n]: Ae—ijej(m _ Ae—jw(n—D)

» The output is the delayed version of the input
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Linear-Phase Transfer Functions

« If we desire to pass input signal components in a
certain frequency range undistorted both in
magnitude and phase, then the transfer function
should exhibit a unity magnitude response and
linear-phase in the band of interest

[H_p(e1)] argH p(el*)
l
T — @ T T T — @
-T -0, 0 o, n -1 -0, 0 o,
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Minimum-Phase and Maximum-
Phase Transfer Functions

« Consider the two 1st order transfer functions:

Hi(2) =22, Hy(2)=24 b<1

z+a’ z+a’

a<1

 Both transfer functions have a pole inside the unit
circle at the same location z=-a and are stable
* But the zero of H,(2) is inside the unit circle at
z = -b, whereas, the zero of H,(z) isatz =-1/b
situated in a mirror-image symmetry
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Minimum-Phase and Maximum-
Phase Transfer Functions

« Figure below shows the pole-zero plots of the
two transfer functions

Unit ciecle

H1(2) H»(2)
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Minimum-Phase and Maximum-
Phase Transfer Functions

* However, both transfer functions have an
identical magnitude function as

-1 -1
Hy(2)Hy(z7) = Ha(2)Hp(27) =1
« The corresponding phase functions are

JoN1 _4an1 sine ;-1 sine
arg[Hy(e™)]=tan b+cosw an = s

joyy_ -1 bsine _ 1541 sinw
arg[HZ(e )]_tan 1+bcosw tan a+Ccosw
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Minimum-Phase and Maximum-
Phase Transfer Functions
« Figure below shows the unwrapped phase

responses of the two transfer functions for
a=0.8 and b=-0.5

Phase, degrees

T-61.3010 Digital Signal Processing; 25
Mitra 3rd Edition: Chapter 7

© 2007 Olli Simula

Minimum-Phase and Maximum-
Phase Transfer Functions

» From this figure it follows that H,(z) has an
excess phase lag with respect to H,(z)

« Generalizing the above result, we can show that
a causal stable transfer function with all zeros
outside the unit circle has an excess phase
compared to a causal transfer function with
identical magnitude but having all zeros inside
the unit circle
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Minimum-Phase and Maximum-
Phase Transfer Functions

« A causal stable transfer function with all zeros
inside the unit circle is called a minimum-phase
transfer function

« A causal stable transfer function with all zeros
outside the unit circle is called a maximum-
phase transfer function

« Any nonminimum-phase transfer function can be
expressed as the product of a minimum-phase
transfer function and a stable allpass transfer
function
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FIR Filters with Linear Phase Response

* Necessary condition for linear-phase in FIR filters
is the symmetry of the impulse response

hin]==h[N-n]
h[n] h[n]
Positive

symmetry [ 1 11 rln‘r P11,

Negative
symmetry | ! 1 1 3 [ 1
T 1]
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Linear Phase Response
Type 1: Symmetric impulse response with odd length
hn]=h[N-n], 0<n<N
Assume that N=6:

H(2) =h0]+hl]z* +H2)z* +H3Jz ° + N4z * +HBJz ° + 6]z
=HOQ+2°)+HI @ +2°)+h2 @ % +2 ) +hi3z
=2* WO\ +2%)+NI@ +27)+h2A@+27) +H3)

H("”)=e > {2!“{0]cos (30)+2H]cos (20)+ 2h[2]cos (a))+t{3]}

T )= HE"); (real)
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Linear Phase Response
Type 1: Symmetric impulse response with odd length

N/2

H(ejw) :e*JNfu/Z{z a[n]COS(an)}

n=0

where g[0]= r{%} an] :2?{% —n}, 1<n s%

Type 2: Symmetric impulse response with even length

H(el")=e 2{(Nﬁ)/zb[n]cos (@(n —1/2))}

n=l
where b[n]= NTH—n} lsnsNT+1
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Linear Phase Response
Type 3: Antisymmetric impulse response with odd
length N (.77 .
H(el") =g %" Z{Z dnlsin (an)}
n=1
where dn]= %—n} 1§nsg

Type 4: Antisymmetric impulse response with even

Iength . (N+1)/2
H(E") =e"N"”2eJ”’Z{ > dnsin (cu(n—l/z))}
n=L
where d[n]= ML—n ! 1§nsﬁL
2 2
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Zero Locations of Linear-Phase
FIR Filters

 Consider an FIR filter with symmetric impulse

response N N

H(z) =) hnlz" =) hiN-njz"

n=0 n=0
* Substituting m=N-n results in
H@z)= ir{m]z"“”“ =z ir{m]z’“ =z"H(Z?)

m=0 n=0

» The similar relation holds for antisymmetric impulse
response, i.e. h[n]=-h[N-n]

* Thus, if z=&, is a zero of H(z) then so is z=1/&,
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Zero Locations of Linear-Phase
FIR Filters

* For an FIR filter with jim

real impulse °
response, the zeros /\

conjugate pairs . sk
Thus, the zeros of jims

linear-phase FIR /
filters occur in a set

i
occur in complex kj \ .
t °

jl

Unit circle

NP

of four zeros at \

zlyzzreijco and ° v i
234=(1Ir)etie
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Simple FIR Digital Lowpass Filter

* The simplest moving average filter with M=2 has a
transfer function 1
H,(2) =§(1+ z’l)

with a frequency response H,(e'”) =" cos/2)

First-order FIR lowpass filter

! e Lowpass FIR filter

3§ e Zeroat z=-1

503 jo — -

z max{|H,(e'")[}=1, atw=0

min V3= =
0 0 Odn  O6n 08 {H,e")}=0, atw=7
Normalized frequency
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Higher Order FIR Lowpass Filters

« A cascade of three first order simple FIR filter
sections results in improved lowpass frequency

response 3
H(2) =B(1+ z’l)}

First-order FIR lowpass filier caseade
1

» Lowpass FIR filter

Magnitude
=
=

e Three zerosat z=-1

% 02z oax o6 0Bx

Normalized frequency
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Simple FIR Highpass Filter

» The simplest highpass filter is obtained from the
lowpass filter by replacing z with -z resulting in a
transfer function H,(2) :%(1_ z’l)

with a frequency response H,(e!”)=e7*"?jsin(@/2)
First-crder FIR highpass filler

1 « Highpass FIR filter

e Zeroat z=1
max{H,€)}=1, atw=r
min{|H,(€'*)[}=0, atw=0

Magnitude
=
-

0 02 o4n obx OB =
Normalized frequerey
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Simple IIR Lowpass Filter Simple IIR Lowpass Filter

* Afirst order | IIR digital filter h transf
\rst order lowpass 'griatiter has a transter « The 3-dB cutoff frequency is obtained by setting

_ (-a)’(+cosw) 1

function 1o 147°
HLP(Z):Tl— =y where |o|<1 ‘H (e,w)‘z_ 1
@ ol 2(1+0* —20c0sw) 2
» The squared magnitude of the frequency response . .
is a g . yresp which yields _ 2a
oy __(1-0)*(1+cose) R T
Hp(e ) =5 =2
2(1+a” —2acosw)
« The filter is a lowpass filter: » The parameter o can now be expressed as
_1-sing,
cosw,

max{H_(€!*)[}=1, atw=0
min{H_-(€!”)[}=0, atw=7
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Simple IIR Highpass Filter
« A first order highpass IIR digital filter has a transfer

* The plots of the magnitude response and the gain !
in dB scale with different values of o are shown function H l-a 1-7°
WD) ="— ~., Where |o|<1

Simple IIR Lowpass Filter

2 1-az

1
N\ - -a=0.8
v
08F W\ N |—0=0.7 ey - 0 et iae
\ N P - v
$ \ . - 005 -
,éo.s \ S 4 o8 5
s
o4 Zos} ! g
g . £
-~ 2 | w0
02| <3 ~ S04t - o=0.8 - =08
T Tl ! —o=0.5 15 —o=05
== oaff
% 02 04 06 08 [ § - 0=02 - 002
Normalized frequency 0
0 02 04 06 [ 1 et 10" W
Normalized frequency Normalized frequency
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Second-Order IIR Bandpass Filter Second-Order IIR Bandpass Filter
* A second order bandpass IIR digital filter has a « Plots of the magnitude responses for several
transfer function values of ¢ and B are given below
l-a 1-772 p=034 a=06
He(d) =53 A~ e
*° 2 1-pa+a)r +az? ! AN St BV YA VAN e
. . . [2 A . —a=05]1 , ! N \ =0.
* The maximum value of unity of the magnitude ;10 AN N R r2d | - S AN Y
. < ‘ \ N El ' SN N
response is at = «,, called the center frequency %ol AN 24 S NN
of the bandpass filter o T~ YA
onv— 0.2 04 06 08 1 0 02 Nm%il'mdﬁegﬂ Y 0.8 1
1 Normalized frequency i uenc;
@, =cos™ ()
e Zeros: 1-z2=(1+zY9(1-zY)=0 => z=+1
» The parameter « controls the sharpness of the (+. )3z -
response * Poles: p,,=re*i
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Second Order IIR Bandstop Filter

A transfer function of the form
l+a 1-287"+77
HBS (Z) = 1 )
2 1-pA+a)z +az

08 1 0 02

0 02 0.

4 06 6 [ 1
Normalized frequency

04 0.
Normalized frequency

 Zeros on the unit circle at w=cos(f)

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 43
Mitra 3rd Edition: Chapter 7

Higher Order Transfer Functions

» Sharper magnitude responses can be obtained by
increasing the order of the transfer function

* In general, high order digital filters are realized as
cascade or parallel combinations of first and
second order blocks

« Cascade form: H(Z)=l_[N H@

= !
* Parallel form:  H(@9=Y" H()

» Lower order sections are preferred due to their
better performance with finite wordlength
computation
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First Order Sections in Cascade

« K first order sections in cascade:

K
_ -1
GLP(z)=[12all+;Zl] . Wwhere |of<1

\GLP(eJW)‘Z{ (1-a)*(1+cose) T

2(1+0” —20cosw)

v ——
] Kel =4
2" s
‘| & ;
\| .. : L
o

[C

= T v o
10% 10 10 10
Normalized frequency Normalized frequency
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Bandpass Sections in Cascade

» Cascading second order bandpass filter sections
sharpens the response

» Example: One, two, or three sections in cascade:

Magnitude

0 0.2 08 1

04
Normalized frequency
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Comb Filters

» Multiple passbands and stopbands required

» Frequency response is periodic function of « with
period 24/M

» Lowpass type: G,(z)= HO(zM)=%(1+ z’“")

« Notch filter with M notch frequencies at
o= @2k+1)aM, k=0,1, ..., M-1

* Highpass type: G,(z) = Hl(zM)=%(1—z*M)
« Notch filter with M notch frequencies at
w=2kdAM, k=0,1, ..., M-1
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Comb Filters

 The substitution of zM in place of z can be
implemented by replacing each delay by M delays

» Magnitude responses of FIR comb filters
generated from the lowpass filter Hy(z)=%2(1+z1)
and the highpass filter H,(z)=%2(1-z'%) with M=5

Comb filter from lowpass prototype

1 1
OSIX/\/\\/\/ »
oo» 057 n 15% 2

23 0 05x 1.5¢
Normalized frequency Normalized frequency

Comb filter from highpass prototype

Magnitude
S
2

Magnitude

2
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