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Introduction
• Time-domain classification of a digital filter 

transfer function based on the length of its 
impulse response leads to the finite impulse 
response (FIR) and the infinite impulse 
response (IIR) transfer functions

• In the frequency-domain, four types of ideal 
filters with frequency-selective frequency 
responses are usually defined

• The definition is based on the shape of the 
magnitude function |H(ejω)|
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Ideal Filters
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Lowpass filter:
• Passband 0 < ω < ωc

• Stopband ωc < ω <π

Highpass filter:
• Stopband 0 < ω < ωc

• Passband ωc < ω < π
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Ideal Filters
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Bandpass filter:
• Passband ωc1 < ω < ωc2

• Stopbands 0 < ω < ωc1
and  ωc2 < ω < π

Bandstop filter:
• Passbands 0 < ω < ωc1

and ωc2 < ω < π
• Stopband ωc1 < ω < ωc2
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Impulse Response of 
the Ideal Lowpass Filter
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• The impulse response 
is a sinc function

• The impulse response 
is not causal and 
its oscillatory behavior 
is not desired

0for ,0][ <≠ nnh
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Ideal Filter Characteristics
• All the ideal filters are characterized by doubly 

infinite, non-causal impulse responses
• As a result, ideal filters with “brick wall” frequency 

domain characteristics cannot be realized by an 
LTI with a transfer function of finite order

• In order to develop stable and realizable transfer 
functions, a finite transition band in introduced 
between the passband and stopband

• The magnitude response is allowed to vary by a 
specified amount both in the passband and in the 
stopband
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Ideal Filter Characteristics
• Typical magnitude specifications for the design of 

lowpass filters:

(a) Magnitude specifications (b) Normalized magnitude 
specifications
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Bounded Real Transfer Functions
• A causal real-coefficient  H(z) is defined as a 

bounded real (BR) transfer function if 

ωω   of  values  all  for,1)( ≤jeH

• Note that any stable real-coefficient transfer 
function can be made into a BR function by 
appropriate scaling
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Bounded Real Transfer Functions
• If the Fourier transforms of the input and output of a 

digital filter characterized by a BR transfer function 
H(z) are X(ejω) and Y(ejω), respectively, then

22
)()( ωω jj eXeY ≤

• In other words, for all finite-energy inputs, the output 
energy is less than or equal to the input energy

• This implies that a digital filter characterized by a BR 
transfer function can be viewed as a passive 
structure
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Lossless Bounded Real Transfer 
Functions

• If the BR condition is satisfied with the equality sign

the output energy is equal to the input energy 
• Such a digital filter is a lossless system
• A causal stable real-coefficient transfer function 

H(z) with frequency response H(ejω) of unity 
magnitude is called a lossless bounded real 
(LBR) transfer function

ωω   of  values  all  for,1)( =jeH
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Allpass Transfer Functions
Definition:

An IIR transfer function A(z) with unity magnitude 
response for all frequencies, i.e.,

|A(ejω)|2 = 1, for all ω

is called an allpass transfer function
• Now an M th order causal real-coefficient allpass

transfer function is of the form
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Allpass Transfer Functions
• If we denote the denominator polynomial of the 

allpass function AM(z) as DM(z)
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• It follows that AM(z) can be written as

• Note from above that if z=re jϕ is a pole of AM(z) then 
it has a zero at z=(1/r)e-jϕ, i.e., DM(z-1) is a mirror-
image polynomial of DM(z), and vice versa
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Allpass Transfer Functions
• Poles and zeros of a real coefficient allpass

function exhibit mirror-image symmetry in the 
z-plane

• Example:
The pole-zero 
diagram of a 
third order 
allpass function
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Allpass Transfer Functions
• To show that AM(ejω) is indeed equal to one for all 

ω, it follows from AM(z) that
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Allpass Transfer Function
A Simple Application
• A simple but often used application of an 

allpass filter is as a delay equalizer
• Let G(z) be the transfer function of a digital 

filter designed to meet a prescribed 
magnitude response

• The nonlinear phase response of G(z) can be 
corrected by cascading it with an allpass filter
A(z) so that the overall cascade has a 
constant group delay in the band of interest
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Allpass Filter as a Delay Equalizer

• Since  |A(ejω)|=1, we have

• Overall group delay is then given by the sum of 
the group delays of G(z) and A(z)

• The allpass section is designed so that the overall 
group delay is approximately constant in the 
frequency range of interest

|)(||)()(| ωωω jjj eGeAeG =

G(z) A(z)
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Zero-Phase Transfer Functions
• Frequency response of the filter is real and non-

negative  
=> zero-phase characteristics

• Impossible to design a causal digital filter with zero 
phase

• Non-real time processing of finite length, zero-phase 
filtering can be implemented if the causality 
requirement is relaxed:
• The finite-length input data is processed by a causal 

real coefficient filter H(z) whose output is then time-
reversed and processed by the same filter once again
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Zero-Phase Filtering

• Let
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Linear-Phase Transfer Function
• In the case of a causal LTI system with nonzero 

phase response, the phase distortion can be 
avoided by allowing the output to be a delayed 
version of the input

• The Fourier transform gives
• The frequency response is
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Linear-Phase Transfer Functions
• The frequency response has a unity magnitude and 

a linear phase with a group delay of D samples at 
all frequencies

• The output of this filter to an input x[n]=Aejωn is the 
given by

• The output is the delayed version of the input

DeH j == )(,1)( ωτω

[ ] )( DnjnjDj AeeAeny −−− == ωωω
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Linear-Phase Transfer Functions
• If we desire to pass input signal components in a 

certain frequency range undistorted both in 
magnitude and phase, then the transfer function 
should exhibit a unity magnitude response and 
linear-phase in the band of interest
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Minimum-Phase and Maximum-
Phase Transfer Functions

• Consider the two 1st order transfer functions:

• Both transfer functions have a pole inside the unit 
circle at the same location z = -a and are stable

• But the zero of H1(z) is inside the unit circle at
z = -b, whereas, the zero of H2(z) is at z = -1/b
situated in a mirror-image symmetry 
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• Figure below shows the pole-zero plots of the 
two transfer functions

)(1 zH )(2 zH

Minimum-Phase and Maximum-
Phase Transfer Functions
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• However, both transfer functions have an 
identical magnitude function as

• The corresponding phase functions are
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• Figure below shows the unwrapped phase 
responses of the two transfer functions for
a=0.8 and b=-0.5 
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• From this figure it follows that H2(z) has an 
excess phase lag with respect to H1(z) 

• Generalizing the above result, we can show that 
a causal stable transfer function with all zeros 
outside the unit circle has an excess phase 
compared to a causal transfer function with 
identical magnitude but having all zeros inside 
the unit circle

Minimum-Phase and Maximum-
Phase Transfer Functions
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• A causal stable transfer function with all zeros 
inside the unit circle is called a minimum-phase 
transfer function

• A causal stable transfer function with all zeros 
outside the unit circle is called a maximum-
phase transfer function

• Any nonminimum-phase transfer function can be 
expressed as the product of a minimum-phase 
transfer function and a stable allpass transfer 
function

Minimum-Phase and Maximum-
Phase Transfer Functions
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FIR Filters with Linear Phase Response
• Necessary condition for linear-phase in FIR filters 

is the symmetry of the impulse response
][][ nNhnh −±=

h[n]

n

h[n]

n

Positive 
symmetry

h[n]

n n

h[n]
Negative 
symmetry
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Linear Phase Response
Type 1: Symmetric impulse response with odd length

NnnNhnh ≤≤−= 0,][][
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Linear Phase Response
Type 1: Symmetric impulse response with odd length
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Linear Phase Response
Type 3: Antisymmetric impulse response with odd 
length ( )
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Type 4: Antisymmetric impulse response with even 
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Zero Locations of Linear-Phase 
FIR Filters

• Consider an FIR filter with symmetric impulse 
response
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• Substituting m=N-n results in
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• The similar relation holds for antisymmetric impulse 
response, i.e. h[n]=-h[N-n]

• Thus, if z=ξ0 is a zero of H(z) then so is z=1/ξ0
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Zero Locations of Linear-Phase 
FIR Filters

• For an FIR filter with 
real impulse 
response, the zeros 
occur in complex 
conjugate pairs

• Thus, the zeros of 
linear-phase FIR 
filters occur in a set 
of four zeros at  
z1,2=re+ jϕ and 
z3,4=(1/r)e+ jϕ
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Simple FIR Digital Lowpass Filter
• The simplest moving average filter with M=2 has a 

transfer function
( )1

0 1
2
1)( −+= zzH

with a frequency response )2/cos()( 2/
0 ωωω jj eeH −=

• Lowpass FIR filter

• Zero at z = -1
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Higher Order FIR Lowpass Filters
• A cascade of three first order simple FIR filter 

sections results in improved lowpass frequency 
response
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• Lowpass FIR filter

• Three zeros at z = -1
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Simple FIR Highpass Filter
• The simplest highpass filter is obtained from the 

lowpass filter by replacing z with -z resulting in a 
transfer function ( )1

1 1
2
1)( −−= zzH

with a frequency response )2/sin()( 2/
1 ωωω jeeH jj −=

• Highpass FIR filter

• Zero at z = 1
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Simple IIR Lowpass Filter
• A first order lowpass IIR digital filter has a transfer 

function
1   where,
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• The squared magnitude of the frequency response 
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Simple IIR Lowpass Filter
• The 3-dB cutoff frequency is obtained by setting

which yields
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• The parameter α can now be expressed as
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Simple IIR Lowpass Filter

• The plots of the magnitude response and the gain 
in dB scale with different values of α are shown 
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Simple IIR Highpass Filter
• A first order highpass IIR digital filter has a transfer 

function
1   where,
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Second-Order IIR Bandpass Filter
• A second order bandpass IIR digital filter has a 

transfer function

21
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• The maximum value of unity of the magnitude 
response is at ω= ω0, called the center frequency
of the bandpass filter

)(cos 1
0 βω −=

• The parameter α controls the sharpness of the 
response
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Second-Order IIR Bandpass Filter
• Plots of the magnitude responses for several 

values of α and β are given below

• Zeros: 1-z-2=(1+z-1)(1-z-1)=0   => z=+1
• Poles: p1,2=re+ jφ
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Second Order IIR Bandstop Filter
• A transfer function of the form

21

21

)1(1
21

2
1)( −−

−−

++−

+−+
=

zz
zz

zHBS ααβ
βα

• Zeros on the unit circle at  ω=cos-1(β)
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Higher Order Transfer Functions
• Sharper magnitude responses can be obtained by 

increasing the order of the transfer function
• In general, high order digital filters are realized as 

cascade or parallel combinations of first and 
second order blocks

• Lower order sections are preferred due to their 
better performance with finite wordlength
computation
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First Order Sections in Cascade
• K first order sections in cascade:
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Bandpass Sections in Cascade
• Cascading second order bandpass filter sections 

sharpens the response

• Example: One, two, or three sections in cascade:
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Comb Filters
• Multiple passbands and stopbands required
• Frequency response is periodic function of ω with 

period 2π/M
• Lowpass type: ( )MM zzHzG −+== 1

2
1)()( 00

• Notch filter with M notch frequencies at 
ω = (2k+1)π/M,  k = 0, 1, ..., M-1

• Highpass type:

• Notch filter with M notch frequencies at 
ω = 2kπ/M,  k = 0, 1, ..., M-1

( )MM zzHzG −−== 1
2
1)()( 11
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Comb Filters
• The substitution of zM in place of z can be 

implemented by replacing each delay by M delays
• Magnitude responses of FIR comb filters 

generated from the lowpass filter H0(z)=½(1+z-1)
and the highpass filter H1(z)=½(1-z-1) with M=5


