6 z-Transform

Introduction

- A generalization of the discrete-time Fourier transform leads to the z-transform, which is function of the complex variable z
- The use of z-transform techniques permits simple algebraic manipulations
- The z-transform has become an important tool in the analysis and design of digital filters
- The representation of an LTI discrete-time system in the z-domain is given by its transfer function which is the z-transform of the impulse response of the system
© 2009 Olli Simula \quad T-61.3010 Digital Signal Processing; 2 Mitra 3rd Edition: Chapter 6

2

Definition and Properties

- For a given sequence $g[n]$, its z-transform is defined as

$$
G(z)=\sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

where $z=\operatorname{Re}(z)+j \operatorname{Im}(z)$ is a continuous complex variable
© 2009 Olli Simula $\left.\quad \begin{array}{c}\text { T-61.31.3010 Digital Signal Processing; } \\ \text { Mitra 3rd Edition: Chapter } 6\end{array}\right) 4$

The z-Transform

- Expressing the complex variable z in polar form $z=r e^{j \omega}$, the definition of the z-transform reduces to

$$
G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}
$$

- Comparing the above equation with discrete-time Fourier transform $G\left(e^{j \omega}\right)$ of the sequence $g[n]$

$$
G\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] e^{-j \omega n}
$$

i.e., $G\left(r e^{j \omega}\right)$ is the DTFT of the sequence $\left\{g[n] r^{-n}\right\}$

C 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 6

The z-Transform

- A geometrical interpretation of z-transform can be given by considering the location of the complex point z in the complex z-plane
- For fixed r and ω, the point $z=r e^{j \omega}$, is at the tip of a vector
- The contour $|z|=1$ is the unit circle
© 2009 Olli Simula

Convergence of the z-Transform

- Like the discrete-time Fourier transform, there are conditions on the convergence of the infinite series expansion of the z-transform
- For a given sequence, the set \mathcal{R} of values of z for which its z-transform converges is called the region of convergence (ROC)
- Without the knowledge of the ROC there is no unique relationship between the sequence and its z-transform
- The z-transform must always be specified with its ROC !
© 2009 Olli Simula
F-61.3010 Digital Signal Processi Mitra 3rd Edition: Chapter 6

Example: z-Transform of the Unit Step

- The z-transform of the unit step sequence

$$
\begin{aligned}
\mu(z) & =\sum_{n=-\infty}^{\infty} \mu[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n} \\
& =1+z^{-1}+z^{-2}+\ldots+z^{-n}+\ldots
\end{aligned}
$$

which is a power series that converges to

$$
\mu(z)=\frac{1}{1-z^{-1}}, \quad|z|>1
$$

- The region of convergence is the annular region in the z-plane $1<|z| \leq \infty$

O 2009 Olli Simula

Mitra 3rd Edition: Chaptess 6
Mitra 3rd Edition: Chapter 6

The z-Transform

- For $r=1$, i.e., $|z|=1$, the z-transform reduces to the Fourier transform $G\left(e^{j \omega}\right)$
- At $z=1$, the value of $G(z)$ is $G(z)=G(1)=G\left(e^{j 0}\right)$, i.e., the value of $G\left(e^{j \omega}\right)$ at $\omega=0$
- At $z=j, G(z)=G(j)=G\left(e^{j \pi / 2}\right)$, we have $G\left(e^{j \omega}\right)$ at $\omega=\pi / 2$
- At $z=-1, G(z)=G(-1)=G\left(e^{j \pi}\right)$, we have $G\left(e^{j \omega}\right)$ at $\omega=\pi$

- The frequency response $G\left(e^{j \omega}\right)$ is obtained by evaluating $G(z)$ on the unit circle

$$
2009 \text { Olli Simula } \quad \text { T-61.3010 Digital Signal Processin }
$$

Mitra 3rd Edition: Chapter 6

Convergence of the z-Transform

- From the interpretation of the z-transform $G(z)$ as the discrete-time Fourier transform of the sequence $g[n] r^{-n}$ it follows that the series of the z-transform definition converges if $g[n] r^{-n}$ is absolutely summable, i.e.

$$
\sum_{n=-\infty}^{\infty}\left|g[n] r^{-n}\right|<\infty
$$

- The sequence $g[n] r^{-n}$ can be made absolutely summable by choosing the value of r properly
© 2009 Olli Simula
-61.3010 Digital Signal Processi Mitra 3rd Edition: Chapter 6

Example 6.1: z-Transform of a Causal Exponential Sequence

- The z-transform of the causal sequence $x[n]=\alpha^{n} \mu[n]$

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{\infty} \alpha^{n} \mu[n] z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n} \\
& =1+\alpha z^{-1}+\alpha^{2} z^{-2}+\ldots+\alpha^{n} z^{-n}+\ldots
\end{aligned}
$$

- The above power series converges to

$$
X(z)=\frac{1}{1-\alpha z^{-1}}, \quad\left|\alpha z^{-1}\right|<1
$$

- The region of convergence is the annular region in the z-plane $|z|>\alpha$, i.e., the outside of a circle with radius α
© 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 6

Example 6.2: z-Transform of an Anticausal Exponential Sequence

- The z-transform of the anti causal sequence $x[n]=-\alpha^{n} \mu[-n-1]$

$$
\begin{aligned}
X(z) & =-\sum_{n=-\infty}^{-1} \alpha^{n} z^{-n}=-\sum_{m=1}^{\infty} \alpha^{-m} z^{m}=-\alpha^{-1} z \sum_{m=0}^{\infty} \alpha^{-m} z^{m} \\
& =-\frac{\alpha^{-1} z}{1-\alpha^{-1} z}=\frac{1}{1-\alpha z^{-1}},\left|\alpha^{-1} z\right|<1
\end{aligned}
$$

- Now, the region of convergence is the annular region in the z-plane $|z|<\alpha$
© 2009 Olli Simula
-61.3010 Digital Signal Processin Mitra 3rd Edition: Chapter 6

13

Regions of Convergence:

 The DTFT and the z-Transform- The DTFT, $G\left(e^{j \omega}\right)$ of a sequence $g[n]$ converges uniformly if and only if the ROC of the z transform $G(z)$ of $g[n]$ includes the unit circle
- The existence of the DTFT does not always imply the existence of the z-transform

Rational z-Transforms

- LTI discrete-time systems have z-transforms which are rational functions of z^{-1}

$$
H(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+\ldots+p_{M-1} z^{M-1}+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+\ldots+d_{N-1} z^{N-1}+d_{N} z^{-N}}
$$

- is a ratio of two polynomials $P(z)$ and $D(z)$
- The degree of the numerator polynomial $P(z)$ is M and that of the denominator polynomial $D(z)$ is N
- The degree of $H(z)$ is maximum of M and N
\qquad

Region of Convergence of z-Transforms

Notice:

- The z-transforms of the two sequences $x[n]=\alpha^{n} \mu[n]$ and $x[n]=-\alpha^{n} \mu[-n-1]$ are identical even though the two parent sequences are different
- The only way a unique sequence can be associated with a z-transform is by specifying its ROC
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 6

Commonly Used z-Transform Pairs		
Sequence	z-Transform	ROC
$\delta[n]$	1	All values of z
$\mu[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$\alpha^{n} \mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\|\alpha\|$
$\begin{aligned} & \left(r^{n} \cos \omega_{o} n\right) \mu[n] \\ & \left(r^{n} \sin \omega_{o} n\right) \mu[n] \end{aligned}$	$\begin{aligned} & \frac{1-\left(r \cos \omega_{o}\right) z^{-1}}{1-\left(2 r \cos \omega_{o}\right) z^{-1}+r^{2} z^{-2}} \\ & \frac{\left(r \sin \omega_{o}\right) z^{-1}}{1-\left(2 r \cos \omega_{o}\right) z^{-1}+r^{2} z^{-2}} \end{aligned}$	$\begin{aligned} & \|z\|>r \\ & \|z\|>r \end{aligned}$
© 2009 Olli Simula	T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 6	

Rational z-Transforms

- An alternate representation of a rational z-transform is a ratio in positive powers of z

$$
H(z)=z^{(N-M)} \frac{p_{0} z^{M}+p_{1} z^{M-1}+\ldots+p_{M-1} z+p_{M}}{d_{0} z^{N}+d_{1} z^{N-1}+\ldots+d_{N-1} z+d_{N}}
$$

- $H(z)$ can be factored into the form

$$
H(z)=\frac{p_{0}}{d_{0}} \frac{\prod_{l=1}^{M}\left(1-\xi_{l} z^{-1}\right)}{\prod_{l=1}^{N}\left(1-\lambda_{l} z^{-1}\right)}=\frac{p_{0}}{d_{0}} z^{N-M} \frac{\prod_{l=1}^{M}\left(z-\xi_{l}\right)}{\prod_{l=1}^{N}\left(z-\lambda_{l}\right)}
$$

© 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 6

Zeroes and Poles

- At a root $z=\xi_{l}$ of the numerator polynomial, $H\left(\xi_{l}\right)=0$ and these values of z are called the zeroes of $H(z)$
- At a root $z=\lambda_{l}$ of the denominator polynomial, $H\left(\lambda_{l}\right) \rightarrow$ infinity and these values of z are called the poles of $H(z)$
- There are M finite zeroes and N finite poles of H(z)
- There are additional ($N-M$) zeros at the origin if $N>M$ or ($N-M$) poles at $z=0$ if $N<M$
© 2009 Olli Simula
T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 6

Rational z-Transforms

- A physical interpretation of the concepts of poles and zeros can be given by plotting the logmagnitude $20 \log _{10}|H(z)|$ of $H(z)$

$$
H(z)=\frac{1-2.4 z^{-1}+2.88 z^{-2}}{1-0.8 z^{-1}+0.64 z^{-2}}
$$

- The poles are at $z=0.4 \pm j 0.6928$ and the zeroes are at $z=1.2 \pm j 1.2$
- The 3-D plot is shown on next slide
© 2009 Olli Simula
T-61.3010 Digital Signal Processin Mitra 3rd Edition: Chapter 6

21

Example: z-Transform of the Unit Step

- The region of convergence in the z-plane

$$
\mu(z)=\frac{1}{1-z^{-1}}=\frac{z}{z-1} \quad \begin{cases}\text { zero: } & z=0 \\ \text { pole: } & z=1\end{cases}
$$

ROC of the z-Transform of a Causal Exponential Sequence

- Determine the ROC of the z-transform $H(z)$ of the causal sequence $h[n]=(-0.6)^{n} \mu[n]$

$$
H(z)=\frac{1}{1+0.6 z^{-1}}=\frac{z}{z+0.6}, \quad|z|>0.6
$$

- The ROC is outside the circle going through the point $z=-0.6$ in the z-plane, extending to the infinity

O 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 6

Regions of Convergence of a Rational z-Transform

- Recall the z-transform of the unit step sequence

- The ROC of a rational z-transform is bounded by the locations of its poles

Regions of Convergence

- Assume that $X(z)$ has simple poles at α and β with $|\alpha|<|\beta|$
- If $x[n]$ is right-sided sequence

$$
x[n]=\left(r_{1}(\alpha)^{n}+r_{2}(\beta)^{n}\right) \mu\left[n-N_{0}\right]
$$

where N_{0} is an integer

- The z-transform of a right-sided sequence $(\gamma)^{n} \mu\left[n-N_{0}\right]$ exists if

$$
\sum_{n=N_{0}}^{\infty}\left|(\gamma)^{n} z^{-n}\right|<\infty, \quad \text { for some } z
$$

© 2009 Olli Simula

Regions of Convergence

- The right-sided sequence $x[n]$ has thus a region of convergence (ROC) defined by $|\beta|<|z| \leq$ infinity, i.e., the ROC is bounded by the largest pole
- Similarly, a left-sided sequence has a ROC defined by $0|\leq|z|<|\alpha|$,i.e., the ROC is bounded by the smallest pole
- A two-sided sequence can be decomposed into a right-sided and left-sided sequence $=>$ The ROC is an annular region in the z-plane

O 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 6

The Inverse z-Transform

- For $z=r e^{j \omega}$, the z-transform $G(z)$ is the Fourier transform of the exponentially weighted sequence $g[n] r^{-n}$
- The inverse Fourier transform

$$
g[n] r^{-n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(r e^{j \omega}\right) e^{j \omega n} d \omega
$$

- Changing the variable $z=r e^{j \omega}$ gives the contour integral

$$
g[n]=\frac{1}{2 \pi j} \oint_{C^{\prime}} G(z) z^{n-1} d z
$$

where C' is a counterclockwise contour encircling the origin in the ROC of $G(z)$ gives the contour integral
© 2009 Olli Simula $\left.\quad \begin{array}{c}\text { T-61.3010 Digital Signal Processing; } \\ \text { Mitra 3rd Edition: Chapter } 6\end{array}\right) 28$

Convolution Property

- The z-transform of the convolution is
$g[n] \circledast h[n] \stackrel{z}{\leftrightarrow} G(z) H(z), \quad$ ROC includes $R_{g} \cap R_{h}$
- The z-transform of the convolution sum gives

$$
\left.z\{g[n] \circledast h[[]\}\}=\sum_{n=\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty} g[k][n-k]\right)_{z^{-n}}=\sum_{k=-\infty}^{\infty} g[k]\left(\sum_{n=\infty}^{\infty} h[n-k]\right]^{-n}\right)
$$

- Substituting $l=n-k$, then $n=l+k$, gives

$$
Z\{g[n] \circledast h[n]\}=\sum_{k=\infty}^{\infty} g[k](\sum_{k=\infty}^{\infty} h\left[[] z^{-(l k)}\right)=(\underbrace{\sum_{k=\infty}^{\infty} g[k] z^{-k}}) \underbrace{\left(\sum_{==-\infty}^{\infty} h\left[[] z^{-1}\right)\right.}
$$

- By definition of the z-transform: $G(z) \quad H(z)$

$$
\text { © } 2009 \text { Olli Simula }
$$

Modulation Property

- The z-transform of the product sequence is

$$
g[n] h[n]=\frac{1}{2 \pi j} \oint_{C} G(v) H(z / v) v^{-1} d v, \quad \text { ROC includes } R_{g} R_{h}
$$

where C is a closed counterclockwise contour encircling the origin in the common ROCs R_{g} and R_{h}

- For the ROCs $R_{g-}<|z|<R_{g^{+}}$and $R_{h-}<|z|<R_{h^{+}}$the ROC $R_{g} R_{h}$ represents the region $R_{g .} R_{h-}<|z|<R_{g+} R_{h+}$
- The modulation theorem is also called the complex convolution theorem
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 6

Complex Convolution Theorem

- To see the similarity of the modulation property with the convolution, write v and z in polar form

$$
v=\rho e^{i \theta} \quad \text { and } \quad z=r e^{i \phi}
$$

- The modulation property now becomes

$$
\begin{aligned}
Z\{g[n]\lceil[n]\} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(\rho e^{i \theta}\right) H\left(\frac{r e^{i \phi}}{\rho e^{i \theta}}\right) \rho^{-1} d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(\rho e^{i \theta}\right) H\left(\frac{r}{v} e^{j(\phi-\theta)}\right) d \theta
\end{aligned}
$$

- This is often referred to as a periodic convolution
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 6

The Transfer Function

- If the region of convergence (ROC) of $H(z)$ includes the unit circle, the transfer function is related to the frequency response $H\left(e^{j \omega}\right)$ of an LTI digital filter
- The frequency response is obtained by evaluating the z-transform on the unit circle, i.e.,

$$
H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}
$$

- The frequency-domain behavior of a digital filter can be easily determined by graphical interpretation of $H\left(e^{j \omega}\right)$

O 2009 Olli Simula
1-61.3010 Digital Signal Processing
Mitra 3rd Edition
Mitra 3rd Edition: Chapter 6

The Transfer Function Expressions

1) A Finite Impulse Response (FIR) digital filter

- The impulse response is of finite length
- The transfer function is a polynomial in z^{-1}
- The realization is non-recursive

2) An Infinite Impulse Response (IIR) digital filter

- The impulse response is of infinite length
- The transfer function is a rational function in z^{-1}
- The realization is recursive
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 6

37

FIR Digital Filters

$h[n]=0 ; n<N_{1}$ and $n>N_{2}$
$y[n]=\sum_{n=N_{1}}^{N_{2}} h[k] x[n-k]$
$Y(z)=\left(\sum_{n=N_{1}}^{N_{2}} h[n] z^{-n}\right) X(z)=H(z) X(z)$
$H(z)=\sum_{n=N_{1}}^{N_{2}} h[n] z^{-n}$

IIR Digital Filters

- The input-output relation given by the difference equation

$$
\sum_{k=0}^{N} d_{k} y[n-k]=\sum_{k=0}^{M} p_{k} x[n-k]
$$

- Solving for $y[n]$

$$
y[n]=\frac{1}{d_{0}} \sum_{k=0}^{M} p_{k} x[n-k]-\frac{1}{d_{0}} \sum_{k=1}^{N} d_{k} y[n-k]
$$

- Output is obtained recursively from $x[n]$ and its previous M samples and N previous output samples
$\begin{array}{lll}\text { © } 2009 \text { Olli Simula } & \begin{array}{c}\text { T-61.3010 Digital Signal Processing; } \\ \text { Mitra 3rd Edition: Chapter } 6\end{array} & 40\end{array}$

IIR Digital Filters

- Taking the z-transform of the difference equation

$$
\left\{\sum_{k=0}^{N} d_{k} z^{-k}\right\} Y(z)=\left\{\sum_{k=0}^{M} p_{k} z^{-k}\right\} X(z)
$$

- Solving for $H(z)$

$$
H(z)=\frac{Y(z)}{X(z)} \frac{\sum_{k=0}^{M} p_{k} z^{-k}}{\sum_{k=0}^{N} d_{k} z^{-k}}=\frac{p_{0}+p_{1} z^{-1}+p_{2} z^{-2}+\ldots+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+d_{2} z^{-2}+\ldots+d_{N} z^{-N}}
$$

- The transfer function is a rational function in z^{-1}
© 2009 Olli Simula 41

IIR Filters

- $H(z)$ can be written in the form

$$
H(z)=z^{(N-M)} \frac{p_{0} z^{M}+p_{1} z^{M-1}+p_{2} z^{M-2}+\ldots+p_{M}}{d_{0} z^{N}+d_{1} z^{N-1}+d_{2} z^{N-2}+\ldots+d_{N}}
$$

- Solving the roots of the numerator and denominator polynomial leads to the factored form of $H(z)$

$$
H(z)=\frac{p_{0}}{d_{0}} \frac{\prod_{k=1}^{M}\left(1-\xi_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-\lambda_{k} z^{-1}\right)}=\frac{p_{0}}{d_{0}} z^{(N-M)} \frac{\prod_{k=1}^{M}\left(z-\xi_{k}\right)}{\prod_{k=1}^{N}\left(z-\lambda_{k}\right)}
$$

O 2009 Olli Simula
1-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 6

IIR Filters

$$
H(z)=\frac{p_{0}+p_{1} z^{-1}+p_{2} z^{-2}+\ldots+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+d_{2} z^{-2}+\ldots+d_{N} z^{-N}}=\frac{p_{0}}{d_{0}} \frac{\prod_{k=1}^{M}\left(1-\xi_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-\lambda_{k} z^{-1}\right)}
$$

- The zeroes of $H(z)$ are $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{M}}\right\}$
- The poles of $H(z)$ are $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\}$
- The coefficients p_{k} and d_{k} determine the locations of zeroes and poles, respectively
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 6

Evaluation of $H\left(e^{j \omega}\right)$

$$
H\left(e^{j \omega}\right)=H_{r e}\left(e^{j \omega}\right)+H_{i m}\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right| e^{j \arg \left[H\left(e^{i \omega}\right)\right]}
$$

- For a real coefficient transfer function

$$
\begin{aligned}
\left|H\left(e^{j \omega}\right)\right|^{2} & =H\left(e^{j \omega}\right) H^{*}\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) H\left(e^{-j \omega}\right) \\
& =\left.H(z) H^{*}\left(z^{-1}\right)\right|_{z=e^{j \omega}}
\end{aligned}
$$

- The values of the frequency response can be obtained by evaluating the z-transform on the unit circle in the z-plane, i.e., $H\left(e^{j \omega}\right)$ is $H(z)$ at $z=e^{j \omega}$
© 2009 Olli Simula T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 6

Geometric Evaluation of $H\left(e^{j \omega}\right)$

- Each term ($z-\xi_{k}$) and ($z-\lambda_{k}$) can be interpreted as a vector in the z-plane with the magnitude, B_{k} and A_{k}, and the angle θ_{k} and ϕ_{k}
- Evaluating the "zero and pole vectors" on the unit circle gives the magnitude and phase responses of $H\left(e^{j \omega}\right)$

$\arg \left[H\left(e^{j \omega}\right)\right]=\sum_{k=1}^{M} \theta_{k}-\sum_{k=1}^{N} \phi_{k}$
O 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 6

Stability Condition

- Bounded-input bounded-output (BIBO) stability: $h[n]$ is absolutely summable, i.e.,

$$
S=\sum_{n=-\infty}^{\infty}|h[n]|<\infty
$$

- The z-transform converges if $\sum_{n=\infty}^{\infty}\left|h[n] z^{-n}\right|<\infty$ for which $h[n] r^{-n}$ is absolutely summable
- If the ROC includes the unit circle, then the digital filter is stable
- For a causal and stable digital filter the poles must be strictly inside the unit circle
© 2009 Olli Simula \quad T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 6

Rational z-Transforms

- If the ROC includes the unit circle, the Fourier transform of the sequence can be obtained by evaluating the z-transform on the unit circle
- In addition, the ROC of the z-transform of the impulse response of a causal LTI system is related to the BIBO stability of the system
The ROC of the z-transform of a causal and stable discrete-time system includes the unit circle and the infinity in the z-plane
© 2009 Olli Simula

Summary

- Analysis equation converts from time-domain representation to transform-domain representation
- Synthesis equation is used for the reverse process
- Important and useful characterization of an LTI discrete-time system is its transfer function given by the z-transform of its impulse response
- The behavior of the system is determined by the transfer function and its poles and zeros
- Stability of the system is determined by the pole locations
© 2009 Olli Simula T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 6

