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z-Transform6 z Transform6

Introduction
• A generalization of the discrete-time Fourier 

transform leads to the z-transform, which is 
function of the complex variable z

• The use of z-transform techniques permits 
simple algebraic manipulations
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• The z-transform has become an important tool 

in the analysis and design of digital filters
• The representation of an LTI discrete-time 

system in the z-domain is given by its transfer 
function which is the z-transform of the impulse 
response of the system

Introduction
• In this chapter, the alternate transform-domain 

representation of sequences and its properties 
is discussed

• The properties of the z-domain transfer function 
are studied
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• The z-domain transfer function of the system is 
related to the frequency response of the system, 
which is the discrete-time Fourier transform of 
the impulse response

• The BIBO stability condition of an LTI system is 
derived in terms of its transfer function

Definition and Properties

• For a given sequence g[n], its z-transform is 
defined as

∑
∞

−= nzngzG ][)(
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where z=Re(z)+jIm(z) is a continuous complex 
variable

∑
−∞=

=
n

zngzG ][)(

The z-Transform

• The z-transform is often expressed as an 
operator indicated below

{ } ∑
∞
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• The operator Z{·} transforms a discrete-time 
sequence g[n] into a function G(z) of the 
complex variable z

• The relation can be expressed as

)(][ zGng
Z

↔

The z-Transform
• Expressing the complex variable z in polar form 

z = rejω , the definition of the z-transform reduces 
to

∑
∞

−∞=

−−=
n

njnj erngreG ωω ][)(

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 6

6

• Comparing the above equation with discrete-time 
Fourier transform G(ejω) of the sequence g[n]

i.e., G(rejω) is the DTFT of the sequence {g[n]r-n} 

∑
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n
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The z-Transform
• A geometrical interpretation of z-transform can be 

given by considering the location of the complex 
point z in the complex z-plane

• For fixed r and ω, 
the point z = rejω , ωjrez =•

Im zj
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p ,
is at the tip of a 
vector

• The contour
|z|=1 is the
unit circle unit circle

0
Re z

1-1

-j

r

ω

The z-Transform
• For r=1, i.e., |z|=1, the z-transform reduces to the 

Fourier transform G(ejω)
• At z =1, the value of G(z) is 

G(z) = G(1) = G(ej0), i.e., the 
value of G(ejω) at ω = 0

ωjez =

Im z

Re z

j

1

ω
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• At z = j, G(z) = G(j) = G(ejπ/2), 
we have G(ejω) at ω = π/2

• At z = -1, G(z) = G(-1) = G(ejπ), 
we have G(ejω) at ω = π

• The frequency response G(ejω) is obtained by 
evaluating G(z) on the unit circle  

0
Re z

1-1

-j

Convergence of the z-Transform
• Like the discrete-time Fourier transform, there 

are conditions on the convergence of the infinite 
series expansion of the z-transform

• For a given sequence, the set R of values of z for 
which its z-transform converges is called the 
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c ts t a s o co e ges s ca ed t e
region of convergence (ROC)

• Without the knowledge of the ROC there is no 
unique relationship between the sequence and 
its z-transform

• The z-transform must always be specified 
with its ROC !

Convergence of the z-Transform
• From the interpretation of the z-transform G(z)

as the discrete-time Fourier transform of the 
sequence g[n]r -n it follows that the series of the 
z-transform definition converges if g[n]r -n is 
absolutely summable i e
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absolutely summable, i.e.,

• The sequence g[n]r -n can be made absolutely 
summable by choosing the value of r properly

∞<∑
∞

−∞=

−

n

nrng ][

Example: z-Transform of the Unit Step
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• The z-transform of the unit step sequence
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which is a power series that converges to

1||,
1

1)( 1 >
−

= − z
z

zμ

• The region of convergence is the annular region 
in the z-plane  ∞≤< ||1 z

Example 6.1: z-Transform of a Causal 
Exponential Sequence

......1

][)(

221
0

+++++=

==

−−−

∞

=

−
∞

−∞=

− ∑∑
nn

n

nn

n

nn

zzz

zznzX

ααα

αμα

• The z-transform of the causal sequence x[n]=αnμ[n]
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• The above power series converges to

1||,
1

1)( 1
1 <

−
= −

− z
z

zX α
α

• The region of convergence is the annular region in 
the z-plane  |z|>α ,  i.e., the outside of a circle with 
radius α
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Example 6.2: z-Transform of an Anticausal 
Exponential Sequence

∑∑∑
∞
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• The z-transform of the anti causal sequence 
x[n] = -α nμ[-n-1]
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• Now, the region of convergence is the annular 
region in the z-plane  |z|<α

Region of Convergence 
of z-Transforms

Notice: 

• The z-transforms of the two sequences 
x[n]=αnμ[n] and   x[n] = -αnμ[-n-1] are identical 
e en tho gh the t o parent seq ences are
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even though the two parent sequences are 
different

• The only way a unique sequence can be 
associated with a z-transform is by specifying 
its ROC

Regions of Convergence:
The DTFT and the z-Transform

• The DTFT, G(ejω) of a sequence g[n] converges 
uniformly if and only if the ROC of the z-
transform G(z) of g[n] includes the unit circle
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transform G(z) of g[n] includes the unit circle

• The existence of the DTFT does not always 
imply the existence of the z-transform

Commonly Used Commonly Used zz--Transform PairsTransform Pairs
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Rational z-Transforms
• LTI discrete-time systems have z-transforms which 

are rational functions of z-1
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• is a ratio of two polynomials P(z) and D(z)
• The degree of the numerator polynomial P(z) is M

and that of the denominator polynomial D(z) is N
• The degree of H(z) is maximum of M and N

Rational z-Transforms
• An alternate representation of a rational 

z-transform is a ratio in positive powers of z
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• H(z) can be factored into the form
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Zeroes and Poles 
• At a root z=ξl of the numerator polynomial, 

H(ξl)=0 and these values of z are called the 
zeroes of H(z)

• At a root z=λl of the denominator polynomial, 
H(λ ) → infinity and these values of z are called
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H(λl) → infinity and these values of z are called 
the poles of H(z)

• There are M finite zeroes and N finite poles of 
H(z)

• There are additional (N-M) zeros at the origin if 
N>M or (N-M) poles at z=0 if N<M

Example: z-Transform of the Unit Step
• The region of convergence in the z-plane
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0:zero

z
z

Rational z-Transforms

• A physical interpretation of the concepts of poles 
and zeros can be given by plotting the log-
magnitude 20log10|H(z)| of H(z)

21 88.24.21 −− +− zz
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• The poles are at z = 0.4 ± j0.6928 and 
the zeroes are at z = 1.2 ± j1.2

• The 3-D plot is shown on next slide 

21 64.08.01
88.24.21)( −− +−

+
=

zz
zzzH

Rational z-Transforms

Large peaks 
around the 
poles
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Narrow and 
deep wells 
around the 
zeroes

Regions of Convergence of a 
Rational z-Transform

• Recall the z-transform of the unit step sequence 

11
1)( 1 −

=
−

= − z
z

z
zμ
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• The ROC of a rational z-transform is bounded by 
the locations of its poles 

⎩
⎨
⎧

=
=

1:pole
0:zero

z
z

ROC of the z-Transform of a Causal 
Exponential Sequence

6.0||,
6.06.01
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• Determine the ROC of the z-transform H(z) of the 
causal sequence h[n]=(-0.6)nμ[n]
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• The ROC is outside 
the circle going 
through the point 
z=-0.6 in the z-plane, 
extending to the 
infinity  

Pole at
z = -0.6

Zero at
z = 0
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Regions of Convergence
• Assume that X(z) has simple poles at α and β

with |α |<|β |
• If x[n] is right-sided sequence

( ) ][)()(][ 021 Nnrrnx nn −+= μβα
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where N0 is an integer

• The z-transform of a right-sided sequence 
(γ)nμ[n-N0] exists if  

zz
Nn

nn   ,)(
0

some for∞<∑
∞

=

−γ

Regions of Convergence

• The right-sided sequence x[n] has thus a region 
of convergence (ROC) defined by |β |<|z|< infinity,
i.e., the ROC is bounded by the largest pole

• Similarly, a left-sided sequence has a ROC 
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y q
defined by 0|<|z|< |α| ,i.e., 
the ROC is bounded by the smallest pole 

• A two-sided sequence can be decomposed into a 
right-sided and left-sided sequence
=> The ROC is an annular region in the z-plane

Regions of Convergence

Right-sided 
sequence

Two-sided 
sequence
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Left-sided 
sequence

The Inverse z-Transform
• For z=rejω, the z-transform G(z) is the Fourier transform 

of the exponentially weighted sequence g[n]r-n

• The inverse Fourier transform

∫− =
π

ωω ω
π

dereGrng njjn )(
2
1][
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−ππ2
• Changing the variable z=rejω gives the contour integral

∫ −=
'

1)(
2
1][

C

n dzzzG
j

ng
π

where C’ is a counterclockwise contour encircling the 
origin in the ROC of G(z) gives the contour integral

The Inverse z-Transform
• The sequence g[n] can be evaluated from its 

z-transform using the Cauchy’s residue theorem

[ ]∑= C inside poles at the  of Residues][ 1n-G(z)zng
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• Other simple methods for evaluating the inverse 
z-transform:
• Partial fraction expansion of the rational G(z)
• Long division of the numerator by the 

denominator of G(z)

z-Transform Properties
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Convolution Property
• The z-transform of the convolution is

• The z-transform of the convolution sum gives

[ ] [ ] hg

Z
RRzHzGnhng ∩↔∗  includes ROC,)()(

[ ] [ ] nzknhkg −
∞ ∞
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−[ ] [ ]{ }=∗ nhngZ [ ] [ ]∑ ∑
∞ ∞

−
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• Substituting l=n-k, then n=l+k, gives 

• By definition of the z-transform: 
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G(z) H(z)

Modulation Property
• The z-transform of the product sequence is

where C is a closed counterclockwise contour 
encircling the origin in the common ROCs

[ ] [ ] hgC
RRdvvvzHvG

j
nhng  includes ROC,)/()(

2
1 1∫ −=
π
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encircling the origin in the common ROCs  
Rg and Rh

• For the ROCs  Rg-<|z|<Rg+ and  Rh-<|z|<Rh+ the 
ROC RgRh represents the region  Rg-Rh-<|z|<Rg+Rh+

• The modulation theorem is also called the 
complex convolution theorem

Modulation Property
• Substituting the inverse z-transform expression into 

the z-transform of the product sequence gives

• Interchanging the order of integration and

[ ] [ ] [ ] n

n
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nn

n

znhdvvvG
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• Interchanging the order of integration and 
summation
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Complex Convolution Theorem
• To see the similarity of the modulation property with 

the convolution, write v and z in polar form 

• The modulation property now becomes

φθρ jj rezev == and

⎞⎛
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• This is often referred to as a periodic convolution
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The Transfer Function

][nx ][][][ nhnxny ∗=][nh

)()()( zHzXzY• In z domain:

• Generalization of H(ejω) leads to the concept of 
transfer function
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)()()( zHzXzY =• In z-domain:

{ } ∑
∞

−∞=

−==
k

nzkhnhzH ][][)( Zwhere

)(
)()(

zX
zYzH =• Solving H(z):

H(z) is called the transfer function or system function

The Transfer Function

• If the region of convergence (ROC) of H(z) includes 
the unit circle, the transfer function is related to the 
frequency response H(ejω) of an LTI digital filter

• The frequency response is obtained by evaluating 
th t f th it i l i
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ω
ω

jez
j zHeH

=
= )()(

the z-transform on the unit circle, i.e.,

• The frequency-domain behavior of a digital filter 
can be easily determined by graphical 
interpretation of H(ejω)
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The Transfer Function 
Expressions

1) A Finite Impulse Response (FIR) digital filter
• The impulse response is of finite length
• The transfer function is a polynomial in z-1

• The realization is non-recursive
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The realization is non recursive

2) An Infinite Impulse Response (IIR) digital 
filter
• The impulse response is of infinite length
• The transfer function is a rational function in z-1

• The realization is recursive

FIR Digital Filters
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FIR Digital Filters
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For a causal FIR filter N =0 and N >0
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• For a causal FIR filter, N1=0 and N2>0 

• All poles of an FIR filter are at the origin of 
the z-plane, and the ROC is the entire z-
plane excluding the origin

• The transfer function is a polynomial in z-1

IIR Digital Filters
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• Solving for y[n]

• The input-output relation given by the difference 
equation

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 6

40

Solving for y[n]
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• Output is obtained recursively from x[n] and its 
previous M samples and N previous output 
samples

IIR Digital Filters
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• Solving for H(z)

• Taking the z-transform of the difference equation
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• Solving for H(z)
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• The transfer function is a rational function in z-1

IIR Filters
• H(z) can be written in the form
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• Solving the roots of the numerator and
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• Solving the roots of the numerator and 
denominator polynomial leads to the factored 
form of H(z)
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IIR Filters
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• The zeroes of H(z) are {ξ1,ξ2,...,ξM} 

• The poles of H(z) are {λ1,λ2,...,λN}

• The coefficients pk and dk determine the 
locations of zeroes and poles, respectively 

Evaluation of H(ejω)

• For a real coefficient transfer function

)](arg[)()()()(
ωωωωω jeHjjj

im
j

re
j eeHeHeHeH =+=

)()()()()(
2 ωωωωω jjjjj HHHHH −∗
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• The values of the frequency response can be 
obtained by evaluating the z-transform on the unit 
circle in the z-plane, i.e., H(ejω) is H(z) at z=ejω

)()()()()( ωωωωω jjjjj eHeHeHeHeH ==

ωjez
zHzH

=

−∗= )()( 1

Geometric Evaluation of H(ejω)
• The values of H(ejω) can be estimated from the 

geometry of the pole/zero diagram 
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• Writing the terms in polar form
kk j

kk
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Geometric Evaluation of H(ejω)
• Each term (z-ξk) and (z-λk) can be interpreted as 

a vector in the z-plane with the magnitude, Bk and 
Ak, and the angle θk and φk

• Evaluating the ”zero and pole vectors” on the unit 
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circle gives the magnitude and phase responses 
of H(ejω)

∏
∏

=

== N

k k

M

k kj

Ad

Bp
eH

10

10)( ω

∑−∑= ==
N
k k

M
k k

jeH 11)](arg[ φθω

Geometric Evaluation of H(ejω)
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Stability Condition
• Bounded-input bounded-output (BIBO) stability: 

h[n] is absolutely summable, i.e.,

∑
∞

−∞=

∞<=
n

nhS ][

• The z transform converges if ∑
∞

− ∞<nznh ][
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• The z-transform converges if ∑
−∞=

∞<
n

znh ][

for which h[n]r-n is absolutely summable
• If the ROC includes the unit circle, then the 

digital filter is stable
• For a causal and stable digital filter the poles 

must be strictly inside the unit circle
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Rational z-Transforms
• If the ROC includes the unit circle, the Fourier 

transform of the sequence can be obtained by 
evaluating the z-transform on the unit circle

• In addition, the ROC of the z-transform of the 
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impulse response of a causal LTI system is 
related to the BIBO stability of the system

The ROC of the z-transform of a causal and 
stable discrete-time system includes the 
unit circle and the infinity in the z-plane

Summary
• Analysis equation converts from time-domain 

representation to transform-domain representation
• Synthesis equation is used for the reverse process
• Important and useful characterization of an LTI 

discrete-time system is its transfer function given 
by the z-transform of its impulse response

• The behavior of the system is determined by the 
transfer function and its poles and zeros

• Stability of the system is determined by the pole 
locations

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 6

50


