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Introduction

« A generalization of the discrete-time Fourier
transform leads to the z-transform, which is
function of the complex variable z

¢ The use of z-transform techniques permits
6 z-Tr‘qnsfor‘m simple algebraic manipulations
¢ The z-transform has become an important tool
in the analysis and design of digital filters

« The representation of an LTI discrete-time
system in the z-domain is given by its transfer
function which is the z-transform of the impulse
response of the system
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Introduction Definition and Properties

« In this chapter, the alternate transform-domain
representation of sequences and its properties - For a given sequence g[n], its z-transform is
is discussed defined as

« The properties of the z-domain transfer function
are studied _ _ G(x)= Y gl 2"

¢ The z-domain transfer function of the system is n=—
related to the frequency response of the system, ] ] ]
which is the discrete-time Fourier transform of where z=Re(2)+jIm(z) is a continuous complex
the impulse response variable

« The BIBO stability condition of an LTI system is
derived in terms of its transfer function
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The z-Transform The z-Transform

« The z-transform is often expressed as an » Expressing the complex variable z in polar form

operator indicated below z = rele , the definition of the z-transform reduces
" to .
Z{g[n}}=G(z)= Y g[n] 2" G(rei”)= > gn] r e "

* The operator Z{-} transforms a discrete-time  Comparing the above equation with discrete-time
sequence g[n] into a function G(z) of the Fourier transform G(ei®) of the sequence g[n]
complex variable z o & Cion

* The relation can be expressed as G ):n;og[n] ¢

g[n] é G(2) i.e., G(rel®) is the DTFT of the sequence {g[n]r"}
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The z-Transform

« A geometrical interpretation of z-transform can be
given by considering the location of the complex
point z in the complex z-plane

» For fixed r and o, i
the point z = rei®
is at the tip of a
vector

* The contour 0 1
|z=1 is the
unit circle unit circle

Bl
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The z-Transform

 For r=1, i.e., z]=1, the z-transform reduces to the
Fourier transform G(ei®) j| Imz

« At z=1, the value of G(z) is g
G(2)=G(1)=G(e), i.e., the
value of G(ei®) at @=0 -

* Atz=j, G(2)=G())=G(ei"?), -}
we have G(ei®) at =2 " |

* Atz=-1, G(2)=G(-1)=G(e}),
we have G(el®) at o=r i 8]

* The frequency response G(ei®) is obtained by
evaluating G(z) on the unit circle
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Convergence of the z-Transform

« Like the discrete-time Fourier transform, there
are conditions on the convergence of the infinite
series expansion of the z-transform

 For a given sequence, the set ® of values of z for
which its z-transform converges is called the
region of convergence (ROC)

« Without the knowledge of the ROC there is no
unique relationship between the sequence and
its z-transform

e The z-transform must always be specified
with its ROC !
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Convergence of the z-Transform

* From the interpretation of the z-transform G(z)
as the discrete-time Fourier transform of the
sequence g[n]r " it follows that the series of the
z-transform definition converges if g[n]r"is
absolutely summable, i.e.,

> Joim v

* The sequence g[n]r" can be made absolutely
summable by choosing the value of r properly

<0
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Example: z-Transform of the Unit Step

e The z-transform of the unit step sequence

w@=Yunl 2" =Y

n=—mn

=1+ + 727+ ..+ + .
which is a power series that converges to

1
> |2l

u@)=

 The region of convergence is the annular region
in the z-plane 1<z <o
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Example 6.1: z-Transform of a Causal
Exponential Sequence

» The z-transform of the causal sequence x[n]=a"x[n]

X(2)= ia"y[n] 2" :ia"z’”
N=—0 n=0

=l+az' +a’7 2 +.4+a" T+

» The above power series converges to
X(z):%, oz <1
l-az

» The region of convergence is the annular region in
the z-plane [z]>«, i.e., the outside of a circle with
radius «
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Example 6.2: z-Transform of an Anticausal
Exponential Sequence

» The z-transform of the anti causal sequence
X[n] =-a"y[-n-1]

—1 £ @

—_ n,-n _ _ -m_m _ -1 -m,m

X(2)= Eaz_zaZ—aZEaz
nN=-o0 m=1 m=0

a’'z 1
-2 .

laz<1
l-a7z l-az

)

« Now, the region of convergence is the annular
region in the z-plane |z<a
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Region of Convergence
of z-Transforms

Notice:

 The z-transforms of the two sequences
x[n]=a"y[n] and x[n]=-a"4[-n-1] are identical
even though the two parent sequences are
different

» The only way a unique sequence can be
associated with a z-transform is by specifying
its ROC
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Regions of Convergence:
The DTFT and the z-Transform

» The DTFT, G(ei®) of a sequence g[n] converges
uniformly if and only if the ROC of the z-
transform G(z) of g[n] includes the unit circle

¢ The existence of the DTFT does not always
imply the existence of the z-transform
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Commonly Used z-Transform Pairs

Sequence z-Transform ROC
8[n] 1 All values of z
[n] : lz] > 1
wuln e z| >
1—z71
auln] ! Izl > |e]
I—az™! -
| —(rcos u)(,)z‘l
(r" coswpn)pfn] ————— zl>r
? 1 — (2rcoswp)z™! +r2z~2 “
. -1
. (r sinwp)Z
(r" sin won)[n —_— zl>r
om)uln] 1 — (2r coswp)z~! 4+ r2z~2 Iz
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Rational z-Transforms

LTI discrete-time systems have z-transforms which
are rational functions of z!

_P@ _pytpzt ot py 2" 4 pyz
D(z) dy+dz+..+dy 2V +dyzM

H(2)

« is a ratio of two polynomials P(z) and D(z)
» The degree of the numerator polynomial P(z) is M
and that of the denominator polynomial D(z) is N

» The degree of H(z) is maximum of M and N
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Rational z-Transforms

» An alternate representation of a rational
z-transform is a ratio in positive powers of z

M M-I
Poz” + P27 4.4 PuaZ+ Pu

H(z)=z"W
N N-1
doz" +dz7 " +..+dyz+dy

* H(2) can be factored into the form

o [150-62")_p, o [10-4)
N

H(Z)zanil(l—ilz")_do T4
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Zeroes and Poles

* At a root z=£ of the numerator polynomial,
H(&)=0 and these values of z are called the
zeroes of H(z)

* At a root z=4, of the denominator polynomial,
H(4;) — infinity and these values of z are called
the poles of H(z)

* There are M finite zeroes and N finite poles of
H(@)

* There are additional (N-M) zeros at the origin if
N>M or (N-M) poles at z=0 if N<M
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Example: z-Transform of the Unit Step

» The region of convergence in the z-plane

Zeroatz=0,

Poleatz=1

‘Unit circle

1 z zero: z=0
w)=—=—
1-z7 z-1 pole: z=1
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Rational z-Transforms

A physical interpretation of the concepts of poles
and zeros can be given by plotting the log-
magnitude 20log,,|H(z)| of H(z)

1-2477'+2.8827

H(z)=
@) 1-0.827" +0.64272

e The poles are at z= 0.4 + j0.6928 and
the zeroes are at z=1.2+jl1.2

* The 3-D plot is shown on next slide
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Rational z-Transforms

_Large peaks
_.->" around the
poles

Z__ Narrow and

x * -7 deep wells

\"\' Tl S around the
R zeroes

©2009 Olli Simula T-61.3010 Digital Signal Processing; 22

Mitra 3rd Edition: Chapter 6

Regions of Convergence of a
Rational z-Transform
» Recall the z-transform of the unit step sequence

Imz

1 z
Z)= = Zeroatz=0
TR
Rez
zero: z=0
pole: z=1 Poleatz=1

Unit circle

» The ROC of a rational z-transform is bounded by
the locations of its poles
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ROC of the z-Transform of a Causal
Exponential Sequence
« Determine the ROC of the z-transform H(z) of the
causal sequence h[n]=(-0.6)"x[n]

H(z)= [Z2>0.6

_r oz
1+0.627" 2+06°

* The ROCis outside o\ .
the circle going 7=-0.6
through the point

z=-0.6 in the z-plane,

: Zero at
extending to the 7=0
infinity
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Regions of Convergence

* Assume that X(z) has simple poles at o and g
with |er[<|3]
 If x[n] is right-sided sequence
X[ = (,(@)" +1,(B)" Juln - N, ]
where N, is an integer

¢ The z-transform of a right-sided sequence
(P"un-N,] exists if

Yoz

n=N,

<oo, forsome z
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Regions of Convergence

¢ The right-sided sequence x[n] has thus a region
of convergence (ROC) defined by |8 |<|z|< infinity,
i.e., the ROC is bounded by the largest pole

* Similarly, a left-sided sequence has a ROC
defined by 0|<|z|< |A ,i.€e.,
the ROC is bounded by the smallest pole

* A two-sided sequence can be decomposed into a
right-sided and left-sided sequence
=>The ROC is an annular region in the z-plane
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Regions of Convergence

Right-sided
sequence

Left-sided
sequence
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The Inverse z-Transform

« For z=reiv, the z-transform G(z) is the Fourier transform
of the exponentially weighted sequence g[n]r™"

* The inverse Fourier transform
glnr™ -1 IG(rej‘”)ej‘mdw
2z 7
« Changing the variable z=rei® gives the contour integral
g[n]=i_§G(z)z”"dz
27,

where C’ is a counterclockwise contour encircling the
origin in the ROC of G(z) gives the contour integral

©2009 Olli Simula T-61.3010 Digital Signal Processing; 28
Mitra 3rd Edition: Chapter 6

The Inverse z-Transform

» The sequence g[n] can be evaluated from its
z-transform using the Cauchy’s residue theorem

gnl=y [Residues of G(z)z"™" at the poles inside C]

» Other simple methods for evaluating the inverse
z-transform:

« Partial fraction expansion of the rational G(z)

« Long division of the numerator by the
denominator of G(z)
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z-Transform Properties

Froperty 8 2 -Transform ROC
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Convolution Property Modulation Property

e The z-transform of the convolution is * The z-transform of the product sequence is

z
ghl®hh]eG@H@), ROCincludesR; AR, g[nhin]= %ﬁ G(v)H(z/v)v'dv, ROCincludesR R,
7

 The z-transform of the convolution sum gives

o [ . . where C is a closed counterclockwise contour
z{g[n]@hlnf= ng[kgg[k]h["*k]jz’" = 2 olk] (n;h[”-k]l’"] encircling the origin in the common ROCs
« Substituting I=n-k, then n=I+k, gives Ry and R,
7 e Forthe ROCs R <[z[<Ry, and R, <z|<R;. the
Zighl@ = 3 ok [ih[l]z"'*k‘]:[ig[k]z’k](ih[l]z"] ROC RyR, represents the region Ry R, <[z|<Ry.R;.
o N « The modulation theorem is also called the
« By definition of the z-transform: G(z)  H(z) complex convolution theorem
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Modulation Property Complex Convolution Theorem
« Substituting the inverse z-transform expression into * To see the similarity of the modulation property with
the z-transform of the product sequence gives the convolution, write v and z in polar form
] . - ," v=pe’ and z=re¥
2ol =S ol * - 3 L coow o b

» The modulation property now becomes
« Interchanging the order of integration and | o re}
summation Zlolhlol= - [ Gcee’ )H(pe‘

2l g o] Sl (2] v

4
ﬂJp 'do

1 ¢ r .
-——[| G ifYH| i |40
z,rL (pe") (V ]

1 AN
=27j§cG(V)H(V] v « This is often referred to as a periodic convolution
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The Transfer Function The Transfer Function
» Generalization of H(ei®) leads to the concept of . .
transfer function « If the region of convergence (ROC) of H(z) includes
the unit circle, the transfer function is related to the
x[n] y[n]=x[n]*h[n] frequency response H(ei®) of an LTI digital filter
) » The frequency response is obtained by evaluating
¢ Inz-domain:  Y(z)=X(2)H(2) the z-transform on the unit circle, i.e.,
* Solving H(z): H(z):m He*y=H
' X(2) €")=H@)| .
where H(z2)=z{ninl}= Y hiklz™" « The frequency-domain behavior of a digital filter
k=0 can be easily determined by graphical
H(2) is called the transfer function or system function interpretation of H(el)
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The Transfer Function

Expressions FIR Digital Filters

1) A Finite Impulse Response (FIR) digital filter h[n]=0; n<N, and n>N,
* The impulse response is of finite length N,
« The transfer function is a polynomial in z'! y[n]= > h[k]xn—k]
» The realization is non-recursive ":NN‘
2) An Infinite Impulse Response (IIR) digital Y(z)—(Zh[n]z"]X(z)_H(z)X(z)
filter =y

* The impulse response is of infinite length
* The transfer function is a rational function in z!
¢ The realization is recursive

H(z)= ih[n]z’n

n=N;
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FIR Digital Filters IIR Digital Filters
* The input-output relation given by the difference
N, .
H(z)= 3 hinjz" equation | !
e > d,yin-k]=>_pxn—k]
k=0 k=0
« For a causal FIR filter, N;=0 and N,>0 * Solving for y[n]
) - 1y 1 Q
« All poles of an FIR filter are at the origin of y[n]:d—z pkx[n—k]—d—dey[n—k]
the z-plane, and the ROC is the entire z- 0 k=0 0 k=l
plane excluding the origin - Output is obtained recursively from x[n] and its
« The transfer function is a polynomial in z1 previous M samples and N previous output
samples
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IIR Digital Filters lIR Filters

« Taking the z-transform of the difference equation * H(2) can be written in the form

N M w P2 +p M+ M+ 4
K _ K H(z =Z(N M) pO 1 2 M
{dez }Y(z) {Zpkz }X(z) @ 42" +d 2" +d, 2 7+ +d,
k=0 k=0
 Solving for H(z) * Solving the roots of the numerator and
i . denominator polynomial leads to the factored
z
H2)= Y(2) & B Cptpzt Pz A p form of H(z)
- - N - -1 -2 -N i
X(2) Sd,z* d,+d,z7" +d,z7 +..+dz H =P Hr:‘(lfgkz ):&Z‘N’M) Hil(zfék)
oo . & [10-42h 4 TILE-A)
» The transfer function is a rational function in z'!
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IR Filters

PPz +p2 +. 4P, 7" P [T, 0-52"

H(z)=
@ dy+dz7 +d, 22+ +dyz" dom,l(l—ﬂkfl)

» The zeroes of H(z) are {&,&,....4}
* The poles of H(z) are {4;,4,,....A\}

* The coefficients p, and d, determine the
locations of zeroes and poles, respectively
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Evaluation of H(ei®)

ejarg[H(e””)J

H(E")=H(€")+Hyp(e") =[H(e" )

» For a real coefficient transfer function
HE™)* =HE")H @) = He)HE ™)

=H@H" (") _,

 The values of the frequency response can be
obtained by evaluating the z-transform on the unit
circle in the z-plane, i.e., H(ei®) is H(z) at z=ei®
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Geometric Evaluation of H(el®)
» The values of H(el®) can be estimated from the
geometry of the pole/zero diagram
Hy oo a8
4 [L.@-2
« Writing the terms in polar form
(2-50=Be"™. (z-4)=Ae"

LY

do(l_l::l A<) eJZNJ&
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Geometric Evaluation of H(el?)

» Each term (z-&) and (z-4,) can be interpreted as
a vector in the z-plane with the magnitude, B, and
A,, and the angle ¢ and ¢,

 Evaluating the "zero and pole vectors” on the unit
circle gives the magnitude and phase responses

of H(el®)
) - pI 1B
d T, A

argH@E")]=2, 6= 4
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Geometric Evaluation of H(el?)

z+1 Zero: z=-1 elo=cosw+sin®
H(z)=
z-0.8 Pole: z=0.8 A :
; ) N 1 § B sino
A" =(cosw+1)" +sin"@ |
2 2 .2 0 o 1 \é
B” =(0.8—cosw)” +sin"@ 1 08
0 =arctan s Cos®
cosw+1
sin®
T—¢=arctan
0.8—cosw
N 1/2
jo F ol 2, 2
‘H(ej’“) :‘ e +1 ‘:‘ cosw+ jsinw+1 ‘: (cosw+1)" +sin” @
jo e 2 2
e’“—O.S\ ‘cosw-%—jsmw—O.S‘ (cosw—0.8)" +sin” @
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Stability Condition

¢ Bounded-input bounded-output (BIBO) stability:
h[n] is absolutely summabile, i.e.,

<o

 The z-transform converges if Z\h[n]z’”
for which h[n]r" is absolutely summable

« If the ROC includes the unit circle, then the
digital filter is stable

« For a causal and stable digital filter the poles
must be strictly inside the unit circle
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Rational z-Transforms Summary

+ If the ROC includes the unit circle, the Fourier Analysis equation converts from time-domain
transform of the sequence can be obtained by representation to transform-domain representation

evaluating the z-transform on the unit circle Synthesis equation is used for the reverse process
« In addition, the ROC of the z-transform of the Important and useful characterization of an LTI
impulse response of a causal LTI system is discrete-time system is its transfer function given
related to the BIBO stability of the system by the z-transform of its impulse response
The behavior of the system is determined by the
transfer function and its poles and zeros

Stability of the system is determined by the pole
locations

The ROC of the z-transform of a causal and
stable discrete-time system includes the
unit circle and the infinity in the z-plane
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