

The *z*-**Transform** • Expressing the complex variable *z* in polar form $z = re^{j\omega}$, the definition of the *z*-transform reduces to $G(re^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n] r^{-n}e^{-j\omega n}$ • Comparing the above equation with discrete-time Fourier transform $G(e^{j\omega})$ of the sequence g[n] $G(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n] e^{-j\omega n}$ i.e., $G(re^{j\omega})$ is the DTFT of the sequence $\{g[n]r^{-n}\}$ i.e., $G(re^{j\omega})$ is the DTFT of the sequence $\{g[n]r^{-n}\}$

10

T-61.3010 Digital Signal Processing and Filtering

19

T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 6

© 2009 Olli Simula

Mitra 3rd Edition: Chapter 6; © 2009 Olli Simula

T-61.3010 Digital Signal Processing and Filtering

T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 6

Property	Sequence	z -Transform	ROC	
	g[n] h[n]	G(z) H(z)	$\frac{\mathcal{R}_g}{\mathcal{R}_h}$	
Conjugation	g*[n]	$G^{*}(z^{*})$	\mathcal{R}_{g}	
Time-reversal	g[-n]	G(1/z)	$1/R_g$	
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(z) + \beta H(z)$	Includes $\mathcal{R}_g \cap \mathcal{R}_h$	
Time-shifting	$g[n - n_o]$	$z^{-n_{\theta}}G(z)$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞	
Multiplication by an exponential sequence	$\alpha^n g[n]$	$G(z/\alpha)$	$ \alpha \mathcal{R}_g$	
Differentiation of $G(z)$	ng[n]	$-z \frac{dG(z)}{dz}$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞	
Convolution	$g[n] \circledast h[n]$	G(z)H(z)	Includes $\mathcal{R}_g \cap \mathcal{R}_h$	
Modulation	g[n]h[n]	$\tfrac{1}{2\pi j}\oint_C G(v)H(z/v)v^{-1}dv$	Includes $\mathcal{R}_g \mathcal{R}_h$	
Parseval's relation		$\sum_{n=1}^{\infty} g[n]h^*[n] = \frac{1}{2\pi j} \oint_C d$	$G(v)H^*(1/v^*)v^{-1}dv$	

Mitra 3rd Edition: Chapter 6; © 2009 Olli Simula

T-61.3010 Digital Signal Processing and Filtering

Mitra 3rd Edition: Chapter 6; © 2009 Olli Simula

T-61.3010 Digital Signal Processing and Filtering

Rational *z*-Transforms

- If the ROC includes the unit circle, the Fourier transform of the sequence can be obtained by evaluating the *z*-transform on the unit circle
- In addition, the ROC of the *z*-transform of the impulse response of a causal LTI system is related to the BIBO stability of the system

The ROC of the *z*-transform of a causal and stable discrete-time system includes the unit circle and the infinity in the *z*-plane

© 2009 Olli Simula

T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 6 49

