5 Finite-Length Discrete Transform

Introduction

- In some applications, a very long-length time domain sequence is broken up into a set of shortlength sequences and a finite-length transform is applied to each short-length sequence
- The transformed sequences are processed in the transform domain
- Time domain equivalents are produced using the inverse transform
- The processed short-length sequences are grouped together in the time domain to form the final long-length sequence
© 2009 Olli Simula T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 5

Orthogonal Transforms

- Let $x[n]$ denote a length $-N$ time domain sequence with $X[k]$ denoting the coefficients of its N-point orthogonal transform
- A general form of the orthogonal transform pair is of the form

$$
\begin{gathered}
X[k]=\sum_{n=0}^{N-1} x[n] \psi^{*}[k, n], \quad 0 \leq k \leq N-1 \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \psi[k, n], \quad 0 \leq n \leq N-1
\end{gathered}
$$

© 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 5

Orthogonal Transforms

- An important consequence of the orthogonality of the basis sequence is the energy preservation property of the transform
- The energy $\left.\sum_{n=0}^{N-1} x[n]\right|^{2}$ of the time domain sequence $x[n]$ can be computed in the transform domain
- The energy can be written as

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\sum_{n=0}^{N-1} x[n] x^{*}[n]
$$

© 2009 Olli Simula
T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 5

Orthogonal Transforms

- Let us express $x[n]$ in terms of its transform domain representation

$$
\begin{aligned}
& \sum_{n=0}^{N-1} x[n] x^{*}[n]=\sum_{n=0}^{N-1}\left(\frac{1}{N} \sum_{k=0}^{N-1} x[k] \mu[k, n]\right) x^{*}[n] \\
\vec{\longrightarrow} & =\frac{1}{N} \sum_{k=0}^{N-1} x\left[k \mid \sum_{n=0}^{N-1} x^{*}[n] \mu[k, n]\right)=\frac{1}{N} \sum_{k=0}^{N-1} x[k] x^{*}[k] \\
\Longrightarrow & \sum_{n=0}^{N-1}|x[n]|^{2}=\left.\frac{1}{N} \sum_{k=0}^{N-1} x[k]\right|^{2}
\end{aligned}
$$

which is known as the Parseval's relation
© 2009 Olli Simula T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

The Discrete Fourier Transform

- In the following, the discrete Fourier transform, DFT, is defined
- The inverse transformation, IDFT is developed
- Some important properties of the DFT are discussed
- DFT has several important applications:
- Numerical calculation of the Fourier transform in an efficient way
- Implementation of linear convolution using finite-length sequences
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

Discrete Fourier Transform (DFT)

- Common notation with DFT: $W_{N}=e^{-j 2 \pi N}$
- DFT can now be written as follows:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}{ }^{k n}, \quad k=0,1, \ldots, N-1
$$

- Inverse Discrete Fourier Transform (IDFT):

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, \quad n=0,1, \ldots, N-1
$$

- $X[k]$ and $x[n]$ are both sequences of finite-length N $e^{j 2 \pi k n / N}$ are orthogonal
© 2009 Olli Simula T-61.3010 Digital Signal Processin

T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

Relation Between the Discrete-Time

 Fourier Transform and the DFT- The DTFT $X\left(e^{j \omega}\right)$ of the length- N sequence $x[n]$ defined for $0 \leq n \leq N-1$ is given by:

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}
$$

- By uniformly sampling $X\left(e^{j \omega}\right)$ at N equally spaced frequencies $\omega_{k}=2 \pi k / N, 0 \leq k \leq N$-1, on the ω-axis between $0 \leq k \leq 2 \pi$

$$
\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi / N / N}=\sum_{n=-\infty}^{\infty} x[n] e^{-j 2 \pi m k / N}, \quad 0 \leq k \leq N-1
$$

C 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 5
Mitra 3rd Edition: Chapter 5

Relation Between the Discrete-Time Fourier Transform and the DFT

- The N-point DFT sequence $X[k]$ is precisely the set of frequency samples of the Fourier transform $X\left(e^{j \omega}\right)$ of the length $-N$ sequence $x[n]$ at N equally spaced frequencies, $\omega_{k}=2 \pi k / N, 0 \leq k \leq N-1$
- Hence, the DFT $X[k]$ represents a frequency domain representation of the sequence $x[n]$
- Since the computation of the DFT samples involve a finite sum, for time domain sequences with finite sample values, the DFT always exists
© 2009 Olli Simula
T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 5

Numerical Computation of the Fourier Transform Using the DFT

- Define a new sequence $x_{e}[n]$ obtained from $x[n]$ by augmenting with $M-N$ zero-valued samples

$$
x_{e}[n]=\left\{\begin{array}{cc}
x[n], & 0 \leq n \leq N-1 \\
0, & N \leq n \leq M-1
\end{array}\right.
$$

- Making use of $x_{e}[n]$ we obtain

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{M-1} x_{e}[n] e^{-j 2 \pi k n / M}
$$

which is an M-point DFT $X_{e}[k]$ of the length-M sequence $x_{e}[n]$
© 2009 Olli Simula T-61.3010 Digital Signal Processin Mitra 3rd Edition: Chapter 5

Example 5.5: $\quad x[n]=\cos (6 \pi n / 16)$

Numerical Computation of the Fourier Transform Using the DFT

- The DFT provides a practical approach to the numerical computation of the Fourier transform of a finite-length sequence
- Let $X\left(e^{j \omega}\right)$ be the Fourier transform of a length- N sequence $x[n]$
- We wish to evaluate $X\left(e^{j \omega}\right)$ at a dense grid of frequencies $\omega_{k}=2 \pi k / M, 0 \leq k \leq M-1$, where $M \gg N$:

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega_{k} n}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / M}
$$

C 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

Example 5.5:

- Compute the N-point DFT of the length-16 sequence $x[n]=\cos (6 \pi n / 16)$ of angular frequency $\omega_{0}=0.375 \pi$
- The 16 -point DFT of $x[n]$ is (Example 5.2)

$$
X[k]= \begin{cases}8, & \text { for } k=3 \text { and } k=13 \\ 0, & \text { otherwise }\end{cases}
$$

- Since the Fourier transform $X\left(e^{j \omega}\right)$ is a continuous function of ω, we can plot it more accurately by computing the DFT of the sequence $x[n]$ at a dense grid of frequencies using MAtLAB
© 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 5

Sampling the Fourier Transform

- The discrete Fourier transform DFT can also be obtained by sampling the discrete-time Fourier transform DTFT, $X\left(e^{j \omega}\right)$, uniformly on the ω-axis between $0 \leq \omega \leq 2 \pi$, at $\omega_{k}=2 \pi k / N, k=0,1, \ldots, N-1$

$$
\begin{aligned}
X[k] & =\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}, \quad k=0,1, \ldots, N-1
\end{aligned}
$$

- $X[k]$ is now a finite-length sequence of length N like the time domain sequence $x[n]$
© 2009 Olli Simula
T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 5

Operations on Finite-Length Sequences

- Like the Fourier transform, the DFT also satisfies a number of properties that are useful in signal processing
- Some of the properties are essentially identical to those of the Fourier transform, while some others are different
- Differences between two important properties are discussed:
- Shifting and
- Convolution

C 2009 Olli Simula
T-61.3010 Digital Signal Processin Mitra 3rd Edition: Chapter 5

Circular Shift of a Sequence

- Several DFT properties and theorems involve shifting in the time domain and in the frequency domain
- The operation of shifting of a finite-length sequence in time domain is referred to as circular time-shifting
- In frequency domain the corresponding operation is referred to as circular frequency-shifting
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

Circular Shift of a Sequence

- Let $0,1, \ldots, N$ be a set of N positive integers and let m be any integer
- The integer r obtained by evaluating m modulo N is called the residue and it is an integer with a value between 0 and $\mathrm{N}-1$
- The modulo operation is denoted as
$\langle m\rangle_{N}=m$ modulo N
- If we let $r=\langle m\rangle_{N}$, then $r=m+l N$ where l is an integer to make $m+l N$ a number in the range $0 \leq n \leq N-1$
© 2009 Olli Simula T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

Representation of a Finite-Length Sequence

- Consider a general sequence $x[n]$ that is of finite-length, i.e., for some integers N_{1} and N_{2}, $x[n]=0$ outside the range $-N_{1} \leq n \leq N_{2}$

- The shifting operation of finite-length sequences can be represented via periodic sequences
© 2009 Olli Simula $\left.\begin{array}{c}\text { T-61.3010 Digital Signal Processing; } \\ \text { Mitra 3rd Edition: Chapter 5 }\end{array}\right) 24$

Representation of Aperiodic Signals

- A periodic sequence, $x_{p}[n]$, is formed from the aperiodic sequence with $x[n]$ as one period

- As N approaches infinity, $x_{p}[n]=x[n]$ for any finite value n
© 2009 Olli Simula \quad T-61.3010 Digital Signal Processing; 25 Mitra 3rd Edition: Chapter 5

Circular Convolution

- Consider two length- N sequences, $g[n]$ and $h[n]$
- Their linear convolution is a sequence of length 2 N -1

$$
y_{L}[n]=\sum_{m=0}^{N-1} g[m] h[n-m], \quad n=0,1, \ldots, 2 N-1
$$

- In order to calculate the above linear convolution both length- N sequences have been zero-padded to extend their length to $2 \mathrm{~N}-1$
© 2009 Olli Simula

Circular Time-Shift of a Sequence

- Shifting of a finite sequence corresponds to rotation

© 2009 Olli Simula
 61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 5

Circular Convolution

- A convolution-like operation resulting in a length- N sequence $y_{C}[n]$, called a circular convolution is defined as

$$
y_{C}[n]=\sum_{m=0}^{N-1} g[m] h\left[\langle n-m\rangle_{N}\right]
$$

- The above operation is often referred to as an N-point circular convolution
- Due to length- N sequences, the N-point circular convolution is denoted as

Classification of Finite-Length Sequences

- For a finite-length sequence defined for $0 \leq n \leq N-1$, all definitions of symmetry do not apply
- The definitions of symmetry in the case of finitelength sequences are given such that the symmetric and antisymmetric parts of length- N sequence are also of length N and defined for the same range of values of the time index n

Classification Based on Geometric Symmetry

- Geometric symmetry is an important property in DSP, i.e., in the properties of FIR filters
- A length- N symmetric sequence $x[n]$ satisfies the condition

$$
x[n]=x[N-1-n]
$$

- A length N antisymmetric sequence $x[n]$ satisfies the condition

$$
x[n]=-x[N-1-n]
$$

Geometric Symmetry of Sequences

(c) Type 3, N=9
(d) Type 4, N=10
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

Type 1: Symmetry with Odd Length

- Taking $e^{-j 4 \omega}$ as a common factor in each group of terms

$$
\begin{aligned}
& X\left(e^{j \omega}\right)=x[0] e^{-j 4 \omega}\left(e^{j 4 \omega}+e^{-j 4 \omega}\right)+x[1] e^{-j 4 \omega}\left(e^{j 3 \omega}+e^{-j \beta \omega}\right) \\
& +\chi[2] e^{-j 4 \omega}\left(e^{j 2 \omega}+e^{-j 2 \omega}\right)+\chi[3] e^{-j 4 \omega}\left(e^{j \omega}+e^{-j \omega}\right)+\chi[4] e^{-j 4 \omega} \\
& X\left(e^{j \omega}\right)=e^{-j 4 \omega}\left\{x[0]\left(e^{j 4 \omega}+e^{-j 4 \omega}\right)+x[1]\left(e^{j 3 \omega}+e^{-j 3 \omega}\right)\right. \\
& \left.+x[2]\left(e^{j 2 \omega}+e^{-j 2 \omega}\right)+x[3]\left(e^{j \omega}+e^{-j \omega}\right)+x[4]\right\} \\
& \Rightarrow x\left(e^{j \omega}\right)=e^{-j 4 \omega}\{2 x[0] \cos (4 \omega)+2 x[1] \cos (3 \omega) \\
& +2 x[2] \cos (2 \omega)+2 x[3] \cos (\omega)+x[4]\} \\
& \text { © } 2009 \text { Olli Simula } \\
& \text { 1-61.3010 Digital Signal Processsing } \\
& \text { Mitra 3rd Edition: Chapter } 5
\end{aligned}
$$

Type 2: Symmetry with Even Length

- Similarly, the Fourier transform of Type 2 symmetric sequence, with $N=8$, can be written

$$
\begin{aligned}
x\left(e^{j \omega}\right)= & =e^{-j 7 \omega / 2}\left\{2 x[0] \cos \left(\frac{7 \omega}{2}\right)+2 x[1] \cos \left(\frac{5 \omega}{2}\right)\right. \\
& \left.+2 x[2] \cos \left(\frac{(\omega)}{2}\right)+2 x[3] \cos \left(\frac{\sigma}{2}\right)\right\}
\end{aligned}
$$

where the phase is given by $\theta(\omega)=-\frac{7 \omega}{2}+\beta$

- In general, for Type 2 linear-phase sequence of length- N
$X\left(e^{j \omega}\right)=e^{-j(N-1) \omega / 2}\left\{2 \sum_{n=1}^{N / 2} x\left[\frac{N}{2}-n\right] \cos \left(\omega\left(n-\frac{1}{2}\right)\right)\right\}$
© 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 5

Type 1: Symmetry with Odd Length

- Notice that the quantity inside the braces, $\}$, is a real function of ω and can assume positive or negative values in the range $0 \leq \omega \leq \pi$
- The of the sequence is given by $\theta(\omega)=-4 \omega+\beta$ where β is either 0 or π, and hence the phase is a linear function of ω
- In general, for Type 1 linear-phase sequence of length- N

Type 3: Antisymmetry with Odd Length

- The Fourier transform of Type 3 antisymmetric sequence, with $N=9$, is (notice that $x[4]=0$)

$$
\begin{aligned}
x\left(e^{j \omega}\right)= & x[0]+x[1] e^{-j \omega}+x[2] e^{-j 2 \omega}+x[3] e^{-j 3 \omega}+x[4] e^{-j 4 \omega} \\
& +x[5] e^{-j 5 \omega}+x[6] e^{-j \omega \omega}+x[7] e^{-j 7 \omega}+x[8] e^{-j 8 \omega}
\end{aligned}
$$

- Now, $x[0]=-x[8], x[1]=-x[7], x[2]=-x[6], x[3]=-x[5]$ and $x[4]=0$ $X\left(e^{j \omega}\right)=x[0]\left(1-e^{-j 8 \omega}\right)+x[1]\left(e^{-j \omega}-e^{-j 7 \omega}\right)$
$+x[2]\left(e^{-j 2 \omega}-e^{-j 6 \omega}\right)+x[3]\left(e^{-j 3 \omega}-e^{-j 5 \omega}\right)$
$X\left(e^{j \omega}\right)=e^{-j \omega \omega}\left\{x[0]\left(e^{j 4 \omega}-e^{-j 4 \omega}\right)+x[1]\left(e^{j 3 \omega}-e^{-j 3 \omega}\right)\right.$
$\left.+x[2]\left(e^{j 2 \omega}-e^{-j 2 \omega}\right)+x[3]\left(e^{j \omega}-e^{-j \omega}\right)\right\}$
© 2009 Olli Simula
T-61 3010 Digital Signal Processing. Mitra 3rd Edition: Chapter 5

Type 3: Antisymmetry with Odd Length

- Multiplying by $j=e^{j \pi / 2}$ and 2 , we obtain

$$
\begin{aligned}
x\left(e^{j \omega}\right) & =e^{-j 4 \omega \omega} e^{j \pi / 2}\left\{2 x[0] \frac{1}{2 j}\left(e^{j 4 \omega}-e^{-j 4 \omega}\right)+2 x[1] \frac{1}{2 j}\left(e^{i j \omega \omega}-e^{-j 3 \omega}\right)\right. \\
& \left.+2 x[2] \frac{1}{2 j}\left(e^{j 2 \omega}-e^{-j 2 \omega}\right)+2 x[3] \frac{1}{2 j}\left(e^{j \omega}-e^{-j \omega}\right)\right\}
\end{aligned}
$$

which results in

$$
\begin{aligned}
x\left(e^{j \omega}\right)= & =e^{j(-4 \omega+\pi / 2)}\{22[0] \sin (4 \omega)+2 x[1] \sin (3 \omega) \\
& +2 x[2] \sin (2 \omega)+2 x[3] \sin (\omega)\}
\end{aligned}
$$

The phase is now $\theta(\omega)=-4 \omega+\frac{\pi}{2}+\beta$

- The antisymmetry introduces a phase shift of $\pi / 2$

T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

Discrete Fourier Transform Theorems

- The important theorems hold for DFT with time domain sequences length- N and their DFTs of length- N, e.g.,
- Linearity
- Circular time-shifting
- Circular frequency-shifting
- Circular convolution
- Modulation
- Parseval's theorem
- The proofs are straightforward using the definitions

C 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 5

Linear Convolution of Two Finite-Length Sequences

- Define two length- L sequences $g_{e}[n]$ and $h_{e}[n]$ by appending $g[n]$ and $h[n]$ with zero-valued samples

$$
\begin{aligned}
& g_{e}[n]=\left\{\begin{array}{cc}
g[n], & 0 \leq n \leq N-1 \\
0, & N \leq n \leq L-1
\end{array}\right. \\
& h_{e}[n]=\left\{\begin{array}{cc}
h[n], & 0 \leq n \leq M-1 \\
0, & M \leq n \leq L-1
\end{array}\right.
\end{aligned}
$$

- Then,

$$
y_{L}[n]=y_{C}[n]=g_{e}[n](L) h_{e}[n]
$$

© 2009 Olli Simula
T-61.3010 Digital Signal Processing,
Mitra 3rd Edition: Chapter 5
Mitra 3rd Edition: Chapter 5

Linear Convolution of Two Finite-Length Sequences

- Let $g[n]$ and $h[n]$ be two finite-length sequences of lengths N and M, respectively
- The objective is to implement their linear convolution

$$
y_{L}[n]=g[n] \circledast h[n]
$$

- The length of the sequence $y_{L}[n]$ is $L=N+M-1$
- The linear convolution can be obtained using the circular convolution with the correct length equal to L
© 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 5

41

Linear Convolution of Two Finite-Length Sequences Using the DFT

- The linear convolution of two finite-length sequences $g[n]$ and $h[n]$ can be implemented using the DFTs of length $L=N+M-1$ as follows

© 2009 Olli Simula
F61.3010 Digital Signal Processi Mitra 3rd Edition: Chapter 5

Data Sequence of Unknown Length

- Problem: Filtering of a data sequence of unknown, or infinite length with an FIR filter, with impulse response, $h[n]$, of length M using the DFT

Overlap-Add Method

- The causal data sequence $x[n]$ is first segmented into segments of length L
- The original sequence $x[n]$ can now be written as

$$
x[n]=\sum_{m=0}^{\infty} x_{m}[n-m L]
$$

where

$$
x_{m}[n]=\left\{\begin{array}{cc}
x[n+m L], & 0 \leq n \leq L-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

O 2009 Olli Simula
-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 5

Overlap-Add Method

- Substituting the segmented form of $x[n]$ into the convolution sum

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{M-1} h[k] x[n-k]=\sum_{k=0}^{M-1} h[k] \sum_{m=0}^{\infty} x_{m}[n-k-m L] \\
& =\sum_{m=0}^{\infty}\left(\sum_{k=0}^{M-1} h[k] x_{m}[n-k-m L]\right)=\sum_{m=0}^{\infty} y_{m}[n-m L]
\end{aligned}
$$

where $\quad y_{m}[n]=h[n] \circledast x_{m}[n]$

- The linear convolutions of $h[n]$ and the segments of $x_{m}[n]$, which all are all of length $-N$, $(N=M+L-1)$ are thus added

O 2009 Olli Simula	T-61.3010 Digital Signal Processing;	48

Overlap-Save Method

- It is possible to implement the linear convolution also by performing circular convolutions of length shorter than ($M+L-1$)
- In this case, it is necessary to segment the original sequence $x[n]$ is into overlapping blocks $x_{m}[n]$,
- The terms of the circular convolution of $h[n]$ with $x_{m}[n]$ that correspond to the terms obtained by a linear convolution of $h[n]$ and $x_{m}[n]$
- The other, incorrect, terms of the circular convolution are thrown away

Mitra 3rd Edition: Chapter 5;

