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Discrete-Time 
F i  T f3 Fourier Transform3

Introduction
• In time-domain, the input-output relation of a 

linear and time-invariant (LTI) system is 
characterized by the convolution

• An alternate description of a sequence in
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An alternate description of a sequence in 
terms of complex exponential sequences of 
the form {e-jωn} where ω is the normalized 
frequency variable

• The frequency domain representation of the 
discrete-time sequences and discrete-time 
LTI systems

Continuous-Time Fourier 
Transform

• Definition:
The CTFT of a continuous-time signal xa(t) is 
given by

∫
+∞ Ω−Ω dttjX tj)()(

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

3

• Often referred to as Fourier spectrum or 
simply the spectrum of the continuous-time 
signal 

∫ ∞−

Ω=Ω dtetxjX tj
aa )()(

Continuous-Time Fourier 
Transform

• Definition:
The inverse CTFT of a Fourier transform 
Xa(jΩ) is given by

1
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• Often referred to as Fourier integral

∫
+∞

∞−

Ω ΩΩ= dejXtx tj
a )(

2
1)(
π

The Continuous-Time 
Fourier Transform Pair

∫
+∞

∞−

Ω−=Ω dtetxjX tj
aa )()(

Analysis 
equation:
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∫
∞+

∞−

Ω ΩΩ= dejXtx tj
aa )(

2
1)(
π

)()(
CTFT

Ω↔ jXtx aa

A CTFT pair is 
also denoted as:

Synthesis 
equation:

• The Fourier transform or Fourier integral Xa(jΩ) 
of xa(t) is also called the analysis equation

• The inverse Fourier transform equation is called 
the synthesis equation

Continuous-Time Fourier Transform
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• For aperiodic signals, the complex exponentials 
occur at a continuum of frequencies

• The transform Xa(jΩ) of an aperiodic signal xa(t) 
is commonly referred to as the spectrum of
xa(t)
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Continuous-Time Fourier Transform

• Variable Ω is real and denotes the continuous-
time angular frequency in radians

• In general, the CTFT is a complex function of Ω
in the range

f
∞<Ω<∞−
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• It can be expressed in polar form as                     
)()()( ΩΩ=Ω aj

aa ejXjX θ

where
{ })(arg)( Ω=Ω jX aaθ

Continuous-Time Fourier Transform

• The quantity |X (jΩ)| is called the magnitude

)()()( ΩΩ=Ω aj
aa ejXjX θ
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• The quantity |Xa(jΩ)| is called the magnitude 
spectrum

• The quantity θa(Ω) is called the phase 
spectrum

• Both spectrums are real functions of Ω

Example 3.1
The Fourier transform 
of a causal complex 
exponential
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The Frequency Response of an LTI 
Continuous-Time System

• The output response of ya(t) of an initially 
relaxed linear, time-invariant continuous-time 
system characterized by an impulse response 
ha(t) for an input signal xa(t) is given by the 
convolution integral
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convolution integral

• Applying CTFT to both sides 
∫

+∞

∞−
−= τττ dxthty aaa )()()(

)()()( ΩΩ=Ω jXjHjY aaa

• Ha(jΩ) is the frequency response of the system

The Discrete-Time 
Fourier Transform

• The discrete-time Fourier transform (DTFT) of 
a discrete-time sequence x[n] is a representation 
of the sequence in terms of the complex 
exponential sequence {e-jωn} where ω is the real
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exponential sequence {e } where ω is the real 
frequency variable

• The DTFT representation of a sequence, if it 
exists, is unique and the original sequence can 
be computed from its DTFT by an inverse 
transform operation

The Discrete-Time Fourier Transform

• The discrete-time Fourier transform (DTFT) 
X(ejω) of a sequence x[n] is defined by:

∑
+∞

−= njj enxeX ωω ][)(
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• The Fourier transforms of most practical 
discrete-time sequences can be expressed in 
terms of a sum of a convergent geometric series

• They can be summed in a simple closed form

∑
−∞=n
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Example:

Consider a causal sequence: [ ] 1,][ <= αμα nnx n

The Fourier transform X(ejω) is obtained as:
∞∞
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Discrete-Time Fourier Transform (DTFT)
• As can be seen from definition, DTFT X(ejω) of a 

sequence x[n] is a continuous function of ω
• Unlike the continuous-time Fourier transform, 

DTFT is a periodic function in ω with a period 2π
++
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where e-j2πkn = 1
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Inverse Discrete-Time Fourier Transform
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• The inverse discrete-time Fourier transform can 
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be interpreted as a linear combination of 
infinitesimally small complex exponential signals 
of the form             , weighted by the complex 
constant X(ejω) over the angular frequency range 
from –π to π

ω
π

ω de nj

2
1

The Discrete-Time 
Fourier Transform (DTFT) Pair

∑
+∞

−= njj enxeX ωω ][)(

Analysis equation, denoted by operator F{x[n]}:

∫=
π

ωω ω
π 2

)(
2
1][ deeXnx njj

∑
−∞=n

enxe ][)(

Synthesis equation, denoted by operator F -1{x[n]}:

Basic Properties of the DTFT

• X(ejω) is a complex function the real variable ω :

∑
+∞

−∞=

−=
n

njj enxeX ωω ][)(

)()()( ωωω jjj ejXeXeX +
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• |X(ejω)| is the magnitude function

• θ(ejω) is called the phase function

)()()( j
im

j
re

j ejXeXeX +=

)}(arg{)( where,)()( )( ωωθωω ωθ jjjj eXeeXeX ==

Basic Properties of the DTFT

• In many applications, the Fourier transform 
X(ejω) is called the Fourier spectrum

)()()( ωθωω jjj eeXeX =

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

18

• |X(ejω)| is called the magnitude spectrum and 
• θ(ω) is the phase spectrum
• It is usually assumed that the phase function 

θ(ω) is restricted to the principal value
πωθπ <≤− )(
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Commonly Used DTFT Pairs
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DTFTSequence
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DTFT Properties

• There are a number of important properties of 
the DTFT that are useful in signal processing 
applications

• These are listed here without proof
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• Their proofs are straightforward
• The applications of some of the properties are 

illustrated  
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Important DTFT Theorems

• There are a number of important theorems of 
the DTFT that are useful in analysis and 
synthesis of discrete-time LTI systems 

• Many algorithms in signal processing 
li ti b d th th

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

23

applications are based on these theorems
• Their proofs are straightforward based on the 

definitions
• Assume that:

[ ] ( ) [ ] ( )ωω j
F

j
F

eHnheGng ↔↔ and
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The Frequency Response of an 
LTI Discrete-Time System

• Time-Domain:
An LTI discrete-time system is completely 
characterized by its impulse response
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characterized by its impulse response 
sequence {h[n]}

• Transform-Domain:
Alternative representations of an LTI discrete-
time system using the DTFT (and the z-
transform)

The Frequency Response - Definition

• An important property of an LTI system is that 
for certain types of input signals, called 
eigenfunctions, the output signal is the input 
signal multiplied by a complex constant
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• We consider one such eigenfunction, the 
complex exponential sequence 

• In general, for CT and DT systems:
– Continuous-time:  esT -> H(s) esT

– Discrete-time: zn -> H(z) zn

The Frequency Response
Superposition property:

The response of an LTI system to a linear 
combination of complex exponential signals 
can be determined by knowing its response
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can be determined by knowing its response 
to a single complex exponential signal

The response of the LTI system to a complex 
exponential input is considered

Frequency Response is a transform-domain 
representation of the LTI discrete-time system

Complex Exponential Input

][*][][][ nxnhknxkh
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The Frequency Response

Define:

• H(ejω) is called the frequency response of the 

∑
∞

−∞=

−=
n

njj enheH ωω ][)(

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

29

( ) q y p
LTI discrete-time system

• H(ejω) is the DTFT of h[n]
• For a complex exponential input:

njj eeHny ωω )(][ =

The Response to a Complex Exponential

• For a complex exponential input x[n] of angular 
frequency ω0, the output y[n] is a complex 
exponential sequence of the same angular 
frequency ω0 weighted by a complex constant

• For a fixed frequency ω=ω0:
njj eeHny 00 )(][ ωω=
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frequency ω0 weighted by a complex constant

• In general, the frequency response H(ejω) is a 
function of the angular frequency and can be 
evaluated at all input frequencies ω

• H(ejω) completely characterizes the behavior of an 
LTI discrete-time system in frequency domain

)( 0ωjeH
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The Frequency Response
• H(ejω) is a complex function of ω with a period 2π

)()()( ωωω j
im

j
re

j ejHeHeH +=
)()( ωθω jj eeH=
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)}(argwhere ωje{Hθ(ω)=

• |H(ejω)| is called the magnitude response
• θ(ω) is called the phase response

The Frequency Response

• In some cases, the magnitude function is 
defined in decibels

)(log20)( 10
ωω jeH=G dB
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• G(ω) is called the gain function 
• The negative of the gain function,
A(ω) = -G(ω) is called the attenuation or 
loss function

)(g)( 10G

Frequency-Domain Characterization of 
LTI Systems

• Input-output relation in frequency-domain

)()()( ωωω jjj eXeHeY =

• Convolution in the time-domain transforms into 

)(][ ωω jkj

k
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product in the frequency-domain

)(
)()( ω

ω
ω

j

j
j

eX
eYeH =

• The frequency response of an LTI discrete-time 
system is the ratio of Y(ejω) and X(ejω)

Frequency Responses of LTI 
FIR Discrete-Time Systems

• Input-output relation of the LTI FIR discrete-time 
system

• Applying the discrete-time Fourier transform (DTFT) 

21,][][][
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NNknxkhny
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pp y g ( )
results in the transform-domain input-output relation
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where Y(ejω) and X(ejω) are the DTFTs of the output 
and input sequences

Frequency Responses of LTI 
FIR Discrete-Time Systems

• The frequency response of the LTI FIR 
discrete-time system is thus

( ) ∑ −=
2
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N

kjj ekheH ωω
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• The frequency response of the LTI FIR discrete-
time system is a polynomial in e-jω

( ) ∑
= 1Nk

Frequency Responses of LTI 
IIR Discrete-Time Systems

• Input-output relation of the LTI IIR discrete-time 
system

Applying the discrete time Fourier transform
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• Applying the discrete-time Fourier transform 
(DTFT) results in the transform-domain input-
output relation
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Frequency Responses of LTI 
IIR Discrete-Time Systems

• The frequency-domain relation can be written in  
the form

)()(
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• Solving the ratio
∑
∑
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• The frequency response of the LTI IIR discrete-
time system is a polynomial in e-jω

• Consider the first order recursive or infinite impulse 
response (IIR) filter

Example: Simple IIR Discrete-Time System

1||with,][]1[][ <=−− αα nxnyny

• The frequency response of this system is obtained by 
the Fourier transform
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the Fourier transform

• Solving the ratio:

)()()( ωωωω α jjjj eXeeYeY =− −

• The impulse response is: ][][ nnh nμα=

Response to a Causal Exponential 
Sequence

• In practice, the excitation to an LTI discrete-time 
system is usually a causal sequence applied at 
some finite sample index n = n0

• The output for such an input when observed at 
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p p
sample instants beginning at n = n0 will consist of 
a transient part along with a steady-state 
component

• Assume that the input is a causal exponential 
sequence applied at n = 0, i.e., x[n] = e jωnμ[n]

Response to a Causal Exponential 
Sequence

• For n > 0, the output is obtained using the 
convolution sum

as μ[n k] = 0 for k > n

[ ] njkj
n

k

knj

k

eekhknekhny ωωω μ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=−= −

=

−
∞

=
∑∑

0

)(

0

][][][

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 3

40

as μ[n-k] = 0  for k > n
• Rewriting the last expression of the equation
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Response to a Causal Exponential 
Sequence

Steady-state response
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Transient response
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• The effect of the transient response on the 
output is 
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Response to a Causal Exponential 
Sequence
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• For a causal and stable IIR LTI discrete-time 
system, the impulse response is absolutely 
summable
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summable
• As a result the transient response ytr[n] is a 

bounded sequence
• Moreover, as

the transient response decays to zero as n
gets very large 

[ ] 0,
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→∞→ ∑∞
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 khn
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Response to a Causal Exponential 
Sequence

• In most practical cases, the transient 
response becomes negligibly small after 
some finite amount of time, and the system 
can be assumed to be in a steady-state
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can be assumed to be in a steady state
• For a causal FIR LTI discrete-time system 

with an impulse response of length N+1, 
h[n]=0 for n > N and, thus, ytr[n]=0 for n > N-1

• It should be noted that transients will occur 
whenever an input is applied or changed

The Concept of Filtering
• A digital filter is a discrete-time system that passes 

certain frequency components in an input sequence 
without any distortion and blocks other frequency 
components

• The key to the filtering process is the inverse 
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discrete-time Fourier transform which expresses an 
arbitrary sequence as a linear weighted sum of an 
infinite number of exponential (sinusoidal) sequences

• By appropriately choosing the frequency response 
(or its magnitude) of the LTI digital filter the individual 
sinusoidal components can be attenuated or 
amplified independent of each other

The Concept of Filtering
• Consider a real coefficient LTI discrete-time system 

characterized by a magnitude function  

• An input sequence
⎩
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• An input sequence
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is applied to the system

The Concept of Filtering
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• The output sequence is given by
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• Making use of |H(ejω)| the output is 

))(cos()(][ 11
1 ωθωω +≅ neHAny j

• The LTI system is a lowpass filter

Response to a Sinusoidal Sequence
• Consider the sinusoidal input to an LTI discrete-

time system with the frequency response 
H(ejω)=|H(ejω)|e jθ(ω)

[ ] ( )φω += nAnx 0cos

[ ] ( )φθω )()( j
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[ ] ( )φωθωω ++= )(cos)( 00
0 neHAny j

)( 0ωjeH

)( 0ωθ

• The output signal y[n] has the same sinusoidal 
waveform as the input x[n] with two differences
– The amplitude is multiplied by the constant value
– The output has a phase lag by amount  

Phase and Group Delays
• Let us rewrite the output to a sinusoidal input as 
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( )( )φωτω +)(cos)( 00 pneHA

where                            is called the phase delay

• The output y[n] is a time-delayed version of the 
input x[n]

0

0
0

)()(
ω
ωθωτ −=p
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Example: Linear combination of sinusoidal signals

The same sinusoidal components with phase shifts:

ttttx πππ 6cos
3
24cos2cos

2
11)( +++=

)6cos(
3
2)4cos()2cos(

2
11)( 321 φπφπφπ ++++++= ttttx

Consider the signal:
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(b) Φ1 = 4, Φ2 = 8, 
and Φ3 = 12 rad

(a) Φ1 = Φ2 = Φ3 = 0

Example: Linear combination of sinusoidal signals

)6cos(
3
2)4cos()2cos(

2
11)( 321 φπφπφπ ++++++= ttttx

(c) Φ1 = 6, Φ2 = -2.7, 
Φ3 = 0.93 rad
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The resulting signals differ significantly for 
different relative phases

(d) Φ1 = 1.2, Φ2 = 4.1, 
Φ3 = -7.02 rad

The Group Delay
• When the input signal contains many sinusoidal 

components with different frequencies that are not 
harmonically related, each component will go 
through different phase delays when processed by a 
frequency-selective LTI discrete-time system
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q y y
• The delay is determined using a different parameter 

called the group delay defined as

ω
ωθωτ

d
d

g
)()( −=

• Group delay has a physical interpretation in 
calculating the responses of discrete-time systems

The Group Delay
• Group delay function provides a measure of the 

linearity of the phase response

ω
ωθωτ

d
d

g
)()( −=
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• For a moving average filter of length M, the phase 
response is linear

ω
2

1−
−=

Mθ(ω)

and the group delay is constant

2
1)( −

=
M

g ωτ


