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Introduction

Finite wordlength effects are caused by:
• Quantization of the filter coefficients
• Rounding / truncation of multiplication 

results
• Quantization of the input signal
• Dynamic range constraints of the 

implementation
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Analysis of Finite Wordlength
Effects

• Ideally, the system parameters along with the 
signal variables have infinite precision taking any 
value between       and 

• In practice, they can take only discrete values 
within a specified  range since the registers of the 
digital machine where they are stored are of finite 
length

• The discretization process results in nonlinear 
difference equations characterizing the discrete-
time systems

∞−∞

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 12

4

Analysis of Finite Wordlength
Effects

• These nonlinear equations, in principle, are 
almost impossible to analyze and deal with 
exactly

• However, if the quantization amounts are small 
compared to the values of signal variables and 
filter parameters, a simpler approximate theory 
based on a statistical model can be applied
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Analysis of Finite Wordlength
Effects

• Using the statistical model, it is possible to derive 
the effects of discretization and develop results 
that can be verified experimentally

• Sources of errors: 
(1)  Filter coefficient quantization
(2)  A/D conversion
(3)  Quantization of arithmetic operations
(4)  Limit cycles
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Analysis of Noise Properties and 
Dynamic Range Constraints
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Example: First Order IIR Filter

• Quantization of coefficients α:
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• Quantization of input x[n]: ][][][' nenxnx +=

• Rounding/truncation of v[n]: ][][][' nenvnv α+=

• Output y[n] with finite wordlength: ][][][' nnyny η+=
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The Quantization Process and Errors
• Fractional numbers 

(sign bit + fractional 
part)

• Quantizer: 
The quantization 
process model

xxQ −= )(:Error ε

• Rounding / 
Truncation:
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The Quantization Errors
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Quantization Error
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Quantization of Floating-Point Numbers
• Only mantissa is quantized; the relative error is relevant! 
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Analysis of Coefficient 
Quantization Effects

• The transfer function Η´(z) of the digital filter 
implemented with quantized coefficients is different 
from the desired transfer function Η(z)

• Main effect of coefficient quantization is to move the 
poles and zeros to different locations from the 
original desired locations

• The actual frequency response Η´(ejω) is thus 
different from the desired frequency response Η(ejω)
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Analysis of Coefficient 
Quantization Effects

• In some cases, the poles may move outside the unit 
circle causing the implemented digital filter to become 
unstable even though the original transfer function 
H(z) is stable

• Direct form realizations are more sensitive 
to coefficient quantization than cascade or parallel 
forms

• The sensitivity increases with increasing filter order
• Usually second order blocks in cascade or parallel 

are used
© 2007 Olli Simula T-61.3010 Digital Signal Processing; 

Mitra 3rd Edition: Chapter 12
14

Coefficient Quantization Effects 
On a Direct Form IIR Filter

• Gain responses of a 5-th order elliptic lowpass
filter with unquantized and quantized coefficients

Fullband Gain Response Passband Details
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Coefficient Quantization Effects 
On a Direct Form IIR Filter

• Pole and zero locations of 
the filter with quantized 
coefficients (denoted by 
“x” and “o”) and those of 
the filter with unquantized
coefficients (denoted by 
“+” and “*”) -1 -0.5 0 0.5 1
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Coefficient Quantization Effects 
On a Cascade Form IIR Filter

• Gain responses of a 5-th order elliptic lowpass
filter implemented in a cascade form with 
unquantized and quantized coefficients

Fullband Gain Response Passband Details
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Coefficient Quantization Effects 
On A Direct Form FIR Filter

• Gain responses of a 39-th order equiripple
lowpass FIR filter with unquantized and quantized 
coefficients
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Example of Coefficient Quantization 
in 6th Order Direct Form Realization

Amplitude responses Pole-zero locations
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Example of Coefficient Quantization in 
6th Order Cascade Form Realization

Amplitude responses Pole-zero locations
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Example:
• 6th order bandstop

filter with unquantized
coefficients

• Cascade form with 
coefficients quantized 
to 6 bits 

• Parallel form with 
coefficients quantized 
to 6 bits 
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Coefficient Quantization in FIR Filters
• Consider an (M-1)th order FIR transfer function
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• Quantization of the filter coefficients results in a new 
transfer function
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• Linear phase:   h[n] = + h[N-1-n]
Symmetry of the impulse response not affected by 
quantization
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A/D Conversion Noise Analysis

• Quantization of the input signal introduces error at 
the input of the filter

• This error is propagated through the filter together 
with the input signal

• Affects the signal-to-noise ratio of the system

Analog input 
sample x[n]

Quantized
input sample

Binary equivalent
of quantized input

Analog input
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Quantization Noise Model

• Input signal is assumed to be scaled to be in the 
range of +1 by dividing its amplitude by RFS/2

1][ˆ1 <≤− nxeq

• Two’s complement
representation

FS
eq R

nxnx ][ˆ2][ˆ =

δ12 += b
FSR
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Quantization Error
• The quantization error e[n]:

][][ˆ][])[(][ nxnxnxnxQne −=−=

• For two’s complement rounding: 22 ][ δδ ≤<− ne

• Outside RFS the error increases linearly; e[n] is called 
the saturation error or the overload noise

• The output value is clipped to the maximum value

• e[n] is called
granular noise
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Model of the Quantization Error

Assumptions:
1) The error sequence {e[n]} is a sample sequence of a wide-

sense stationary (WSS) white noise process, with each sample 
e[n] being uniformly distributed over the quantization error 

2) The error sequence is uncorrelated with its corresponding input 
sequence {x[n]}

3) The input sequence is a sample sequence of a stationary 
random process

The assumptions hold in most practical situations with 
rapidly changing input signals

][][][ˆ nenxnx +=+][nx

][ne
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Quantization Error Distributions

(a) Rounding

(b) Two’s
complement
truncation
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• The variance represents the noise power
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Signal-to-Noise Ratio
• Additive quantization noise e[n] on the signal x[n]
• Signal-to-quantization noise ratio in dB is defined as 

dB   log10 2

2
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e
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where 
• σx

2 is the signal variance (power) and  
• σe

2 is the noise  variance (power) 
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Signal-to-Noise Ratio
A/D conversion:  

• (b+l) bits:   δ = 2-(b+1)RFS , where RFS is the full-scale 
range  
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• Thus, SNR increases 6 dB for each added bit in the 
wordlength
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Effect of Input Scaling on SNR
• Let the input scaling factor be A with A>0
• The variance of the scaled input Ax[n] is A2σx

2

• The SNR changes to
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where RFS=Kσx (σx is the RMS value of the signal)
• Scaling down the input signal (A<1) decreases the SNR
• Scaling up the input signal (A>1) increases the 

possibility to exceed the full-scale range RFS resulting in 
clipping SNR
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Propagation of Input Quantization 
Noise to Digital Filter Output

• Due to linearity of H(z) and the assumption that x[n]
and e[n] are uncorrelated the output can be expressed 
as a linear combination (sum) of two sequences: 
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Propagation of Input Quantization 
Noise to Digital Filter Output

• The mean and variance of v[n] characterize the 
output noise

)( 0j
ev eHmm =

• The output noise power spectrum is:

• The mean mv is:

• The noise variance σv
2 is:

∫
−

=
π

π

ω ω
π

σσ deH je
v

22
2 )(

2

222 )()( ωσω j
evv eHP =

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 12

32

Propagation of Input Quantization 
Noise to Digital Filter Output

• The normalized output noise variance is given by

• An equivalent expression is:

which can be written as:
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Analysis of 

Arithmetic Round-Off Errors
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Quantization of Multiplication Results

Assumptions:
1) The error sequence {eα[n]} is a sample sequence of a 

stationary white noise process, with each sample eα[n]
being uniformly distributed

2) The quantization error sequence {eα[n]} is uncorrelated with 
the signal {v[n]}, the input sequence {x[n]} to the filter, and 
all other quantization errors

The assumption of {eα[n]} being uncorrelated with 
{v[n]} holds for rounding and two’s complement 
truncation
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Quantization of Multiplication Results
• The quantization model can be used to analyze the 

quantization effects at the filter output

• Quantization before 
summation

• The number of multiplications 
kl at adder inputs

• The rth branch node with 
signal value ur[n] needs to be 
scaled to prevent overflow
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Quantization of Multiplication Results
• Statistical model of the filter:

• fr[n]
Impulse response from 
filter input to branch 
node r

• gl[n]
Impulse response from 
input of lth adder to 
filter output
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Quantization of Multiplication Results
• Branch nodes to be scaled 

lead to multipliers and are 
outputs of summations:

• Scaling transfer function: Fr(z)
• Noise transfer function: Gl(z)

• Let σ0
2 be the variance of each individual noise 

source; then klσ0
2 is the noise variance of el[n]

• The output noise variance is:
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Quantization of Multiplication Results
• The total output noise variance:
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where L is the number of summation nodes to which 
noise sources are connected

• The noise variance can also be written as
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The Output Quantization Noise
• The amount of noise depends on the implementation

• Quantization of 
multiplication results 
after summation 
reduces the number of 
noise sources to one

• The variance of the 
noise source el[n] is 
now σ0

2

• DSP processor carry out multiply-accumulate 
operation using double precision arithmetic
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Dynamic Range Scaling

• The rth node value ur[n] has to be scaled
• Assume that the input sequence is bounded by 

unity, i.e., |x[n]| < 1 for all values of n
• The objective of scaling is to ensure that 

|ur[n]| < 1 for all r and all values of n

Digital filter
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Dynamic Range Scaling
• Three different conditions to ensure that ur[n]

satisfies the conditions:
1) An absolute bound
2) Linfinity -bound
3) L2 -bound

• Different bounds are applicable under certain input 
signal conditions
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An Absolute Bound

• Fr(z) is the scaling transfer function
• The node value ur[n] is determined by the 

convolution

Digital filter
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An Absolute Bound
• Assuming that x[n] satisfies the dynamic range 

constraint |x[n]| < 1
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• The node value ur[n] now satisfies the dynamic 
range constraint, i.e., | ur[n]| < 1 if

rkf
k
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• This is both necessary and sufficient condition to 
guarantee that there will be no overflow
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Scaling with the Absolute Bound
• If the dynamic range constraint is not satisfied the 

filter input has to be scaled with the multiplier K
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1

• The scaling rule based on the absolute bound is too 
pessimistic and reduces the SNR significantly

• More practical and easy to use scaling rules can be 
derived in the frequency domain if some information 
about the input signal is known a priori
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Scaling Norms
• Define the Lp-norm of a Fourier transform F(ejω) as 

p
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• L2-norm, ||F||2, is the root-mean-square (RMS) value 
of F(ejω), and 

• L1-norm, ||F||1, is the mean absolute value of F(ejω)
over ω

• Moreover, limp->∝ ||F||p exists for a continuous F(ejω)
and is given by its peak
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Scaling Norms: L∝-Bound

• An inverse Fourier transform 
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Scaling Norms: L∝-Bound
• If ||X||1 < 1, then the dynamic range constraints 

satisfied if 

• If the mean absolute value of the input spectrum is 
bounded by unity, then there will be no adder 
overflow if the peak gains from the filter input to all 
adder output nodes are scaled satisfying the above 
bound

• The scaling rule is rarely used since with most input 
signals encountered in practice ||X||1 < 1 does not hold

1≤
∞

F
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Scaling Norms: L2-Bound

or equivalently
• If the filter input has finite energy bounded by unity, i.e., 

||X||2 < 1, then the adder overflow can be prevented by 
scaling the filter such that the RMS value of the scaling 
transfer functions are bounded by unity:
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A General Scaling Rule

for all p,q > 1, with

• After the scaling the transfer functions become ||F’||p
and the scaling constants should be chosen such that

• A more general scaling rule is obtained using 
Holder’s inequality

q

j

p

j
rr eXeFnu )()(][ ωω≤
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( ) ( ) 111 =+ qp

• In many structures the scaling multipliers can be 
absorbed to the existing feed-forward multipliers
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Scaling of a Cascade Form IIR Filter
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• Fr(z) can be expressed by poles and zeros of the original H(z)
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• Scaling transfer functions:
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Scaling  - Back-Scaling

• The effect of input scaling is compensated by back-
scaling at the output of the filter

• Scaling block-by-block in cascade realization forms

FILTER αα
1

H1(z) H2(z) HR(z)

1
1
α 2

1
α

α
R

R
α

α 1− Rα

• Each second order block is scaled individually
• The scaling coefficients between the blocks contain the 

back-scaling of the previous block and the scaling of the 
next block
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Scaled Cascade Form IIR Filter Structure
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• The scaled structure has new values of the coefficients 
in the feed-forward branches

• Only one critical branch node in each second order 
block has to be checked for overflow
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Optimum Section Ordering and 

Pole-Zero Pairing of a Cascade 

Form IIR Digital Filter

Ordering of second-order sections as well as 
pairing of poles and zeros affects the output noise
power of the filter
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Noise Transfer Functions

• The noise transfer functions can be expressed using the 
transfer functions of the cascaded second-order blocks

• The scaled noise transfer functions are given by 
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Noise Transfer Functions
• The output noise power spectrum due to product 

round-off is given by
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where the integral in the parenthesis is the square 
of the L2-norm of the noise transfer function
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Noise Model of Second-Order Blocks
• The noise model introduces noise sources to the 

input/output summation of each block
• The number of elementary noise sources, kl, has 

different values depending on the location of rounding 
(before or after the summation) and depending on the 
block (first, intermediate, last)

• Let kl be the total number multipliers connected to the 
lth adder
• Rounding before summation: k1 = kR+1 = 3,

kl = 5, for l = 2, 3,...,R
• Rounding after summation: kl = 1, for l = 1, 2,...,R+1
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Noise Transfer Functions
• The scaling coefficients are
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and output noise variance is

• The output noise power spectrum of the scaled filter is
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Minimizing the Output 
Round-Off Noise

• The scaling transfer function Fl(z) contains sections 
Hi(z), i = 1, 2,..., l-1

• The noise transfer function Gl(z) contains sections 
Hi(z), i = l, l+1,..., R

• Every term in the sum for the noise power or the noise 
variance includes the transfer function of all R sections 
in the cascade realization 

• To minimize the output noise power the norms of Hi(z)
should be minimized for all values of i by appropriately 
pairing the poles and zeros 
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Pairing the Poles and Zeros

1) First, the poles closest to the 
unit circle should be paired 
with the nearest zeros

• Poles close to unit circle introduce gain and zeros (on 
the unit circle) introduce attenuation

2) Next, the poles closest to the 
previous set of poles should 
be paired with the next 
closest zeros

3) This process is continued 
until all poles and zeros are 
paired
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Section Ordering
• A section in the front part of the cascade has its 

transfer function Hi(z) appearing more frequently in 
the scaling transfer functions

• A section near the output end of the cascade has its 
transfer function Hi(z) appearing more frequently in 
the noise transfer function expressions 

=> The best location for Hi(z) depends on the 
type of norms being applied to the scaling 
and noise transfer functions
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Section Ordering
L2 scaling:

• The ordering of paired sections does not influence too much 
the output noise power since all norms in the expressions are 
L2-norms

L∝ scaling:
• The sections with poles closest to the unit circle exhibit a 

peaking magnitude response and should be placed closer to 
the output end 
=> The ordering should be from least-peaked to most-peaked

• On the other hand, the ordering scheme is exactly opposite if 
the objective is to minimize the peak noise ||Pyy(ω)||∝ and L2-
scaling is used

• The ordering has no effect on the peak noise with L∝-scaling
© 2007 Olli Simula T-61.3010 Digital Signal Processing; 

Mitra 3rd Edition: Chapter 12
62

Error Spectrum Shaping

• Quantization error can 
be compensated using 
the so called error-
feedback (or error 
spectrum shaping)

• The filtered error signal 
is added to the signal 
branch before 
quantization (Q[.]).
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Error Spectrum Shaping
• Without error-feedback 

the error signal e[n] is 
the pure quantization 
error, i.e., 
e[n] = y[n] - x[n]

• In the compensated 
structure the error signal 
is the difference 
between the output y[n]
and the compensated 
input signal
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Error Spectrum Shaping
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• Total error between 
output and input is still:
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• Substituting w[n]:
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Error Spectrum Shaping

]2[]1[][][][ −+−+=− nbenaenenxny

• Solving y[n] - x[n]:

• Taking the z-transform:
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where G(z) is the error shaping transfer function
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Error Spectrum Shaping

• Example: a=-2 and b=1

• Double zero is at z=1

• Noise spectrum is modified by attenuating noise at 
low frequencies
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