

Matrix Representation of Digital Filter Structures

- The equations cannot be implemented in the order shown with each variable on the left side computed before the variable below is computed
- For example, computation of w₁[n] in the 1st step requires the knowledge of w₅[n] which is computed in the 5th step
- Likewise, computation of $w_2[n]$ in the 2nd step requires the knowledge of $w_3[n]$ that is computed in the 3rd step

T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 11

Mitra 3rd Edition: Chapter 11; © 2009 Olli Simula

© 2009 Olli Simula

T-61.3010 Digital Signal Processing and Filtering

Precedence Graph

T-61.3010 Digital Signal Processing

16

- Then, form the set {*N*₃} containing nodes that have branches coming in only from one or more nodes in the sets {*N*₁} and {*N*₂}, and have outgoing branches to other nodes
- Continue the process until there is a set of nodes {*N_f*} containing only incoming branches
- The rearranged signal-flow graph is called a **precedence graph**

T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 11

© 2009 Olli Simula

19

T-61.3010 Digital Signal Processing and Filtering

Fast DFT Algorithms Based on Index Mapping

- Usually, fast DFT algorithms are for sequences of length N that is a power-of-2 integer
- For the case when the length N of the sequence is a composite number that is expressible as a product of integers, it is possible to develop computationally fast DFT algorithms via index mapping where the sample indices n and k are mapped into two-dimensional indices
- The algorithms compute the length-N DFT through a series of smaller length DFTs

T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 11

© 2009 Olli Simula

55

