Introduction

Two types of algorithms:

1) Filtering algorithms
2) Signal analysis algorithms

Basic implementation approaches:

1) Hardware
2) Firmware
3) Software

Matrix Representation of Digital Filter Structures

- This structure, in the time-domain, is described by the set of equations time-domain by a set of equations relating the output sequence to the input sequence and, in some cases, one or more internally generated sequences
- Consider

$$
\begin{aligned}
w_{1}[n] & =x[n]-\alpha w_{5}[n] \\
w_{2}[n] & =w_{1}[n]-\delta w_{3}[n] \\
w_{3}[n] & =w_{2}[n-1] \\
w_{4}[n] & =w_{3}[n]+\varepsilon w_{2}[n] \\
w_{5}[n] & =w_{4}[n-1] \\
y[n] & =\beta w_{1}[n]+\gamma w_{5}[n]
\end{aligned}
$$

© 2009 Olli Simula

Matrix Representation of Digital Filter Structures

- This ordered set of equations is said to be noncomputable
- Suppose we reorder these equations order shown with each variable on the left side computed before the variable below is computed
- For example, computation of $w_{1}[n]$ in the $1^{\text {st }}$ step requires the knowledge of $w_{5}[n]$ which is computed in the $5^{\text {th }}$ step
- Likewise, computation of $w_{2}[n]$ in the $2^{\text {nd }}$ step requires the knowledge of $w_{3}[n]$ that is computed in the $3^{\text {rd }}$ step
© 2009 Olli Simula
-61.3010 Digital Signal Processing,
Mitra 3rd Edition: Chapter 11

$$
\begin{aligned}
w_{3}[n] & =w_{2}[n-1] \\
w_{5}[n] & =w_{4}[n-1] \\
w_{1}[n] & =x[n]-\alpha w_{5}[n] \\
w_{2}[n] & =w_{1}[n]-\delta w_{3}[n] \\
y[n] & =\beta w_{1}[n]+\gamma w_{5}[n] \\
w_{4}[n] & =w_{3}[n]+\varepsilon w_{2}[n]
\end{aligned}
$$

[^0]
Matrix Representation of Digital Filter Structures

- This ordered set of equations is computable
- In most practical applications, equations describing a digital filter structure can be put into a computable order by inspection
- A simple way to examine the computability of equations describing a digital filter structure is by writing the equations in a matrix form

Matrix Representation

- A matrix representation of the first ordered set of equations is
$\left[\begin{array}{c}w_{1}[n] \\ w_{2}[n] \\ w_{3}[n] \\ w_{4}[n] \\ w_{5}[n] \\ y[n]\end{array}\right]=\left[\begin{array}{c}x[n] \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & -\alpha & 0 \\ 1 & 0 & -\delta & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \varepsilon & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \beta & 0 & 0 & 0 & \gamma & 0\end{array}\right]\left[\begin{array}{c}w_{1}[n] \\ w_{2}[n] \\ w_{3}[n] \\ w_{4}[n] \\ w_{5}[n] \\ y[n]\end{array}\right]$
$+\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}w_{1}[n-1] \\ w_{2}[n-1] \\ w_{3}[n-1] \\ w_{4}[n-1] \\ w_{5}[n-1] \\ y[n-1]\end{array}\right]$
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 11

Matrix Representation

- For the computation of present value of a particular signal variable, nonzero entries in the corresponding rows of matrices \mathbf{F} and \mathbf{G} determine the variables whose present and previous values are needed
- If a diagonal element of \mathbf{F} is nonzero, then computation of present value of the corresponding variable requires the knowledge of its present value implying presence of a delay-free loop

Matrix Representation

- In the \mathbf{F} matrix for the first ordered set of equations, diagonal elements are all zeros, indicating absence of delay-free loops
- However, there are nonzero entries above the diagonal in the first and second rows of \mathbf{F} indicating that the set of equations are not in proper order for computation

Hence, for computability all elements of F matrix on the diagonal and above diagonal must be zeros

Matrix Representation

- The F matrix for the second ordered set of equations is

$$
\mathbf{F}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\alpha & 0 & 0 & 0 & 0 \\
-\delta & 0 & 1 & 0 & 0 & 0 \\
0 & \gamma & \beta & 0 & 0 & 0 \\
1 & 0 & 0 & \varepsilon & 0 & 0
\end{array}\right]
$$

which is seen to satisfy the computability condition

- The precedence graph can be used to test the computability of a digital filter structure and to develop the proper ordering sequence for a set of equations describing a computable structure
- It is developed from the signal-flow graph description of the digital filter structure in which independent and dependent signal variables are represented by nodes, and the multiplier and delay branches are represented by directed branches

Precedence Graph

Precedence Graph

- The signal-flow graph representation of

is shown below

Precedence Graph

- The remaining nodes in the reduced signalflow graph are grouped as follows:
- All nodes with only outgoing branches are grouped into one set labeled $\left\{N_{1}\right\}$
- Next, the set $\left\{N_{2}\right\}$ is formed containing nodes coming in only from one or more nodes in the set $\left\{N_{1}\right\}$ and have outgoing branches to the other nodes
© 2009 Olli Simula
1-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 11

Precedence Graph

- Then, form the set $\left\{N_{3}\right\}$ containing nodes that have branches coming in only from one or more nodes in the sets $\left\{N_{1}\right\}$ and $\left\{N_{2}\right\}$, and have outgoing branches to other nodes
- Continue the process until there is a set of nodes $\left\{N_{f}\right\}$ containing only incoming branches
- The rearranged signal-flow graph is called a precedence graph

Precedence Graph

- This is followed by the computation of signal variables in $\left\{N_{3}\right\},\left\{N_{4}\right\}$, etc.
- Finally, in the last step the signal variables in $\left\{N_{f}\right\}$ are computed
- This process of sequential computation ensures the development of a valid computational algorithm
- If there is no final set $\left\{N_{f}\right\}$ containing only incoming branches, the digital filter structure is noncomputable
© 2009 Olli Simula
-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

Precedence Graph

- Since signal variables belonging to $\left\{N_{1}\right\}$ do not depend on the present values of other signal variables, these variables should be computed first
- Next, signal variables belonging to $\left\{N_{2}\right\}$ can be computed since they depend on the present values of signal variables contained in $\left\{N_{1}\right\}$ that have already been computed

- For the example precedence graph, pertinent groupings of node variables are:

$$
\begin{aligned}
& \left\{N_{1}\right\}=\left\{w_{3}[n], w_{5}[n]\right\} \\
& \left\{N_{2}\right\}=\left\{w_{1}[n]\right\} \\
& \left\{N_{3}\right\}=\left\{w_{2}[n]\right\} \\
& \left\{N_{4}\right\}=\left\{w_{4}[n], y[n]\right\}
\end{aligned}
$$

© 2009 Olli Simula

Efficient Algorithms for the DFT Computation

- Precedence graph redrawn according to the groupings based on ordering computations is shown below

- Since the final node set $\left\{N_{4}\right\}$ has only incoming branches, the structure is computable
© 2009 Olli Simula
Mitra 3rd Edition: Chater 11 Mitra 3rd Edition: Chapter 11
- The discrete Fourier transform (DFT) is a widely used DSP algorithm
- It can be used to implement the linear convolution of two sequences, a key digital filtering operation
- It is also used in spectral analysis of signals
- Because of the widespread use of DFT, it is of interest to investigate efficient implementation methods of the DFT
- Various approaches are available:
- Fast Fourier Transform (FFT) algorithm was invented in 1965 by J.W. Cooley and J.W. Tukey

O 2009 Olli Simula T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 11

Computation of the DFT

- N-point DFT $X[k]$ of a sequence $x[n]$ of length N $X[k]=\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \text { zk/ } / N}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \text { 2nkn/N }}, \quad k=0,1, \ldots, N-1$
- DFT gives N samples of the Fourier transform evaluated uniformly on the ω-axis at $\omega_{k}=2 \pi k / N, 0 \leq k \leq$ N-1
- DFT gives the samples of $X(z)$ of the sequence $x[n]$ on the unit circle

$$
X[k]=\left.X(z)\right|_{z=e^{j 2,2 k / N}}, \quad k=0,1, \ldots, N-1
$$

© 2009 Olli Simula

Decimation in Time FFT

- The sequence $x[n]$ of length N is separated into two sequences of length $N / 2$ composed of the even and odd indexed samples:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=\sum_{n=v e v n} x[n] W_{N}^{k n}+\sum_{n=o d d} x[n] W_{N}^{k n} \\
& =\sum_{m=0}^{(N / 2)-1} x[2 m] W_{N}^{k 2 m}+\sum_{m=0}^{(N / 2)-1} x[2 m+1] W_{N}^{k(2 m+1)} \\
& =\sum_{m=0}^{(N / 2-1} x[2 m]\left(W_{N}^{2}\right)^{k m}+W_{N}^{k} \sum_{m=0}^{(N / 2)-1} x[2 m+1]\left(W_{N}^{2}\right)^{k m}
\end{aligned}
$$

- Notice that: $W_{N}^{2}=e^{-2 j(2 \pi / N)}=e^{-j 2 \pi /(N / 2)}$
© 2009 Olli Simula \quad T-61.3010 Digital Signal Processing

Decimation-in-Time FFT Algorithm

- Block-diagram interpretation

Notice! $X_{0}\left[<k>_{N / 2}\right] \Leftrightarrow X_{e}(k)$ and $X_{1}\left[<k>_{N / 2}\right] \Leftrightarrow X_{o}(k)$

Computation of the DFT

Computational complexity of $X[k]$:

- Computation of each sample requires N complex multiplications and $N-1$ complex additions
- Computation of N samples require N^{2} complex multiplications and $N(N-1)$ complex additions

If N is large, the computation of the DFT requires N^{2} complex operations
(where a complex operation corresponds to one complex multiplication and one complex addition)
© 2009 Olli Simula
61.30 Digital Signal Process

Mitra 3rd Edition: Chapter 11

Decimation in Time FFT

- The two DFTs are true (N/2)-point DFTs of the even- and odd-indexed parts of the original $x[n]$:

$$
\begin{aligned}
X[k] & =\sum_{m=0}^{(N / 2)-1} x[2 m]\left(W_{N}^{2}\right)^{k m}+W_{N}^{k} \sum_{m=0}^{(N / 2)-1} x[2 m+1]\left(W_{N}^{2}\right)^{k m} \\
& \square[k]=X_{e} e^{[k]+W_{N}^{k} X_{0}[k]}
\end{aligned}
$$

- This basic idea can be applied again and again until only two-point DFTs are left, i.e., each (N/2)-point DFT is computed by combining two ($N / 4$)-point DFTs, each of which is computed by combining two (N/8)point DFTs, etc.
© 2009 Olli Simula
T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 11

Decimation in Time FFT

© 2009 Olli Simula T-61.3010 Digital Signal Processing,
Mitra 3rd Edition: Chapter 11 Mitra 3rd Edition: Chapter 11

Decimation in Time FFT

$$
X[k]=X_{e}[k]+W_{N}^{k} X_{o}[k]
$$

- Direct DFT computation: N^{2} complex operations where complex operation consists of one complex multiplication and one complex addition
- FFT after one decomposition:
$2(N / 2)^{2}+N$ complex operations,
i.e. two $N / 2$-point DFTs and combining their results
- Example $N=8=2^{3}$:
$\rightarrow N^{2}=64$ and
$>2(N / 2)^{2}+N=2 * 16+8=40$
© 2009 Olli Simula T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 11
31

Decimation in Time FFT

- Next, the N/2-point DFTs are decomposed into two N/4-point DFTs resulting in altogether four N/4-point DFTs

N/2-point DFTs are replaced by N/4-point DFTs

© 2009 Olli Simula
61.3010 Digital Signal Processin

32

Decimation in Time FFT

- Finally, the flow graph of the basic 2-point DFT is:

Mitra 3rd Edition: Chapter 11

Decimation in Time FFT

- Flow graph of the second stage in decimation-intime FFT alaorithm for $\mathrm{N}=8$

- \# operations: $2\left(\frac{N}{2}\right)^{2}+N \Rightarrow 2\left[2\left(\frac{N}{4}\right)^{2}+\frac{N}{2}\right]+N=4\left(\frac{N}{4}\right)^{2}+N+N$
© 2009 Olli Simula \quad T-61.3010 Digital Signal Processing Mitra 3rd Edition: Chapter 11

Decimation in Time FFT

- Complete flow graph of the basic decimation-intime FFT algorithm for $\mathrm{N}=8$

Decimation in Time FFT

- The DFT consists of μ stages
- Each stage consists of $N / 2$ basic computational modules, called "butterflies"
- Each butterfly contains two complex operations, i.e., two complex multiplications and two complex additions
$\underset{\text { O209 olii simula }}{\longrightarrow}$ 37 61.3010 Digital Signal Processin
Mitra 3rd Edition: Chapter 11

Decimation in Time FFT

- Flow graph of the modified DIT FFT algorithm

- Complexity: $(N / 2) \log _{2} N$ complex multiplications $\mathrm{Nlog}_{2} \mathrm{~N}$ complex additions
© 2009 Olli Simula 1-61.3010 Digital Signal Processing

Butterfly Computation

Properties of the DIT FFT Algorithms

- In-place computation => Efficient memory utilization
- Bit-reversed ordering :

Decimation in Frequency FFT

- Using the identity $W_{N}^{(N / 2) k}=(-1)^{k}$
- The DFT can be rewritten as
$X[k]=\sum_{n=0}^{(N / 2)-1}\left[x[n]+(-1)^{k} x[n+(N / 2)]\right] W_{N}^{k n}$
- For k even: $X[2 l]=\sum_{n=0}^{(N / 2)-1}[x[n]+x[n+(N / 2)]] W_{N}^{2 n l}$

$$
=\sum_{n=0}^{(N / 2)-1}[x[n]+x[n+(N / 2)]] W_{N / 2}^{n l} \quad 0 \leq l \leq \frac{N}{2}-1
$$

- For k odd: $\quad X[2 l+1]=\sum_{n=0}^{(N / 2)-1}[x[n]-x[n+(N / 2)]] W_{N}^{n(2 l+1)}$
$=\sum_{n=0}^{(N / 2)-1}[x[n]-x[n+(N / 2)]] W_{N}^{n} W_{N / 2}^{n l} \quad 0 \leq l \leq \frac{N}{2}-1$
© 2009 Olli Simula
Mitra 3rd Edition: Cheptessing
Mitra 3rd Edition: Chapter 11

Decimation in Frequency FFT

- The $N / 2$-point sequences $x_{0}[n]$ and $x_{1}[n]$ are obtained as the sum and difference of the first and second half of the original sequence $x[n]$:

$$
\begin{aligned}
& x_{0}[n]=\left\{x[n]+x\left[\frac{N}{2}+n\right]\right\} \\
& x_{1}[n]=\left\{x[n]-x\left[\frac{N}{2}+n\right]\right\} W_{N}^{n} \\
& \text { for } n=0,1, \ldots, \frac{N}{2}-1
\end{aligned}
$$

- In the first stage of the decimation in frequency FFT, true N/2-point DFTs of the above sequences are computed
© 2009 Olli Simula \quad T-61.3010 Digital Signal Processing; 43 Mitra 3rd Edition: Chapter 11

Decimation in Frequency FFT

- Decomposing the $N / 2$-point, $N / 4$-point, ..., DFTs into $N / 4$-point, $N / 8$-point, ..., DFTs results in the decimation-in-frequency FFT algorithm

- The complexity as well as other properties (in-place computation, indexing) are similar to the DIT FFT © 2009 Olli Simula -61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 11

Modifications of FFT Algorithms

- The order of input and output data samples can be changed by interchanging rows $x[4]$ and $x[1]$ as well as rows $x[6]$ and $x[3]$
© 2009 Olli Simula
T-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 11

Decimation in Frequency FFT

- The flow graph of the first stage of the decimation-infrequency FFT algorithm for $N=8$:

© 2009 Olli Simula
T-61.3010 Digital Signal Processing: Mitra 3rd Edition: Chapter 11

Comparison of DIT and DIF FFT Algorithms

- DIT algorithm: Input in bit-reversed order and output in normal order
- DIF algorithm: Input in normal order and output in order bit-reversed
- DIT and DIF algorithms are both in-place
- DIT and DIF algorithms can be obtained from each other using flow reversal in the structure
- The computational complexity is the same in DIT and DIF algorithms

Modifications of FFT Algorithms

- Rearrangement of the DIT FFT algorithm with both input and output in normal order
© 2009 Olli Simula

Modifications of FFT Algorithms

- Rearrangement of the DIT FFT algorithm having the same geometry for each stage, thereby permitting sequential data accessing and storage
© 2009 olli Simula T-61.3010 Digital Signal Processin Mitra 3rd Edition: Chapter 11

Inverse DFT Computation

- The basic DIT butterfly is:

- The IFFT algorithm can be derived by inverting the basic butterfly computation
- Solving $\Psi_{r}[\alpha]$ and $\Psi_{r}[\beta]$ using $\Psi_{r+1}[\alpha]$ and $\Psi_{r+1}[\beta]$ yields:
$\left\{\begin{array}{l}2 \Psi_{r}[\alpha]=\Psi_{r+1}[\alpha]+\Psi_{r+1}[\beta] \\ 2 W_{N}^{l} \Psi_{r}[\beta]=\Psi_{r+1}[\alpha]-\Psi_{r+1}[\beta]\end{array}\right.$
© 2009 Olli Simul
T-61.3010 Digital Signal Processin Mitra 3rd Edition: Chapter 11

Inverse FFT Algorithm

- The DIF IFFT algorithm has been obtained from the DIT FFT algorithm by flow-reversal, i.e., as transpose
© 2009 Olli Simula
1-61.3010 Digital Signal Processing
Mitra 3rd Edition: Chapter 11

Fast DFT Algorithms Based on Index Mapping

- Usually, fast DFT algorithms are for sequences of length N that is a power-of-2 integer
- For the case when the length N of the sequence is a composite number that is expressible as a product of integers, it is possible to develop computationally fast DFT algorithms via index mapping where the sample indices n and k are mapped into two-dimensional indices
- The algorithms compute the length- N DFT through a series of smaller length DFTs
© 2009 Olli Simula T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 11

Fast DFT Algorithms Based on Index Mapping

- The Cooley-Tukey FFT algorithm can be generalized for composite N
- Even more efficient DFT algorithms can be obtained for N that is expressible as a product of prime numbers

Prime factor FFT algorithms

[^0]: T-61.3010 Digital Signal Processing
 Mitra 3rd Edition: Chapter 11

