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DSP Algorithm 
I l t ti  11 Implementation 11

Introduction

Two types of algorithms:
1) Filtering algorithms 
2) Signal analysis algorithms
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Basic implementation approaches:
1) Hardware
2) Firmware
3) Software
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Matrix Representation of Digital 
Filter Structures

• A digital filter structure can be described in the 
time-domain by a set of equations relating the 
output sequence to the input sequence and, in 
some cases, one or more internally generated 
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sequences
• Consider

3

Matrix Representation of Digital 
Filter Structures

• This structure, in the time-domain, is described by 
the set of equations

][][][ 51 nwnxnw α−=
][][][ δ
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]1[][ 45 −= nwnw

][][][ 312 nwnwnw δ−=
]1[][ 23 −= nwnw

][][][ 234 nwnwnw ε+=

][][][ 51 nwnwny γβ +=

4

Matrix Representation of Digital 
Filter Structures

• The equations cannot be implemented in the 
order  shown with each variable on the left side 
computed before the variable below is computed

• For example, computation of w1[n] in the 1st step 
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p , p 1[ ] p
requires the knowledge of w5[n] which is 
computed in the 5th step

• Likewise, computation of w2[n] in the 2nd step 
requires the knowledge of w3[n] that is computed 
in the 3rd step

5

Matrix Representation of Digital 
Filter Structures

• This ordered set of equations is said to be 
noncomputable

• Suppose we reorder these equations

]1[][ = nwnw
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]1[][ 23 −= nwnw
]1[][ 45 −= nwnw
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Matrix Representation of Digital 
Filter Structures

• This ordered set of equations is computable
• In most practical applications, equations 

describing a digital filter structure can be put into 
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a computable order by inspection
• A simple way to examine the computability of 

equations describing a digital filter structure is by 
writing the equations in a matrix form

7

Matrix Representation
• A matrix representation of the first ordered set of 

equations is
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Matrix Representation
• In compact form 

y[n] = x[n] + F y[n] + G y[n - 1]
where

[ ]Tnynwnwnwnwnwn ][][][][][][][ 54321=y

[ ]T
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Matrix Representation
• For the computation of present value of a 

particular signal variable, nonzero entries in the 
corresponding rows of matrices F and G
determine the variables whose present and 
previous values are needed
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• If a diagonal element of F is nonzero, then 
computation of present value of the corresponding 
variable requires the knowledge of its present 
value implying presence of a delay-free loop
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Matrix Representation
• Any nonzero entries in the same row above the 

main diagonal of F imply that the computation of 
present value of the corresponding variable 
requires present values of other variables not yet 
computed, making the set of equations 
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p g q
noncomputable

• Hence, for computability all elements of F 
matrix on the diagonal and above diagonal 
must be zeros

11

Matrix Representation
• In the F matrix for the first ordered set of 

equations, diagonal elements are all zeros, 
indicating absence of delay-free loops

• However there are nonzero entries above the
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• However, there are nonzero entries above the 
diagonal in the first and second rows of F
indicating that the set of equations are not in 
proper order for computation

12
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Matrix Representation
• The F matrix for the second ordered set of 

equations is
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which is seen to satisfy the computability 
condition
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Precedence Graph
• The precedence graph can be used to test the 

computability of a digital filter structure and to 
develop the proper ordering sequence for a set of 
equations describing a computable structure

• It is developed from the signal-flow graph
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It is developed from the signal flow graph
description of the digital filter structure in which 
independent and dependent signal variables are 
represented by nodes, and the multiplier and 
delay branches are represented by directed 
branches

14

Precedence Graph

• The directed branch has an attached symbol 
denoting the branch gain or transmittance

• For a multiplier branch, the branch gain is the 
lti li ffi i t l
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multiplier coefficient value
• For a delay branch, the branch gain is simply z-1
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Precedence Graph
• The signal-flow graph representation of
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is shown below

16

Precedence Graph
• A reduced signal-flow graph is then developed by 

removing the delay branches and all branches going 
out of the input node

• The reduced signal-flow graph of the example digital 
filter structure is shown below

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 11

17

Precedence Graph
• The remaining nodes in the reduced signal-

flow graph are grouped as follows:
• All nodes with only outgoing branches are 

d i t t l b l d {N }
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grouped into one set labeled {N1}
• Next, the set {N2} is formed containing 

nodes coming in only from one or more 
nodes in the set {N1} and have outgoing 
branches to the other nodes

18
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Precedence Graph
• Then, form the set {N3} containing nodes that 

have branches coming in only from one or 
more nodes in the sets {N1} and {N2}, and 
have outgoing branches to other nodes
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• Continue the process until there is a set of 
nodes {Nf} containing only incoming 
branches

• The rearranged signal-flow graph is called a 
precedence graph

19

Precedence Graph
• Since signal variables belonging to {N1} do 

not depend on the present values of other 
signal variables, these variables should be 

d fi
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computed first
• Next, signal variables belonging to {N2} can 

be computed since they depend on the 
present values of signal variables contained 
in {N1}that have already been computed

20

Precedence Graph
• This is followed by the computation of signal 

variables in {N3}, {N4}, etc.
• Finally, in the last step the signal variables in 

{Nf} are computed
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• This process of sequential computation 
ensures the development of a valid 
computational algorithm

• If there is no final set {Nf} containing only 
incoming branches, the digital filter structure 
is noncomputable

21

Precedence Graph

• For the example precedence graph pertinent
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• For the example precedence graph, pertinent 
groupings of node variables are:

]}[],[{}{ 531 nwnwN =

]}[{}{ 12 nwN =
]}[{}{ 23 nwN =

]}[],[{}{ 44 nynwN =
22

Precedence Graph
• Precedence graph redrawn according to the 

groupings based on ordering computations is shown 
below
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• Since the final node set {N4} has  only incoming 
branches, the structure is computable

23

Efficient Algorithms for 
the DFT Computation

• The discrete Fourier transform (DFT) is a widely used 
DSP algorithm

– It can be used to implement the linear convolution of two 
sequences, a key digital filtering operation

– It is also used in spectral analysis of signals
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It is also used in spectral analysis of signals
• Because of the widespread use of DFT, it is of interest 

to investigate efficient implementation methods of the 
DFT

• Various approaches are available:
– Fast Fourier Transform (FFT) algorithm was invented in 

1965 by J.W. Cooley and J.W. Tukey
24
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Computation of the DFT
• N-point DFT X[k] of a sequence x[n] of length N

• DFT gives N samples of the Fourier transform 
evaluated uniformly on the ω-axis at ω =2πk/N 0 < k <

∑
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evaluated uniformly on the ω-axis at ωk=2πk/N, 0 < k <
N-1

• DFT gives the samples of X(z) of the sequence x[n] on 
the unit circle

1,...,1,0,)(][ /2 −==
=

NkzXkX Nkjez π
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Computation of the DFT
Computational complexity of X[k]:

• Computation of each sample requires N complex 
multiplications and N-1 complex additions

• Computation of N samples require N2 complex 
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multiplications and N(N-1) complex additions

If N is large, the computation of the DFT requires 
N2 complex operations

(where a complex operation corresponds to one 
complex multiplication and one complex addition)

26

Decimation in Time FFT
• The sequence x[n] of length N is separated into two 

sequences of length N/2 composed of the even and 
odd indexed samples:
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Decimation in Time FFT
• The two DFTs are true (N/2)-point DFTs of the 

even- and odd-indexed parts of the original x[n]:
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• This basic idea can be applied again and again until 
only two-point DFTs are left, i.e., each (N/2)-point 
DFT is computed by combining two (N/4)-point DFTs, 
each of which is computed by combining two (N/8)-
point DFTs, etc.

][][][ kXWkXkX o
k
Ne +=
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Decimation-in-Time FFT 
Algorithm

• Block-diagram interpretation

k2 point2 −N
+][nx ][kX

][0 nx ][ 2/0 NkX ><
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[ ] ( ) [ ] ( )kXkXkXkX oNeN ⇔><⇔>< 2/12/0   and     Notice!

Decimation in Time FFT
][][][ kXWkXkX o

k
Ne +=
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Decimation in Time FFT

• Direct DFT computation:  N2 complex operations
where complex operation consists of one complex 
multiplication and one complex addition

][][][ kXWkXkX o
k

Ne +=
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p p
• FFT after one decomposition: 

2(N/2)2 + N complex operations, 
i.e. two N/2 –point DFTs and combining their results

• Example N = 8 = 23:
N2 = 64 and 
2(N/2)2 + N = 2*16 + 8 = 40

31

Decimation in Time FFT
• Next, the N/2-point DFTs are decomposed into two 

N/4-point DFTs resulting in altogether four N/4-point 
DFTs
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N/2-point 
DFTs are 
replaced by 
N/4-point 
DFTs 

32

Decimation-in-Time FFT Algorithm
• Block-diagram representation of the two-stage 

algorithm
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Decimation in Time FFT
• Flow graph of the second stage in decimation-in-

time FFT algorithm for N=8
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• # operations: NNNNNNNN
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Decimation in Time FFT
• Finally, the flow graph of the basic 2-point DFT is:

]1[]0[ xx +=
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Decimation in Time FFT
• Complete flow graph of the basic decimation-in-

time FFT algorithm for N=8
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First 
stage

Second 
stage

Third 
stage

36
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Decimation in Time FFT

N
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2log
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• The DFT consists of μ stages
• Each stage consists of N/2 basic computational 

modules, called “butterflies”
• Each butterfly contains two complex operations, i.e., 

two complex multiplications and two complex additions
operationsNN 2log

37

Butterfly Computation
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• Each butterfly can be 
realized with only one 
complex multiplication 
(and two additions)

( )
NNNN WWWW −==

][][][1 βαβ r
l

Nrr W Ψ−Ψ=Ψ +
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Decimation in Time FFT
• Flow graph of the modified DIT FFT algorithm
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• Complexity: (N/2)log2N complex multiplications
Nlog2N complex additions

39

Properties of the DIT FFT Algorithms
• In-place computation => Efficient memory utilization
• Bit-reversed ordering :

Input 
sequence x[m]
in normal

m n Input New location
000 000 x[0] Location 0
001 100 x[1] Location 4
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in normal 
order;
Location 
index n is 
obtained by 
reversing the 
order of bits in 
the index

00 00 [ ] ocat o
010 010 x[2] Location 2
011 110 x[3] Location 6
100 001 x[4] Location 1
101 101 x[5] Location 5
110 011 x[6] Location 3
111 111 x[7] Location 7
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Decimation in Frequency FFT
• The length-N sequence x[n] is decomposed sequentially 

into sets of smaller and smaller subsequences 
• The DFT is formed as a weighted combination of the 

DFTs of these subsequences
• Dividing first x[n] into two sequences of length N/2 :
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Dividing first x[n] into two sequences of length N/2 : 
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Decimation in Frequency FFT
• Using the identity
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• The DFT can be rewritten as
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• For k even:

• For k odd:
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Decimation in Frequency FFT
• The N/2-point sequences x0[n] and x1[n] are obtained as 

the sum and difference of the first and second half of 
the original sequence x[n] :

2
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• In the first stage of the decimation in frequency FFT, 
true N/2-point DFTs of the above sequences are 
computed

1
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Decimation in Frequency FFT
• The flow graph of the first stage of the decimation-in-

frequency FFT algorithm for N=8:
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Decimation in Frequency FFT
• Decomposing the N/2-point, N/4-point, …, DFTs into 

N/4-point, N/8-point, …, DFTs results in the 
decimation-in-frequency FFT algorithm
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• The complexity as well as other properties (in-place 
computation, indexing) are similar to the DIT FFT 

45

Comparison of DIT and DIF 
FFT Algorithms

• DIT algorithm: Input in bit-reversed order and output in 
normal order

• DIF algorithm: Input in normal order and output in order 
bit-reversed 
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• DIT and DIF algorithms are both in-place
• DIT and DIF algorithms can be obtained from each 

other using flow reversal in the structure
• The computational complexity is the same in DIT and 

DIF algorithms

46

Modifications of FFT Algorithms
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• The order of input and output data samples can be 
changed by interchanging rows x[4] and x[1] as well as 
rows x[6] and x[3]
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Modifications of FFT Algorithms
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• The input will be in normal order 
• The output will be in bit-reversed order 

48
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Modifications of FFT Algorithms
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• Rearrangement of the DIT FFT algorithm with both 
input and output in normal order 
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Modifications of FFT Algorithms
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• Rearrangement of the DIT FFT algorithm having the 
same geometry for each stage, thereby permitting 
sequential data accessing and storage 
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Inverse DFT Computation
• The sequence x[n] is related to 

the samples of X[k] through: ∑
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• Multiplying by N and taking 
the complex conjugate:

Th d i d IDFT
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is then obtained as:

• Realization 
via FFT:
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Inverse DFT Computation
• The basic DIT butterfly is:
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• The IFFT algorithm can be derived by inverting the 
basic butterfly computation

• Solving Ψr[α] and Ψr[β] using Ψr+1[α] and Ψr+1[β] yields:
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Inverse DFT Computation
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• The DIF IFFT butterfly is obtained by flow-reversal 
from the DIT FFT butterfly
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Inverse FFT Algorithm
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• The DIF IFFT algorithm has been obtained from the 
DIT FFT algorithm by flow-reversal, i.e., as transpose
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Fast DFT Algorithms Based on 
Index Mapping

• Usually, fast DFT algorithms are for sequences of 
length N that is a power-of-2 integer

• For the case when the length N of the sequence is a 
composite number that is expressible as a product of
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composite number that is expressible as a product of 
integers, it is possible to develop computationally fast 
DFT algorithms via index mapping where the sample 
indices n and k are mapped into two-dimensional 
indices 

• The algorithms compute the length-N DFT through a 
series of smaller length DFTs
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Fast DFT Algorithms Based on 
Index Mapping

• The Cooley-Tukey FFT algorithm can be generalized 
for composite N

• Even more efficient DFT algorithms can be obtained 
for N that is expressible as a product of prime
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for N that is expressible as a product of prime 
numbers

Prime factor FFT algorithms
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