
T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 1

DSP Algorithm
I l t ti 11 Implementation 11

Introduction

Two types of algorithms:
1) Filtering algorithms
2) Signal analysis algorithms

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

Basic implementation approaches:
1) Hardware
2) Firmware
3) Software

2

Matrix Representation of Digital
Filter Structures

• A digital filter structure can be described in the
time-domain by a set of equations relating the
output sequence to the input sequence and, in
some cases, one or more internally generated

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

sequences
• Consider

3

Matrix Representation of Digital
Filter Structures

• This structure, in the time-domain, is described by
the set of equations

][][][51 nwnxnw α−=
][][][δ

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

]1[][45 −= nwnw

][][][312 nwnwnw δ−=
]1[][23 −= nwnw

][][][234 nwnwnw ε+=

][][][51 nwnwny γβ +=

4

Matrix Representation of Digital
Filter Structures

• The equations cannot be implemented in the
order shown with each variable on the left side
computed before the variable below is computed

• For example, computation of w1[n] in the 1st step

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

p , p 1[] p
requires the knowledge of w5[n] which is
computed in the 5th step

• Likewise, computation of w2[n] in the 2nd step
requires the knowledge of w3[n] that is computed
in the 3rd step

5

Matrix Representation of Digital
Filter Structures

• This ordered set of equations is said to be
noncomputable

• Suppose we reorder these equations

]1[][= nwnw

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

]1[][23 −= nwnw
]1[][45 −= nwnw

][][][51 nwnxnw α−=
][][][312 nwnwnw δ−=

][][][51 nwnwny γβ +=
][][][234 nwnwnw ε+=

6

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 2

Matrix Representation of Digital
Filter Structures

• This ordered set of equations is computable
• In most practical applications, equations

describing a digital filter structure can be put into

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

a computable order by inspection
• A simple way to examine the computability of

equations describing a digital filter structure is by
writing the equations in a matrix form

7

Matrix Representation
• A matrix representation of the first ordered set of

equations is

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

ε

δ−
α−

+
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

=
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

][
][
][
][

000000
00010
000000
00001
00000

0
0
0
0

][

][
][
][
][

4
3
2
1

4
3
2
1

nw
nw
nw
nwnx

nw
nw
nw
nw

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣
⎥
⎥
⎦⎢

⎢
⎣ γβ⎥

⎥
⎦⎢

⎢
⎣⎥

⎥
⎥

⎦⎢
⎢
⎢

⎣][
][

0000
000000

0
0

][
][55

ny
nw

ny
nw

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−
−
−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

]1[
]1[
]1[
]1[
]1[
]1[

000000
001000
000000
000010
000000
000000

5

4

3

2

1

ny
nw
nw
nw
nw
nw

8

Matrix Representation
• In compact form

y[n] = x[n] + F y[n] + G y[n - 1]
where

[]Tnynwnwnwnwnwn][][][][][][][54321=y

[]T

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000
001000
000000
000010
000000
000000

G,

0000
000000
00010
000000
00001
00000

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

γβ

ε

δ
α

F

[]Tnxn 00000][][=x

9

Matrix Representation
• For the computation of present value of a

particular signal variable, nonzero entries in the
corresponding rows of matrices F and G
determine the variables whose present and
previous values are needed

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• If a diagonal element of F is nonzero, then
computation of present value of the corresponding
variable requires the knowledge of its present
value implying presence of a delay-free loop

10

Matrix Representation
• Any nonzero entries in the same row above the

main diagonal of F imply that the computation of
present value of the corresponding variable
requires present values of other variables not yet
computed, making the set of equations

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

p g q
noncomputable

• Hence, for computability all elements of F
matrix on the diagonal and above diagonal
must be zeros

11

Matrix Representation
• In the F matrix for the first ordered set of

equations, diagonal elements are all zeros,
indicating absence of delay-free loops

• However there are nonzero entries above the

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• However, there are nonzero entries above the
diagonal in the first and second rows of F
indicating that the set of equations are not in
proper order for computation

12

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 3

Matrix Representation
• The F matrix for the second ordered set of

equations is

⎥
⎥
⎤

⎢
⎢
⎡

00000
000000
000000

α

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

which is seen to satisfy the computability
condition

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣

−
−=

00001
0000
00010
00000

ε
βγ

δ
αF

13

Precedence Graph
• The precedence graph can be used to test the

computability of a digital filter structure and to
develop the proper ordering sequence for a set of
equations describing a computable structure

• It is developed from the signal-flow graph

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

It is developed from the signal flow graph
description of the digital filter structure in which
independent and dependent signal variables are
represented by nodes, and the multiplier and
delay branches are represented by directed
branches

14

Precedence Graph

• The directed branch has an attached symbol
denoting the branch gain or transmittance

• For a multiplier branch, the branch gain is the
lti li ffi i t l

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

multiplier coefficient value
• For a delay branch, the branch gain is simply z-1

15

Precedence Graph
• The signal-flow graph representation of

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

is shown below

16

Precedence Graph
• A reduced signal-flow graph is then developed by

removing the delay branches and all branches going
out of the input node

• The reduced signal-flow graph of the example digital
filter structure is shown below

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

17

Precedence Graph
• The remaining nodes in the reduced signal-

flow graph are grouped as follows:
• All nodes with only outgoing branches are

d i t t l b l d {N }

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

grouped into one set labeled {N1}
• Next, the set {N2} is formed containing

nodes coming in only from one or more
nodes in the set {N1} and have outgoing
branches to the other nodes

18

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 4

Precedence Graph
• Then, form the set {N3} containing nodes that

have branches coming in only from one or
more nodes in the sets {N1} and {N2}, and
have outgoing branches to other nodes

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• Continue the process until there is a set of
nodes {Nf} containing only incoming
branches

• The rearranged signal-flow graph is called a
precedence graph

19

Precedence Graph
• Since signal variables belonging to {N1} do

not depend on the present values of other
signal variables, these variables should be

d fi

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

computed first
• Next, signal variables belonging to {N2} can

be computed since they depend on the
present values of signal variables contained
in {N1}that have already been computed

20

Precedence Graph
• This is followed by the computation of signal

variables in {N3}, {N4}, etc.
• Finally, in the last step the signal variables in

{Nf} are computed

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• This process of sequential computation
ensures the development of a valid
computational algorithm

• If there is no final set {Nf} containing only
incoming branches, the digital filter structure
is noncomputable

21

Precedence Graph

• For the example precedence graph pertinent

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• For the example precedence graph, pertinent
groupings of node variables are:

]}[],[{}{ 531 nwnwN =

]}[{}{ 12 nwN =
]}[{}{ 23 nwN =

]}[],[{}{ 44 nynwN =
22

Precedence Graph
• Precedence graph redrawn according to the

groupings based on ordering computations is shown
below

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• Since the final node set {N4} has only incoming
branches, the structure is computable

23

Efficient Algorithms for
the DFT Computation

• The discrete Fourier transform (DFT) is a widely used
DSP algorithm

– It can be used to implement the linear convolution of two
sequences, a key digital filtering operation

– It is also used in spectral analysis of signals

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

It is also used in spectral analysis of signals
• Because of the widespread use of DFT, it is of interest

to investigate efficient implementation methods of the
DFT

• Various approaches are available:
– Fast Fourier Transform (FFT) algorithm was invented in

1965 by J.W. Cooley and J.W. Tukey
24

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 5

Computation of the DFT
• N-point DFT X[k] of a sequence x[n] of length N

• DFT gives N samples of the Fourier transform
evaluated uniformly on the ω-axis at ω =2πk/N 0 < k <

∑
−

=

−
= −===

1

0

/2
/2 1,...,1,0,][)(][

N

n

Nknj
Nk

j NkenxeXkX π
πω

ω

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

evaluated uniformly on the ω-axis at ωk=2πk/N, 0 < k <
N-1

• DFT gives the samples of X(z) of the sequence x[n] on
the unit circle

1,...,1,0,)(][/2 −==
=

NkzXkX Nkjez π

25

Computation of the DFT
Computational complexity of X[k]:

• Computation of each sample requires N complex
multiplications and N-1 complex additions

• Computation of N samples require N2 complex

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

multiplications and N(N-1) complex additions

If N is large, the computation of the DFT requires
N2 complex operations

(where a complex operation corresponds to one
complex multiplication and one complex addition)

26

Decimation in Time FFT
• The sequence x[n] of length N is separated into two

sequences of length N/2 composed of the even and
odd indexed samples:

∑ ∑ ∑
−

= = =

+==
1

0
][][][][

N

n evenn oddn

kn
N

kn
N

kn
N WnxWnxWnxkX

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

∑ ∑
−

=

−

=

+++=
1)2/(

0

1)2/(

0

)12(2]12[]2[
N

m

N

m

mk
N

mk
N WmxWmx

)2//(2)/2(22 NjNj
N eeW ππ −− ==• Notice that:

() ()∑ ∑
−

=

−

=

++=
1)2/(

0

1)2/(

0

22]12[]2[
N

m

N

m

km
N

k
N

km
N WmxWWmx

27

Decimation in Time FFT
• The two DFTs are true (N/2)-point DFTs of the

even- and odd-indexed parts of the original x[n]:

() ()∑ ∑
−

=

−

=

++=
1)2/(

0

1)2/(

0

22]12[]2[][
N

m

N

m

km
N

k
N

km
N WmxWWmxkX

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• This basic idea can be applied again and again until
only two-point DFTs are left, i.e., each (N/2)-point
DFT is computed by combining two (N/4)-point DFTs,
each of which is computed by combining two (N/8)-
point DFTs, etc.

][][][kXWkXkX o
k
Ne +=

28

Decimation-in-Time FFT
Algorithm

• Block-diagram interpretation

k2 point2 −N
+][nx][kX

][0 nx][2/0 NkX ><

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

k
NW

2

2

z
point2 −N

DFT

DFT +][nx][kX

][1 nx][2/1 NkX ><

k
NW

29

[] () [] ()kXkXkXkX oNeN ⇔><⇔>< 2/12/0 and Notice!

Decimation in Time FFT
][][][kXWkXkX o

k
Ne +=

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

30

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 6

Decimation in Time FFT

• Direct DFT computation: N2 complex operations
where complex operation consists of one complex
multiplication and one complex addition

][][][kXWkXkX o
k

Ne +=

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

p p
• FFT after one decomposition:

2(N/2)2 + N complex operations,
i.e. two N/2 –point DFTs and combining their results

• Example N = 8 = 23:
N2 = 64 and
2(N/2)2 + N = 2*16 + 8 = 40

31

Decimation in Time FFT
• Next, the N/2-point DFTs are decomposed into two

N/4-point DFTs resulting in altogether four N/4-point
DFTs

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

N/2-point
DFTs are
replaced by
N/4-point
DFTs

32

Decimation-in-Time FFT Algorithm
• Block-diagram representation of the two-stage

algorithm

k
NW

z

point4 −N

DFT +][nx][kX
][00 nx][4/00 NkX ><

k
NW 2/

+22
][0 nx

][2/0 NkX ><

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

2 point4 −N

DFT

][01 nx][4/01 NkX ><

k
NW2

2

z
point4 −N

DFT

point4 −N

DFT +
][10 nx

][11 nx][4/11 NkX ><

][4/10 NkX ><

k
NW 2/

z

2
][1 nx

][2/1 NkX ><

k
NW

Copyright © 2001, S. K. Mitra

33

Decimation in Time FFT
• Flow graph of the second stage in decimation-in-

time FFT algorithm for N=8

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• # operations: NNNNNNNN
++⎟

⎠
⎞

⎜
⎝
⎛=+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛⇒+⎟

⎠
⎞

⎜
⎝
⎛

222

4
4

24
22

2
2

34

Decimation in Time FFT
• Finally, the flow graph of the basic 2-point DFT is:

]1[]0[xx +=

]1[]0[xx −=

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

()() 12//22/ −=== −− ππ jNNjN
N eeW

() 12/
2 −== kN

N
k WW

]4[]0[][][2

1

0
20000 xWxWnxkX k

n

nk +==∑
=

35

Decimation in Time FFT
• Complete flow graph of the basic decimation-in-

time FFT algorithm for N=8

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

First
stage

Second
stage

Third
stage

36

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 7

Decimation in Time FFT

N
N

2log
,2

=
=

μ

μ

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• The DFT consists of μ stages
• Each stage consists of N/2 basic computational

modules, called “butterflies”
• Each butterfly contains two complex operations, i.e.,

two complex multiplications and two complex additions
operationsNN 2log

37

Butterfly Computation

][][][

][][][
)2/(

1

1

βαβ

βαα

r
Nl

Nrr

r
l

Nrr

W

W

Ψ+Ψ=Ψ

Ψ+Ψ=Ψ
+

+

+

() lNlNl WWWW ==+ 2/)2/(

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• Each butterfly can be
realized with only one
complex multiplication
(and two additions)

()
NNNN WWWW −==

][][][1 βαβ r
l

Nrr W Ψ−Ψ=Ψ +

38

Decimation in Time FFT
• Flow graph of the modified DIT FFT algorithm

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• Complexity: (N/2)log2N complex multiplications
Nlog2N complex additions

39

Properties of the DIT FFT Algorithms
• In-place computation => Efficient memory utilization
• Bit-reversed ordering :

Input
sequence x[m]
in normal

m n Input New location
000 000 x[0] Location 0
001 100 x[1] Location 4

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

in normal
order;
Location
index n is
obtained by
reversing the
order of bits in
the index

00 00 [] ocat o
010 010 x[2] Location 2
011 110 x[3] Location 6
100 001 x[4] Location 1
101 101 x[5] Location 5
110 011 x[6] Location 3
111 111 x[7] Location 7

40

Decimation in Frequency FFT
• The length-N sequence x[n] is decomposed sequentially

into sets of smaller and smaller subsequences
• The DFT is formed as a weighted combination of the

DFTs of these subsequences
• Dividing first x[n] into two sequences of length N/2 :

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

Dividing first x[n] into two sequences of length N/2 :

∑ ∑ ∑
−

=

−

=

−

=

+==
1

0

1)2/(

0

1

2/
][][][][

N

n

N

n

N

Nn

kn
N

kn
N

kn
N WnxWnxWnxkX

∑ ∑
−

=

−

=

+++=
1)2/(

0

1)2/(

0

))2/(()]2/([][
N

n

N

n

Nnk
N

kn
N WNnxWnx

∑ ∑
−

=

−

=

++=
1)2/(

0

1)2/(

0

)2/()]2/([][
N

n

N

n

kn
N

kN
N

kn
N WNnxWWnx

41

Decimation in Frequency FFT
• Using the identity

()[]∑
−

=

+−+=
1)2/(

0
)]2/([1][][

N

n

kn
N

k WNnxnxkX

() kkN
NW)1(2/ −=

• The DFT can be rewritten as

[])]2/([][]2[
1)2/(

2++∑
−

WNlX
N

nlF k

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

[]

[] 1
2

0)]2/([][

)]2/([][]2[

1)2/(

0
2/

0

2

−≤≤++=

++=

∑

∑
−

=

=

NlWNnxnx

WNnxnxlX

N

n

nl
N

n

nl
N

[]

[] 1
2

0)]2/([][

)]2/([][]12[

2/

1)2/(

0

1)2/(

0

)12(

−≤≤+−=

+−=+

∑

∑
−

=

−

=

+

NlWWNnxnx

WNnxnxlX

nl
N

N

n

n
N

N

n

ln
N

• For k even:

• For k odd:

42

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 8

Decimation in Frequency FFT
• The N/2-point sequences x0[n] and x1[n] are obtained as

the sum and difference of the first and second half of
the original sequence x[n] :

2
][][0

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ++= nNxnxnx

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• In the first stage of the decimation in frequency FFT,
true N/2-point DFTs of the above sequences are
computed

1
2

,...,1,0

2
][][1

−=

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−=

Nnfor

WnNxnxnx n
N

43

Decimation in Frequency FFT
• The flow graph of the first stage of the decimation-in-

frequency FFT algorithm for N=8:

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

44

Decimation in Frequency FFT
• Decomposing the N/2-point, N/4-point, …, DFTs into

N/4-point, N/8-point, …, DFTs results in the
decimation-in-frequency FFT algorithm

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• The complexity as well as other properties (in-place
computation, indexing) are similar to the DIT FFT

45

Comparison of DIT and DIF
FFT Algorithms

• DIT algorithm: Input in bit-reversed order and output in
normal order

• DIF algorithm: Input in normal order and output in order
bit-reversed

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• DIT and DIF algorithms are both in-place
• DIT and DIF algorithms can be obtained from each

other using flow reversal in the structure
• The computational complexity is the same in DIT and

DIF algorithms

46

Modifications of FFT Algorithms

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• The order of input and output data samples can be
changed by interchanging rows x[4] and x[1] as well as
rows x[6] and x[3]

47

Modifications of FFT Algorithms

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• The input will be in normal order
• The output will be in bit-reversed order

48

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 9

Modifications of FFT Algorithms

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• Rearrangement of the DIT FFT algorithm with both
input and output in normal order

49

Modifications of FFT Algorithms

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• Rearrangement of the DIT FFT algorithm having the
same geometry for each stage, thereby permitting
sequential data accessing and storage

50

Inverse DFT Computation
• The sequence x[n] is related to

the samples of X[k] through: ∑
−

=

−=
1

0

][1][
N

k

nk
NWkX

N
nx

∑
−

=

∗∗ =
1

0
][][

N

k

nk
NWkXnNx

*
⎫⎧

• Multiplying by N and taking
the complex conjugate:

Th d i d IDFT

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

1

0

*][1][
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
−

=

N

k

nk
NWkX

N
nx• The desired IDFT x[n]

is then obtained as:

• Realization
via FFT:

51

Inverse DFT Computation
• The basic DIT butterfly is:

][][][

][][][

1

1

βαβ

βαα

r
l

Nrr

r
l

Nrr

W

W

Ψ−Ψ=Ψ

Ψ+Ψ=Ψ

+

+

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• The IFFT algorithm can be derived by inverting the
basic butterfly computation

• Solving Ψr[α] and Ψr[β] using Ψr+1[α] and Ψr+1[β] yields:

][][][2
][][][2

11

11

βαβ

βαα

++

++

Ψ−Ψ=Ψ

Ψ+Ψ=Ψ

rrr
l

N

rrr

W

52

Inverse DFT Computation
[]

[]][][
2
1][

][][
2
1][

11

11

βαβ

βαα

++
−

++

Ψ−Ψ=Ψ

Ψ+Ψ=Ψ

rr
l

Nr

rrr

W

1
][αrΨ][1 α+Ψr

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• The DIF IFFT butterfly is obtained by flow-reversal
from the DIT FFT butterfly

1−

2

l
NW −

2
1

][βrΨ][1 β+Ψr

53

Inverse FFT Algorithm

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

• The DIF IFFT algorithm has been obtained from the
DIT FFT algorithm by flow-reversal, i.e., as transpose

54

T-61.3010 Digital Signal Processing and
Filtering

30.3.2009

Mitra 3rd Edition: Chapter 11;
© 2009 Olli Simula 10

Fast DFT Algorithms Based on
Index Mapping

• Usually, fast DFT algorithms are for sequences of
length N that is a power-of-2 integer

• For the case when the length N of the sequence is a
composite number that is expressible as a product of

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

composite number that is expressible as a product of
integers, it is possible to develop computationally fast
DFT algorithms via index mapping where the sample
indices n and k are mapped into two-dimensional
indices

• The algorithms compute the length-N DFT through a
series of smaller length DFTs

55

Fast DFT Algorithms Based on
Index Mapping

• The Cooley-Tukey FFT algorithm can be generalized
for composite N

• Even more efficient DFT algorithms can be obtained
for N that is expressible as a product of prime

© 2009 Olli Simula T-61.3010 Digital Signal Processing;
Mitra 3rd Edition: Chapter 11

for N that is expressible as a product of prime
numbers

Prime factor FFT algorithms

56

