

Basic Approaches to FIR Filter Design

- Basic approaches in designing FIR filters:
 - Truncating the Fourier series representation of the desired frequency response
 Window method
 - 2) Frequency sampling Length *N* FIR filter, *N* distinct equally spaced frequency samples of the desired frequency response constitute the *N*-point DFT of its impulse response
 - 3) Computer-aided design based on optimization

© 2007 Olli Simula T-61.3010 Digital Signal Processing; Mitra 3rd Edition: Chapter 10

Table 7.3 Properties of Some Fixed Window Functions.				
Type of window	Main lobe width Δ_{ML}	Relative side-lobe level A _{st}	Minimum stopband attenuation	Transition bandwidth $\Delta \omega$
Rectangular	$4\pi/(2M+1)$	13.3 dB	20.9 dB	$0.92\pi/M$
Hann	$8\pi/(2M+1)$	31.5 dB	43.9 dB	$3.11\pi/M$
Hamming	$8\pi/(2M+1)$	42.7 dB	54.5 dB	$3.32\pi/M$
Blackman	$12\pi/(2M+1)$	58.1 db	75.3 dB	5.56π/M

Mitra 3rd Edition: Chapter 10; © 2007 Olli Simula