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FIR Digital Filter Design
• For IIR filters, it is necessary to ensure that the 

derived transfer function G(z) is stable
• In the case of FIR filters, the stability is not an issue 

as the transfer function is a polynomial in z-1 and the 
stability is always guaranteed

• Unlike the IIR filter design problem, it is always 
possible to design FIR digital filters with exactly 
linear phase response
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FIR Digital Filter Design
• FIR filter design does not have any connection with 

the analog filters
• The design of FIR filters is therefore based on a 

direct approximation of the specified magnitude 
response, with the usually added requirement that 
the phase response be linear

• A causal FIR transfer function H(z) of length N+1 is

• The corresponding frequency response is
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FIR Digital Filter Design
• It has been shown that any finite duration sequence 

of length N+1 is completely characterized by N+1
samples of its discrete-time Fourier transform X(ejω)

• As a result, the design of an FIR filter of length  can 
be accomplished by finding either the impulse 
response sequence {h[n]} or N+1 samples of its 
frequency response   H(ejω)

• To ensure the linear-phase design, the symmetry 
condition of the impulse response must be satisfied
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Basic Approaches to 
FIR Filter Design

• Basic approaches in designing FIR filters:
1) Truncating the Fourier series representation of 

the desired frequency response
=>   Window method

2) Frequency sampling
Length N FIR filter, N distinct equally spaced 
frequency samples of the desired frequency 
response constitute the N-point DFT of its 
impulse response

3) Computer-aided design based on optimization
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Truncating the Impulse Response
• Let Hd(ejω) denote the desired frequency response 

function
• Hd(ejω) is periodic function of ω with period 2π and 

can be expressed as a Fourier series
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Truncating the Impulse Response
• Thus, given Hd(ejω) we can compute hd[n] and the 

corresponding Hd(z)
• Usually, Hd(ejω) is piecewise constant with ideal (or 

sharp) transitions between bands
=> {hd[n]} sequence is of infinite length and noncausal

• The objective is to find a finite-duration impulse 
response {ht[n]} of length 2M+1 whose DTFT Ht(ejω)
approximates the desired DTFT Hd(ejω)
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Truncating the Impulse Response
• Minimizing the integral squared error

• Using the Parseval’s relation  
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• Now, Φ is minimum when ht[n]= hd[n] for -M < n < M, 
i.e., the best finite-length approximation is obtained 
by truncating the impulse response
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Truncating the Impulse Response
• A causal impulse response h[n] can be obtained 

from ht[n] by delaying it with M samples

• h[n] has the same magnitude response as ht[n] but its 
phase response has a linear phase shift of ωM
radians

• The group delay of h[n] is M samples
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Impulse Response of Ideal Lowpass Filter
• The ideal lowpass filter has a zero-phase 

frequency response

• The corresponding impulse response coefficients
⎩
⎨
⎧

≤<
≤

=
πωω

ωωω

||,0
||,1

)(
c

cj
LP eH

∞<<∞−= n
n

nnh c
LP ,sin][

π
ω

• hLP[n] is doubly infinite, not absolutely summable, and 
therefore unrealizable
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Impulse Response of Ideal Lowpass Filter
• Truncating to range -M < n < M and delaying with M

samples yields the causal FIR lowpass filter
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• The truncation of the impulse response coefficients of 
the ideal filters exhibit an oscillatory behavior in the 
respective magnitude responses

• This is commonly referred to as the Gibbs 
phenomenon
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Gibbs Phenomenon
• Gibbs phenomenon - Oscillatory behavior in the 

magnitude responses of causal FIR filters obtained 
by truncating the impulse response coefficients of 
ideal filters
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Gibbs Phenomenon
• As can be seen, as the length of the lowpass filter 

is increased, the number of ripples in both 
passband and stopband increases, with a 
corresponding decrease in the ripple widths

• Height of the largest ripples remain the same 
independent of length

• Similar oscillatory behavior observed in the 
magnitude responses of the truncated versions of 
other types of ideal filters
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Explanation of the Gibbs Phenomenon
• Truncation of hd[n] can be expressed by windowing 

operation, i.e., by multiplying the hd[n] sequence 
with a finite-length sequence w[n]

][][][ nwnhnh dt =

where w[n] is a window function
• For a rectangular window
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• The Gibbs phenomenon can be explained in the 
frequency domain by the convolution theorem
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Explanation of the Gibbs Phenomenon
• Multiplication in the time domain corresponds to 

convolution in the frequency domain
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• Ht(ejω) is obtained by a periodic continuous 
convolution of the frequency response Hd(ejω) with 
the Fourier transform Ψ(ejω) of the window
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Illustration of the Windowing
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Illustration of the Windowing

• The main lobe is characterized by its width 4π/(2M+1) defined by 
the first zero crossings on both sides of ω=0

• As M increases the width of the main lobe decreases
• The area under each lobe remains constant, while the width of 

each lobe decreases with increasing M

• The frequency response 
Ψ(ejω) has a narrow main 
lobe centered at ω=0

• All the other ripples in the 
frequency response are 
called sidelobes
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Gibbs Phenomenon
• Rectangular window has an abrupt transition to 

zero outside the range -M ≤ n ≤ M , which results 
in Gibbs phenomenon in Ht(ejω)

• Gibbs phenomenon can be reduced either:
1. Using a window that tapers smoothly to zero 

at each end, or
2. Providing a smooth transition from passband

to stopband in the magnitude specifications
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Window Functions
• Symmetric window functions are used in FIR filter 

design in order to guarantee the linear phase 
response

• Smoother behavior at the cutoff frequency is obtained 
by using different cosine-type functions instead of the 
rectangular window

• Hamming (M)

• Hanning (N)

• Blackman (B)

• 30 dB/octave (J)
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Window Functions
• Various window functions:
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Window Functions
• Parameters to be compared:

1) Main lobe width
2) Relative sidelobe level (the largest sidelobe
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Fixed Window Functions
• Plots of magnitudes of the DTFTs of these 

windows for M = 25 are shown below:
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Lowpass Filter Design by Windowing
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Fixed Window Functions
• Magnitude spectrum of each window characterized 

by a main lobe centered at ω = 0 followed by a 
series of sidelobes with decreasing amplitudes

• Parameters predicting the performance of a window 
in filter design are:
– Main lobe width ΔML

given by the distance between zero crossings on both 
sides of main lobe

– Relative sidelobe level Asl
given by the difference in dB between amplitudes of 
largest sidelobe and main lobe
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Fixed Window Functions

• Observe

• Thus,
• Passband and stopband ripples are the same
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Fixed Window Functions
• Distance between the locations of the maximum 

passband deviation and minimum stopband value 
is approximately  ≈ΔML

• Width of transition band is

MLps Δ<−=Δ ωωω
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Fixed Window Functions
• To ensure a fast transition from passband to 

stopband, window should have a very small main 
lobe width

• To reduce the passband and stopband ripple δ , 
the area under the sidelobes should be very small

• Unfortunately, these two requirements are 
contradictory
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Fixed Window Functions
• In the case of rectangular, Hann, Hamming, and 

Blackman windows, the value of ripple  does not 
depend on filter length or cutoff frequency ωc, and 
is essentially constant

• In addition, the transition width is inversily
proportional to the window length, i.e.,

where c is a constant for most practical purposes
M
c≈Δω
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Fixed Window Functions

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 10

30

Fixed Window Functions
• Filter Design Steps:

(1)  Set

(2)  Choose window based on specified αs

(3)  Estimate M using

M
c≈Δω
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FIR Filter Design Example
• Lowpass filter of length 51 and 2/πω =c
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FIR Filter Design Example
• An increase in the main lobe width is associated 

with an increase in the width of the transition band
• A decrease in the sidelobe amplitude results in an 

increase in the stopband attenuation
• Several windows have been developed that 

provide control over the ripple δ by means of an 
additional parameter characterizing the window

Adjustable window functions
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Adjustable Window Functions
• Dolph-Chebyshev Window:

where
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Adjustable Window Functions
• Dolph-Chebyshev window can be designed with 

any specified relative sidelobe level while the 
main lobe width adjusted by choosing length 
appropriately

• Filter order is estimated using

where Δω is the normalized transition bandwidth, 
e.g, for a lowpass filter
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Adjustable Window Functions
• Gain response of a Dolph-Chebyshev window of 

length 51 and relative sidelobe level of 50 dB is 
shown below
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Adjustable Window Functions

Properties of Dolph-Chebyshev window:
• All sidelobes are of equal height
• Stopband approximation error of filters designed 

have essentially equiripple behavior
• For a given window length, it has the smallest 

main lobe width compared to other windows 
resulting in filters with the smallest transition band
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Adjustable Window Functions
• Kaiser Window :

where β is an adjustable parameter and is the 
modified zeroth-order Bessel function of the first 
kind:

• Note I0(u) > 0 for u > 0
• In practice
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Adjustable Window Functions
• Parameter β controls the minimum stopband

attenuation of the windowed filter response
• β is estimated using

• Filter order is estimated using

where Δω is the normalized transition bandwidth
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Impulse Responses of FIR Filters 
with a Smooth Transition

• First-order spline passband-to-stopband transition
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Impulse Responses of FIR Filters 
with a Smooth Transition

• Pth -order spline passband-to-stopband transition
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Lowpass FIR Filter Design 
Example

• Example
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Computer-Aided Design of 
FIR Filters

• Let |H(ejω)| denote the the magnitude response of  
H(z) designed to approximate the desired magnitude 
response D(z):

[ ])(|)(|)()( ωωω ω DeHP j −=E

• The design is based on minimizing the weighted 
error function E(z)

• Minimax criterion minimizes the peak absolute value 
of the weighted error (Parks-McClellan algorithm):
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Design of Equiripple
Linear-Phase FIR Filters

• The linear-phase FIR filter obtained by minimizing 
the peak absolute value of

is usually called the equiripple FIR filter
• After ε is minimized, the weighted error function 

E(ω) exhibits an equiripple behavior in the 
frequency range R
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Design of Equiripple
Linear-Phase FIR Filters

• The general form of frequency response of a causal 
linear-phase FIR filter of length 2M+1:

where the amplitude response H(ω) is a real 
function of ω

• Weighted error function is given by

where D(ω) is the desired amplitude response and 
W(ω) is a positive weighting function
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Design of Equiripple
Linear-Phase FIR Filters

• Parks-McClellan Algorithm
Based on iteratively adjusting the coefficients of  
H(ω) until the peak absolute value of E(ω) is 
minimized

• If peak absolute value of E(ω) in a band 
ωa ≤ w ≤ ωb is ε0, then the absolute error satisfies
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Design of Equiripple
Linear-Phase FIR Filters

• For filter design,

• H(ω) is required to satisfy the above desired 
response with a ripple of ±δp in the passband and 
a ripple of δs in the stopband
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Design of Equiripple
Linear-Phase FIR Filters

• Thus, weighting function can be chosen either as
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