T-61.5020 Statistical Natural Language Processing
Answers 7 — Word sense disabiguation
Version 1.0

1. Let’s start from Bayes’ theorem.

P(c|sy) P(sk)

P(sile) = =505

Now we are interested only in the order of probabilities, not the absolute values, so
we can forget the normalization term P(c):

P P
s = argmax—(dsk) (51)

st P(e)
= argmax P(c|si)P(sk)

Sk

In the equation the latter term is the prior for the word sense. It can be estimated for
example by calculating how many of the words in the training corpus have appeared
in the sense s;. For now we concentrate on the term P(c|sg).

Let’s choose the nearest 10 words as the context:
C= (Wo, W1, W2, W3, Wy, W5, We, W7, Wg, Wy)

The word we are studying would be in the middle, w, 5. Here, the order of the context
words makes a difference, and this is marked by using the parentheses. Using these
kind of feature vectors is in practice impossible, as two equal 10 word contexts are
not likely to be found in the training or test sets. We approximate the model by
assuming that the order is not significant (now using brackets):

¢ = { wo, Wy, Wy, W3, W4, W5, We, Wy, Ws, Wy }
Now we have:
P(clsg) = P({ wo, w1, wa, w3, wa, w5, we, wr, ws, wy }|s)
Let’s make the estimation easier by assuming that the words occur independently:

P({ wo, w1, we, ws, wy, ws, we, wr, Ws, Wy }|sk)
— P(wo|se) Plunsk) - .. P(ws|se)

P(wi|sk)

|
Azw

@
i
o

Finally, let’s write the expression open:

/

s = argmax P(c|sg)P(sk)

Sk

= argmax (P(Sk) H P(wi|5k)>

Sk i=0

9
= argmax (log P(sy) + Zlog P(wi|sk))
Sk

=0

In the last row the formula is written in logarithmic form. This can be done, because
taking the logarithm does not affect the order of the values.

None of the used approximations is totally correct, but the roughest error is probably
the one of independency of the context words. However, this is the way of getting
an easily feasible method.

. Let’s use the formula derived in the previous problem:

/

s = argmax P(c|sx)P(sk)

Sk

= argmax <P(sk) HP(wi|Sk)))

Sk i=0

where w; are the words that occurred in the context.

We need two estimates: probability P(w;|sy) that the word w; in the context oc-
curs with the sense si, and prior probability P(sk). As we have equal number of
occurrences for the senses sataa=rain and sataa=number, we can but set the prior
to 0.5.

Maximum likelihood (ML) estimation is applied in the course book. In our problem
we were asked to use priors, so let’s define a small prior that all words are of equal
probability to the probability P(w;|s;), and add it to the estimators with coefficient
A = 0.5. This can be thought as if every known word had already occurred 0.5 times
in both context types. A large A emphasises the meaning of the prior, and thus a
small evidence from the training set does not change it much.

C(wj, sg) + A

P(wj|sg) = Clsr) + NA

N is the number of known words, 85.

a) Let’s calculate the estimators needed in the first test sentence:

0.5 1
P(“koirasusitarha”|"sataa” =rain) = ————— = —
6+05-8 97
1
P ({3 ’1’77 2 t 77: : — _
(“vieraili” |”sataa” =rain) >
1
P 43 LV M) t 77: : — .
(“pari”|”sataa” =rain) o7
1
P(“ihminen”|”sataa” =rain) = 57

We see that for the first sense, all probability mass comes from the prior. For
the comparison number (i.e. unnormalized probability) we get

11 1 1
5. —.—_—._._=56-10""?
05 97 97 97 97 5610

The same calculations for the number sense:

0.5 1
P(“koirasusitarha”|”sataa” =number) = ———— = —
6+4+05-8 97
1
P(“vieraili”|”sataa” =number) = o
2405 5}
P 43 LV M) t 77: b — - 2
(“pari”|”sataa” =number) AT,
5}
P(“ithminen” |”sataa” =number) = o7
The comparison number is:
1 1 5 5
05— — — - —=14-10"7
97 97 97 97

So according to the model, the number sense of “sataa” is more probable.

b) As we saw before, we can leave out all the words that have not occurred in
the contexts of either word, as they do not affect the order of the comparison
numbers. Let’s use the tool that changes all disambigous numbers to string

“num”. The needed probabilities are:
P(“rantad” |”sataa” =rain)
P(“tai”|"sataa” =rain)
P(“lunta”|”sataa” =rain)
7 |77

P(“num”|”sataa” =rain)

P(“rantad” |”sataa” =number)
P(“tai”|”sataa” =number)
P(“lunta”|”sataa” =number)
7 | 2

P(“num”|”sataa” =number)

For the comparison numbers we get

. 3 3
sataa=rain 0.5- o
t b 0.5 L1
sataa=numbe 5. — ..
e o7 97

This time the word seems to mean raining.
c¢) For the third sentence,

P(“noin”|”’sataa” =rain) = —

P(((num” | 2

P(“noin”|”sataa” =number)

P(((num” | 7

For the comparison numbers we get

sataa=rain

sataa=number

05—

0.5 —=

sataa” =rain)

sataa” =number)

1.5 3
6+05-8 97
3
97
7
97
5
97

0.5 s
6+05-8 97
1
97
1
97
5
97

3
—=1.1-10"°
97
5
—=28-10"%
97
3
97
_ 5
97
~ o7
_ 5
97
— =85-107®
.—=20-1077

So it seems to be a number here.

d) For the last sentence the given training data does not change the probabilities
for any direction. And because the priors were equal, the model cannot make
any decision here.

3. Let’s find the dictionary definitions for the words in the tested sentence. Those
are compared to the dictionary definitions of two senses of the studied word. The
meaning that has more mutual words with the words in the dictionary definitions
of the other words (including the word itself) in the sentence is decided to be the
correct one.

In this case, from the definition of “ampuminen”, shooting, we find the words “har-
joitella” and “varusmies” that are also in the test sentence. The word “sarjatuli” is
found from the definition of “kivaari”, so three points for shooting.

From the definition of “ammuminen”, that is moo’ing, we find the word “niitylla”,
which is also in the test sentence. One point for moo’ing.

It seems that it is shooting for this one (3 > 1).

4. Let’s see how many hits the Google will give:

prices go up 111000
price goes up 88100

199100

prices slant 58
prices lean 2520
prices lurch 21
price slants 1
price leans 63
price lurches 114
2777

This example goes clearly for the sense “go up”.

What about the next example? If we do the translation and search using the given
word order, we will get no hits (excluding the hits for this exercise problem). So we
try to find documents where the words may occur in any order:

We see that the verb meanings of the words win here, altough the nouns would
probable be more correct. All searches are not even needed, because the first one
already produces more hits than all of the other senses together. In addition, most
of the hits returned by the first four searches were from dictionaries.

want shin hoof liver or snout 260

like shin hoof liver or snout 304
covet shin hoof liver or snout 219
desire shin hoof liver or snout 243

1026

want kick poke cost or suffer 43500

As the senses shin, hoof, liver and snout are much rarer than the verbs, they are
found much less. In this situation we should probably normalize the search in some
way. This example was harder than the first one also because this time the sentence
was not a common and fixed phrase.

. The problem is to estimate the probability of the sense s, when we know the context
C;.
Pl(c;|si)P(sy
Plesfey = — Flels P

>w=1 Plcilsi) P(sw)
Let’s use the Naive Bayes assumption presented in first problem, i.e. that the words
w; in the context do not depend on each other:

P(cilse) = J] P(wjlsk)

w;EC;

Initialization

Let’s initialize the parameters:

— Set all the words to be equally probable for both sources, and add some noise o.
Without the noise the algorithm will not converge, as all the events have equal
probabilities.

1
P(wjlsy) = 7 + 0o
Here J is the number of the known words.

— Set all senses to be of equal probability.

P(s) =

Here K is the number of the different senses.

Iteraatio 0 Iteraatio 0

Iteraatio 8 Iteraatio 8

Iteraatio 10 Iteraatio 10

Iteraatio 12 Iteraatio 12

Iteraatio Iteraatio 90

P(w,|so): Probability that the sense so pro- (b) P(so|c;): Probability that the context ¢; ap-
duces the word w; pears in the sense s

Figure 1: EM algorithm. The figure illustrates the convergence. Word from left to right: yksi, kaksi,
kolme, nelja, viisi, seitsemén, kahdeksan, ménty, leppd, haapa, koivu, kataja. Sentences are in the same
order as in the problem.
E-step
— Calculate the probability of each sense for all contexts:
[Lu;cc, P(wilse) P(s)
K

Ekz’:l HwJ-Ec,L- P(wj|8k/)P(Sk")

P(sg|ci) =

M-step
— Estimate the new word probabilities using the sentence probabilities estimated
in the E-step.
Eci:w]Eci P(Sk|cl)

K
Ek’:l ZCZ’Z’LUJ'ECZ' P<Sk/ ‘Cl)

Plwj|s) =

— Update the prior probabilities:

Zf:l P(sk|c;)
25:1 Zf:l P(scs)

The convergence of the algorithm, as E- and M-steps are iterated, is illustrated in
Figure 1. In this case the priors P(s;) we kept at % for first 15 iterations, which
improved the stability. We see that the algorithm can separate the numbers and the
trees. For sentences 8 and 9 the model overlearns and sets them only to one sense.

P(Sk) =

7

If the amount of training data would be larger, also these estimates might be more
feasible.

The same algorithm can be used to, e.g., separate a set of documents to their topics.
In that case, the contexts would be the full documents.

. Here we present one possible example solution step by step. The most important
points where we have made an arbitary decision that can increase inaccuracy and
could be as well done otherwise, are marked with talics.

1) The first step is to clean all the extra headlines, tags and markings away. Then
we want to separate the contexts. Let the context for each word to be the full
sentence where it occurs. Let’s change some two words, e.g. “sade” (rain) and
“komissio” (commission), to a common pseudoword. At the same time we can
collect the correct answers for evaluation purpose.

2) Let’s change all words of the contexts to a vector form. Here we could use
binary indicator vectors, but let’s approzimate those by setting a random 200-
dimensional vector to each word. If the vector has enough dimensions, it is
roughly orthogonal between all different words and the approximation is quite
good.

3) Let’s assume that the order of the context words does not matter. Let’s calculate
the context for each word by summing up the vectors of the words in its context
and diwviding the sum by the number of the vectors.

4) Let’s cluster the context vectors using the self-organizing map (SOM). The num-
ber by clusters can be decided experimentally. For a small number of clusters it
is easier to estimate the quality visually; a large number of clusters can give a
finer separation.

5) Last we need to evaluate the quality of the clustering. For unsupervised methods
this is sometimes hard, but in this case we can do the following: First we look
if words with different senses went nicely to different clusters using the correct
senses from the training set. This does not prove much, because if we chose as
many clusters as we have words in the training set, we would get automatically
the best result. Instead, we use the training samples to label each cluster. This
means that the cluster that has more items of some sense A (relative to the size
of the training set for both senses) alleges that all samples that go nearby have
surely the sense A. We try the test set against these senses and see how many
are correct.

Using the method described above we got the results in Table 1. Here we used a
map of size 9 x 5. If no correct answers are available, it is easier to evaluate the
result when we have small number of groups. For example, for words “sade” and
“komissio”, the results for a 2 x 3 map were 59% and 98%. In Figure 2 we have the
grouping of words “sade” and “komissio” for the 9 x 5 map.

Table 1: Results, 9 x 5 ma

p

wy Wy training test

w; correct % ‘ wq correct % | wy correct % ‘ wy correct %
Lappi Pariisi 63 95 61 53
sade komissio 66 93 66 92
Venaja | tammikuu 80 60 78 60
Halonen | TPS 62 74 63 70
leijjona | ydinvoima 70 5} 75 48

A="Sade",B="Komissio"

SOM 20-Mar-2003

Figure 2: 9 x 5 map

