
T-61.5020 Statistical Natural Language Processing
Answers 5 — Markov chains and Hidden Markov Models
Version 1.0

1. a) The Markov chain is drawn in figure 1.
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Figure 1: Weather as a Markov chain.

b) Let’s calculate the probability for state sequence S = (S3, S2, S1, S1, S1) when
we know that we start from state S2:

P (S | q0 = S2) = P (q1 = S3, q2 = S2, q3 = S1, q4 = S1, q5 = S1 | q0 = S2)

= P (q1 = S3 | q0 = S2) · P (q2 = S2 | q0 = S2, q1 = S3)

·P (q3 = S1 | q0 = S2, q1 = S3, q2 = S2)

·P (q4 = S1 | q0 = S2, q1 = S3, q2 = S2, q3 = S1)

·P (q5 = S1 | q0 = S2, q1 = S3, q2 = S2, q3 = S1, q4 = S1)

The probability in the first row is split several times using the formula P (A,B|C) =
P (A|C) · P (B|A,C).

Let’s apply the Markov assumption:

P (S | q0 = S2) = P (q1 = S3 | q0 = S2) · P (q2 = S2 | q1 = S3)

·P (q3 = S1 | q2 = S2) · P (q4 = S1 | q3 = S1)

·P (q5 = S1 | q4 = S1)

This corresponds to the coefficients aij :

P (S | q0 = S2) = a23 · a32 · a21 · a11 · a11

= 0.1 · 0.3 · 0.4 · 0.8 · 0.8

= 0.0077



c) The expectation value for how long we stay on a single state Si is

E(x) =

∫

xP (x)dx

=

∞
∑

n=1

nan
ii(1 − aii)

= (1 − aii)
aii

(1 − aii)2

=
aii

1 − aii

In the case of sunny days a11 = 0.8 so we get 0.8
0.2

= 4 days. This is the expectation
for staying on the state, so the answer for the number of successive sunny days on
avarage is 4 + 1 = 5.

2. a) In this problem we want to calculate the probability of state Si in the third day,
when we know that it was sunny on the day of the departure and the temperatures
on the following three days were X = (x1, x2, x3) = (7◦C, 3◦C,−8◦C). Let’s denote
all the model parameters as λ = {A, bi(x)}.

P (q3 = Si | q0 = S1, x1, x2, x3, λ)

=
P (q3 = Si, x1, x2, x3 | q0 = S1, λ)

P (x1, x2, x3 | q0 = S1, λ)

=
P (q3 = Si, x1, x2, x3 | q0 = S1, λ)

∑3
j=1 P (q3 = Sj , x1, x2, x3 | q0 = S1, λ)

Above we used first the formula P (A|B,C) = P (A,B|C)
P (B|C)

. Then we noted that P (A) =
∑

B P (A,B). Denominator and numerator of the equation have similar terms. Let’s
lighten the notes using the function αt(i):

P (q3 = Si | q0 = S1, x1, x2, x3, λ) =
α3(i)

∑3
j=1 α3(j)

Now we will examine how this forward probability αt(i) can be calculated.

Initial day

We know that it was sunny on the day of the departure,
so we can set

α0(1) = 1

α0(2) = 0

α0(3) = 0
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algorithm.
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First day

It was sunny on the day before and today it is 7◦C.
Let’s get the transition probabilities from sunny state
and multiply them by the emission probabilities where
x1 > 5◦C.

α1(1) = a11 · b1(x ≥ 5◦C) = 0.8 · 0.15 = 0.120

α1(2) = a12 · b2(x ≥ 5◦C) = 0.15 · 0.2 = 0.030

α1(3) = a13 · b3(x ≥ 5◦C) = 0.05 · 0.3 = 0.015
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Second day

Now we do not know the real weather of the previous
day. We sum up all the possibilities weighted by their
probabilities:

α2(1) =

3
∑

j=1

α1(j) · aj1b1(−5◦C ≤ x ≤ 5◦C)

= (α1(1) · a11 + α1(2) · a21 + α1(3) · a31)

·b1(−5◦C ≤ x ≤ 5◦C)

= (0.8·0.12+0.4·0.03+0.3·0.015) · 0.05

= 5.625 · 10−3

α2(2) =

3
∑

j=1

α1(j) · aj2b2(−5◦C ≤ x ≤ 5◦C)

= (0.15·0.12+0.5·0.03+0.3·0.015) · 0.7

= 2.625 · 10−2

α2(3) =

3
∑

j=1

α1(j) · aj3b3(−5◦C ≤ x ≤ 5◦C)

= (0.05·0.12+0.1·0.03+0.4·0.015) · 0.4

= 6.000 · 10−4
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Third day

Let’s continue as before, now x3 < −5◦C.

α3(1) =
3

∑

j=1

α2(j) · aj1b1(−5◦C ≤ x ≤ 5◦C)

= (α2(1) · a11 + α2(2) · a21 + α2(2) · a31)

·b1(x ≤ −5◦C)

= (0.8 · 5.625 · 10−3 + 0.4 · 2.625 · 10−2

+0.3 · 6.000 · 10−4) · 0.8

= 1.2144 · 10−2

α3(2) =

3
∑

j=1

α2(j) · aj2b2(−5◦C ≤ x ≤ 5◦C)

= (0.15 · 5.625 · 10−3 +0.5 · 2.625 · 10−2

+0.3 · 6.000 · 10−4) · 0.1

= 1.4149 · 10−3

α3(3) =
3

∑

j=1

α2(j) · aj3b3(−5◦C ≤ x ≤ 5◦C)

= (0.05 · 5.625 · 10−3 + 0.1 · 2.652 · 10−2

+0.4 · 6.000 · 10−4) · 0.3

= 9.4387 · 10−4
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The forward grid after

the last day

Now we have calculated all the neccessary quantities. Let’s insert them to the equa-
tion:

P (q3 = S1 | q0 = S1, x1, x2, x3, λ) =
α3(1)

∑3
i=j α3(j)

=
1.2144 · 10−2

1.2144 · 10−2 + 1.4149 · 10−3 + 9.4387 · 10−4

= 0.8874

So the probability that it is sunny on the day of the return is 89 %. In a similar
manner we can calculate the probability of a cloudy (10 %) and a rainy (1 %) day.

b) This time we try to guess the most probable sequence of weather. In can be
done using the Viterbi algorithm, which is very similar to the forward algorithm.
The difference is that in each state we now calculate the probability over the best
sequence instead of summing up all the sequences.
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Viterbi: Initial day

Let’s initializate the grid as before.

δ0(1) = 1

δ0(2) = 0

δ0(3) = 0

0
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δ(3)

0
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Initialization of the grid

for the Viterbi algorithm.

Viterbi: First day

The best path to every state comes from sunny state, as
we know the weather, and therefore all the other states
have a probability of zero. Let’s write down for each
state where the most probable path comes from (ψ1(i)).
Calculations are still same as in the forward algorithm.

δ1(1) = a11 · b1(x ≥ 5◦C) = 0.8 · 0.15 = 0.120

δ1(2) = a12 · b2(x ≥ 5◦C) = 0.15 · 0.2 = 0.030

δ1(3) = a13 · b3(x ≥ 5◦C) = 0.05 · 0.3 = 0.015

ψ1(1) = 1

ψ1(2) = 1

ψ1(3) = 1
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Viterbi search after the

first day

Viterbi: Second day

Let’s choose the most probable path coming to the each
state:

δ2(1) = max
j

(δ1(j) · aj1b1(−5◦C ≤ x ≤ 5◦C))

= max (δ1(1) · a11, δ1(2) · a21, δ1(3) · a31)

·b1(−5◦C ≤ x ≤ 5◦C)

= max (0.8 · 0.12, 0.4 · 0.03, 0.3 · 0.015)

·0.05

= max
(

9.6 · 10−2, 1.2 · 10−2, 4.5 · 10−3
)

·0.05

= 9.6 · 10−2 · 0.05 = 4.8 · 10−3

ψ2(1) = argmax
j

(δ1(j) · aj1b1(−5◦C≤x≤5◦C))

= 1
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δ2(2) = max
j

(δ1(j) · aj2b2(−5◦C ≤ x ≤ 5◦C))

= max (0.15 · 0.12, 0.5 · 0.03, 0.3 · 0.015)

·0.7

= max
(

1.8 · 10−2, 1.5 · 10−2, 4.5 · 10−3
)

·0.7

= 1.8 · 10−2 · 0.7 = 1.26 · 10−2

ψ2(2) = argmax
j

(δ1(j) · aj2b2(−5◦C≤x≤5◦C))

= 1

δ2(3) = max
j

(δ1(j) · aj3b3(−5◦C ≤ x ≤ 5◦C))

= max (0.05 · 0.12, 0.1 · 0.03, 0.4 · 0.015)

·0.4

= max
(

6.0 · 10−3, 3.0 · 10−3, 6.0 · 10−3
)

·0.4

= 6.0 · 10−3 · 0.4 = 2.4 · 10−3

ψ2(3) = argmax
j

(δ1(j) · aj3b2(−5◦C≤x≤5◦C))

= 3
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Grid after second day

When counting ψ2(3) we note that the probabilities were same from the states 1 and
3. We can make an arbitrary choice between them. Here the choice was 3.

Viterbi: Third day

Let’s choose the most probable path coming to each
state:

δ3(1) = max
j

(δ2(j) · aj1b1(x ≤ −5◦C))

= max (δ2(1) · a11, δ2(2) · a21, δ2(3) · a31)

·b1(x ≤ −5◦C)

= max(0.8 · 4.8 · 10−3, 0.4 · 1.26 · 10−2,

0.3 · 2.4 · 10−3) · 0.8

= max
(

3.8 · 10−3, 5.0 · 10−3, 7.2 · 10−4
)

·0.8

= 4.0 · 10−3

ψ3(1) = argmax
j

(δ2(j) · aj1b1(x ≤ 5◦C)) = 2
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δ3(2) = max
j

(δ2(j) · aj2b2(x ≤ −5◦C))

= max(0.15 · 4.8 · 10−3, 0.5 · 1.26 · 10−2,

0.3 · 2.4 · 10−3) · 0.1

= max
(

7.2 · 10−4, 6.3 · 10−3, 7.2 · 10−4
)

·0.1

= 6.3 · 10−3 · 0.1 = 6.3 · 10−4

ψ2(2) = argmax
j

(δ1(j) · aj2b2(x≤−5◦C)) = 2

δ3(3) = max
j

(δ2(j) · aj3b3(x ≤ −5◦C))

= max(0.05 · 4.8 · 10−3, 0.1 · 1.26 · 10−2,

0.4 · 2.4 · 10−3) · 0.3

= max
(

2.4 · 10−4, 1.3 · 10−3, 7.2 · 10−4
)

·0.3

= 2.16 · 10−4

ψ3(3) = argmax
j

(δ1(j) · aj3b2(x≤−5◦C)) = 2
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last day

From the final grid we can get the most probable sequence of states: Let’s start from
the most probable end state and follow the arrows backwards to the beginning. It
seems that it has been sunny, cloudy and again sunny.

Conclusion: The differece between forward and Viterbi algorithms

The forward algorithm gives the correct probability for each state sequence. However,
it cannot be used to get the most probable path from the grid.

In Viterbi search, the state probabilities are just approximations. However, it can
correctly find the best path.

Computationally both of the algorithms are equally burdensome. Summing in the
forward algorithm has just changed to maximization in the Viterbi algorithm.
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