T-61.5020 Statistical Natural Language Processing

Answers 3 — Information retrieval Version 1.1

1. Let's modify the given table to a format that suits better the first calculations.

engine 1	relevant	non-relevant	engine 2	relevant	non-relevant
returned	4 tp	6 <i>fp</i>	returned	6 tp	4 fp
not returned	2 fn	9988 tn	not returned	0 fn	9990 tn

Table 1: Modified tables. (tp = True Positives, fp = False Positives, fn = False Negatives, fp = True Negatives)

In the following table there are the definitions of the five first measures and the results for applying them.

measure	definition	engine 1	engine 2	Ratio of
precision	$rac{tp}{tp+fp}$	$\frac{4}{4+6} = 40\%$	$\frac{6}{6+4} = 60\%$	relevants in returned
recall	$\frac{tp}{tp+fn}$	$\frac{4}{4+2} = 67\%$	$\frac{6}{6+0} = 100\%$	relevants found
fallout	$\frac{fp}{fp+tn}$	$\frac{6}{6+9988} = 0.06\%$	$\frac{4}{4+9990} = 0.04\%$	returned non-relevants
accuracy	$\frac{tp+tn}{N}$	$\frac{4+9988}{10000} = 99.92\%$	$\frac{6+9990}{10000} = 99.96\%$	correctly classified
error	$\frac{fp+fn}{N}$	$\frac{6+2}{10000} = 0.08\%$	$\frac{4}{10000} = 0.04\%$	incorrectly classified

Table 2: Results. Note that only the precision and recall values are in a region that is easy to understand.

F-measure is defined using both the precision and recall:

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

where P stands for precision and R recall. α controls the weighting between them. If we choose $\alpha = 0.5$,

$$F = \frac{2PR}{P+R}$$

For the first engine $F_1 = 50\%$ and for the second $F_2 = 75\%$.

When calculating uninterpolated average precision, we go through the list of returned documents, and whenever a relevant document is seen, we calculate the precision over the documents processed so far. Relevants that were not returned are taken into account with a zero precision. Then we take an average over the precisions.

$$UAP_{1} = \frac{1}{6} \left(\frac{1}{1} + \frac{2}{2} + \frac{3}{4} + \frac{4}{10} + 0 + 0 \right) = 53\%$$

$$UAP_{2} = \frac{1}{6} \left(\frac{1}{1} + \frac{2}{2} + \frac{3}{3} + \frac{4}{5} + \frac{5}{7} + \frac{6}{9} \right) = 86\%$$

2. Word frequences in the documents were given: $df_1 = 21$ and $df_2 = 500$. The total number of the documents is N = 10000. Inverser Document Frequency is defined as $IDF_i = \log_2 \frac{N}{df_i}$, so for the word w_1 it is $\log_2 \frac{10000}{21} = 8.9$ and for the word $w_2 \log_2 \frac{10000}{500} = 4.3$. Thus the first word got almost twice the weight of the second word. The idea in Residual Inverse Document Frequency (RIDF) is that we can model the occurrences of a word using a Poisson distribution. This works well for words that are evenly distributed in a corpus. Contentually important words usually occur in groups inside the documents that discuss the corresponding matter, and therefore Poisson distribution gives an incorrect estimation for their frequencies. In RIDF we measure the difference between IDF and Poisson distributions. The more difference we have, the more does the word tell about the document. (Note: There are many errors in this section of the course book's first edition.)

Actual calculations are the following: On average, word w_i occurs $\lambda = \frac{cf_i}{N}$ times in a document. The probability for that in a certain document word w_1 occur k times is obtained from the Poisson distribution:

$$Poisson(k;\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}$$

RIDF is defined as

$$RIDF = IDF - \log_2\left(\frac{1}{1 - Poisson(0, \lambda)}\right)$$

I.e., we take from the Poisson distribution the probability that the word occurs at least once in the document $(1 - Poisson(0, \lambda))$. IDF, on the other hand, was based on the observed value of that probability $(\frac{df_i}{N})$.

Simplifying the expression of RIDF:

$$\begin{aligned} \text{RIDF} &= \text{IDF} - \log_2 \left(\frac{1}{1 - Poisson(0, \lambda)} \right) \\ &= \log_2 \frac{N}{df_i} + \log_2(1 - Poisson(0, \lambda)) \\ &= \log_2 \frac{N(1 - e^{-\frac{cf_i}{N}(\frac{\lambda}{0!})^0})}{df_i} \\ &= \log_2 \frac{N(1 - e^{-\frac{cf_i}{N}})}{df_i} \end{aligned}$$

	d_1	d_2	d_3	d_4	d_5	d_6	d_7
Schumacher	0	1	0	1	0	0	0
rata	1	1	1	0	0	1	0
formula	1	0	1	1	0	0	0
kolari	0	0	1	1	0	0	0
galaksi	0	0	0	0	1	1	0
tähti	0	0	1	0	0	1	1
planeetta	0	0	0	0	0	1	1
meteoriitti	0	0	0	0	1	0	0

 Table 3: Document-word matrix

Assigning the values:

RIDF₁ =
$$\log_2 \frac{10000(1 - e^{-\frac{101}{10000}})}{21} = 2.3$$

RIDF₂ = $\log_2 \frac{10000(1 - e^{-\frac{700}{10000}})}{500} = 0.44$

We see that RIDF weighted the word w_1 2.5 times more than IDF. Thus both methods estimate that w_1 is a more relevant search term than w_2 .

3. The asked document-word matrix is presented in table 3. In Singular Value Decomposition (SVD) we decompose the matrix A as:

$$A = USV^T$$

Here U is an orthogonal $m \times n$ matrix, S is a diagonal $n \times n$ matrix and V an orthogonal $n \times n$ matrix. The matrices are presented in tables 4, 5, and 6.

We reduce the inner dimension to two by taking only the two largest eigenvalues from S and leaving the rest of the dimensions out from the matrices U and V. Now the similarity of the documents can be compared using the matrix $B = SV^T$. If B's columns are scaled to unity, it is easy to calculate correlations between rows. This kind of a scaled matrix is in table 7. (Similarity of words could be compared from W = US.) From the correlation matrix (table 8) we see that the Formula 1 and astronomy related articles correlate much more inwardly than crosswise. Documents d_5 and d_7 that were totally uncorrelated before, are now clearly correlated. We have projected the data to two-dimensional space, and similar articles have ended up near each other in that reduced dimension.

	dim_1	dim_2	dim_3	dim_4	dim_5	dim_6	dim_7	dim_8
Schumacher	-0.200	-0.336	0.290	0.115	0.823	0.007	0.121	-0.243
rata	-0.590	0.007	0.184	0.686	-0.232	-0.183	0.025	0.243
formula	-0.435	-0.464	-0.040	-0.225	-0.333	0.609	0.045	-0.243
kolari	-0.317	-0.361	-0.108	-0.494	0.071	-0.438	-0.285	0.485
galaksi	-0.200	0.400	0.602	-0.242	-0.053	0.028	-0.563	-0.243
tähti	-0.464	0.376	-0.408	-0.213	0.034	-0.345	0.275	-0.485
planeetta	-0.257	0.476	-0.234	-0.070	0.363	0.530	-0.007	0.485
meteoriitti	-0.026	0.116	0.534	-0.336	-0.132	-0.048	0.713	0.243

Table 4: U

2 0 4 0	0	0	0	0	0	0
2.949	0	0	0	0	0	0
0	2.107	0	0	0	0	0
0	0	1.459	0	0	0	0
0	0	0	1.311	0	0	0
0	0	0	0	1.183	0	0
0	0	0	0	0	0.638	0
0	0	0	0	0	0	0.460
0	0	0	0	0	0	0

Table 5: S

	d_1	d_2	d_3	d_4	d_5	d_6	d_7
		-0.217					
dim_2	-0.268	-0.156	0.325	0.611	0.499	-0.275	0.316
dim_3	-0.613	-0.210	-0.255	-0.187	-0.390	-0.559	0.130
dim_4	-0.323	-0.551	0.098	-0.460	0.474	0.279	-0.261
dim_5	-0.077	0.245	0.779	-0.440	-0.157	-0.030	0.328
dim_6	-0.512	0.598	0.099	0.124	0.094	0.048	-0.587
dim_7	-0.244	0.404	-0.440	-0.216	0.335	0.290	0.583

Table 6: V

	d_1						
dim_1	-0.913 -0.407	-0.924	-0.971	-0.634	-0.400	-0.768	-0.646
dim_2	-0.407	-0.384	-0.238	-0.773	0.917	0.640	0.764

Table 7: Scaled B

	d_1	d_2	d_3	d_4	d_5	d_6	d_7
d_1	1.000						
d_2	1.000	1.000					
d_3	0.984	0.988	1.000				
	0.894						
d_5	-0.008	0.018	0.171	-0.455	1.000		
d_6	0.441	0.464	0.594	-0.008	0.894	1.000	
d_7	0.279	0.304	0.446	-0.180	0.958	0.985	1.000

Table 8: Correlations of documents