T-61.5020 Statistical Natural Language Processing

Answers 2 - Similarity measures
Version 1.0

1. Euclidean distance (L_{2} norm)

Euclidean distance between the vectors $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & \ldots x_{n}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{llll}y_{1} & y_{2} & \ldots & y_{n}\end{array}\right]$ is defined as

$$
\begin{equation*}
\operatorname{Euc}(\mathbf{x}, \mathbf{y})=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \tag{1}
\end{equation*}
$$

The distance between Tintus and Koskisen korvalääke is calculated as an example:

$$
\begin{aligned}
\operatorname{Euc}(T i, K o) & =\sqrt{(0-10)^{2}+(0-6)^{2}+(5-2)^{2}+(1-1)^{2}+(4-0)^{2}} \\
& =12.7 \\
\operatorname{Euc}(K o, T e) & =9.9 \\
\operatorname{Euc}(T i, T e) & =5.1
\end{aligned}
$$

L_{1} norm

The distance according to the L_{1} norm is defined as

$$
\begin{equation*}
L_{1}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \tag{2}
\end{equation*}
$$

So the distances are:

$$
\begin{aligned}
L_{1}(T i, K o) & =|0-10|+|0-6|+|5-2|+|1-1|+|4-0| \\
& =23.0 \\
L_{1}(K o, T e) & =17.0 \\
L_{1}(T i, T e) & =10.0
\end{aligned}
$$

Cosine

The cosine measure is a little different case. It can be defined as

$$
\begin{equation*}
\cos (\mathbf{x}, \mathbf{y})=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}} \tag{3}
\end{equation*}
$$

	fresh	acidic	sweet	fruity	soft
Tintus	0	0	0.50	0.10	0.40
Korvalääke	0.53	0.32	0.11	0.05	0
Termiitti	0.07	0.29	0.21	0.21	0.21

Table 1: ML estimates for the word probabilities

Let's calculate the distances:

$$
\begin{aligned}
\cos (T i, K o) & =\frac{0 \cdot 10+0 \cdot 6+5 \cdot 2+1 \cdot 1+4 \cdot 0}{\sqrt{5^{2}+1+4^{2}} \sqrt{10^{2}+6^{2}+2^{2}+1^{2}}} \\
& =0.14 \\
\cos (K o, T e) & =0.55 \\
\cos (T i, T e) & =0.70
\end{aligned}
$$

Here a larger value corresponds to a larger similarity, so the distances are in the same order as before.

Information radius

For the information radius we formulate the maximum likelihood estimates for that the next word is generated by a source l_{i} (Tintus, Korvalääke, Termiitti) is w_{i}. This is done by dividing the each element of the table by the sum of its row (Table 1). Last we define that

$$
0 \log \frac{0}{x}=0, \forall x \in \Re .
$$

The information radius is given by the formula

$$
\begin{aligned}
\operatorname{Irad}(p, q) & =D\left(p \| \frac{p+q}{2}\right)+D\left(q \| \frac{p+q}{2}\right) \\
& =\sum_{i} p_{i} \log \frac{p_{i}}{\frac{p_{i}+q_{i}}{2}}+\sum_{i} q_{i} \log \frac{q_{i}}{\frac{p_{i}+q_{i}}{2}}
\end{aligned}
$$

Let's calculate it for the given sources:

$$
\begin{aligned}
\operatorname{Irad}(T i, K o)= & 0 \cdot \log \frac{2 \cdot 0}{0.53}+0 \cdot \log \frac{2 \cdot 0}{0.32}+0.50 \cdot \log \frac{2 \cdot 0.50}{0.61}+0.10 \cdot \log \frac{2 \cdot 0.10}{0.15} \\
& +0.40 \cdot \log \frac{2 \cdot 0.40}{0.40}+0.53 \cdot \log \frac{2 \cdot 0.53}{0.53}+0.32 \cdot \log \frac{2 \cdot 0.32}{0.32} \\
& +0.11 \cdot \log \frac{2 \cdot 0.11}{0.61}+0.05 \cdot \log \frac{2 \cdot 0.05}{0.15}+0 \cdot \log \frac{2 \cdot 0}{0.40} \\
= & 1.5 \\
\operatorname{Irad}(K o, T e)= & 0.6 \\
\operatorname{Irad}(T i, T e)= & 0.5
\end{aligned}
$$

We see that all the measures set the medicines to a similar order: Tintus and Temiitti are the most similar ones, Tintus and Korvalääke are the most different.

Kullback-Leibler divergence

From the definition of the KL divergence we can directly see some of its problems:

$$
D(p \| q)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}
$$

First, the KL divergence is not symmetric, so we should each time decide which one of the two drugs is the reference drug p. The second problem is that if the compared distribution has a zero probability in some dimension where the reference distribution has a non-zero probability, the divergence goes to infinity.

2. Kullback-Leibler divergence

The definition of the Kullback-Leibler divergence was

$$
D(p \| q)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}
$$

Let's find a distribution that minimizes the KL divergence. We add a Lagrange coefficient λ_{1} to make sure that p shall be a correct probability distribution (i.e. $\left.\sum_{i} p_{i}=1\right)$ and λ_{2} for q.

$$
E=D(p \| q)+\lambda\left(1-\sum_{i} p_{i}\right)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}+\lambda_{1}\left(1-\sum_{i} p_{i}\right)+\lambda_{2}\left(1-\sum_{i} q_{i}\right)
$$

Let's set the partial derivative with respect to the p_{i} to zero:

$$
\begin{aligned}
\frac{\partial E}{\partial p_{i}} & =p_{i} \cdot \frac{1}{\frac{p_{i}}{q_{i}}} \cdot \frac{1}{q_{i}}+\log \frac{p_{i}}{q_{i}}-\lambda_{1} \\
& =\log p_{i}-\log q_{i}+1-\lambda_{1}=0
\end{aligned}
$$

Now we solve p_{i} :

$$
p_{i}=q_{i} \cdot e^{\lambda_{1}-1}
$$

Let's calculate the partial derivative with respect to λ_{1} :

$$
\begin{aligned}
\frac{\partial E}{\partial \lambda_{1}} & =1-\sum_{i} p_{i}=0 \\
\Rightarrow \sum_{i} p_{i} & =1
\end{aligned}
$$

A similar condition is obtained for q_{i} when derivating with respect to λ_{2} (which was exactly the purpose of the multipliers). The last condition is obtained by derivating with respect to q_{i} :

$$
\begin{aligned}
\frac{\partial E}{\partial q_{i}} & =p_{i} \cdot \frac{1}{\frac{p_{i}}{q_{i}}} \cdot p_{i} \cdot\left(-\frac{1}{q_{i}^{2}}\right)-\lambda_{2}=-\frac{p_{i}}{q_{i}}-\lambda_{2}=0 \\
\Leftrightarrow p_{i} & =-\lambda_{2} q_{i}
\end{aligned}
$$

Because both q and p should sum up to one, we get:

$$
\begin{aligned}
1 & =\sum_{i} p_{i}=\sum_{i}\left(-\lambda_{2} q_{i}\right)=-\lambda_{2} \sum_{i} q_{i}=-\lambda_{2} \\
\Rightarrow p_{i} & =-\lambda_{2} q_{i}=q_{i}
\end{aligned}
$$

Considering the second order derivates we can make sure that this is really the minimum and not maximum:

$$
\begin{aligned}
\frac{\partial^{2} E}{\partial p_{i} \partial p_{i}} & =\frac{1}{p_{i}}>0 \\
\frac{\partial^{2} E}{\partial q_{i} \partial q_{i}} & =\frac{p_{i}}{q_{i}^{2}}>0 \\
\frac{\partial^{2} E}{\partial p_{i} \partial p_{j}}=\frac{\partial^{2} E}{\partial q_{i} \partial q_{j}} & =0
\end{aligned}
$$

If we set $q_{i}=p_{i}$ to the formula of KL divergence we get the divergence of zero. So $K L$ divergence is zero if and only if the distributions q and p are equal, otherwise greater than zero.

Information radius

The definition of the information radius is

$$
\operatorname{IRad}(p, q)=D\left(p \| \frac{p+q}{2}\right)+D\left(q \| \frac{p+q}{2}\right)
$$

We just calculated that the KL divergence is zero if the distributions are same, and larger than zero if not. In the case of the information radius, the zero divergence is also obtained if and only if $q_{i}=p_{i}$:

$$
\operatorname{IRad}(p, q)=\sum_{i} p_{i} \log \frac{p_{i}}{\frac{p_{i}+p_{i}}{2}}+\sum_{i} p_{i} \log \frac{p_{i}}{\frac{p_{i}+p_{i}}{2}}=0
$$

So the condition is the same as before.

L_{1} norm

Definition of the L_{1} norm is

$$
L_{1}(p, q)=\sum_{i}\left|p_{i}-q_{i}\right|
$$

Clearly the smallest value is zero, which comes only if $q_{i}=p_{i}$.
To conclude, we notice that all the measures give zero distance with the same condition: The distributions must be equal.

3. Kullback-Leibler -divergence

Let's look at the definition once more:

$$
D(p \| q)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}
$$

We can see that if $q_{i}=0$ when $p_{i} \neq 0$ we get the distance ∞.

Information radius

Let's write the definition of information radius open:

$$
\operatorname{IRad}(p, q)=D\left(p \| \frac{p+q}{2}\right)+D\left(q \| \frac{p+q}{2}\right)=\sum_{i} p_{i} \log \frac{2 p_{i}}{p_{i}+q_{i}}+\sum_{i} q_{i} \log \frac{2 q_{i}}{p_{i}+q_{i}}
$$

With intuition we might guess that a suitable distribution would be one where the distributions are in completely separate areas:

$$
\begin{aligned}
& \text { if } p_{i}>0 \Rightarrow q_{i}=0 \\
& \text { if } q_{i}>0 \Rightarrow p_{i}=0
\end{aligned}
$$

Let's insert these to the equation:

$$
\begin{aligned}
\operatorname{IRad}(p, q) & =\sum_{i} p_{i} \log \frac{2 p_{i}}{p_{i}}+\sum_{i} q_{i} \log \frac{2 q_{i}}{q_{i}} \\
& =\log 2 \sum_{i} p_{i}+\log 2 \sum_{i} q_{i}=2 \log 2
\end{aligned}
$$

We knew that this was the largest distance. To prove that it really is, and that the guessed conditions are required to get it, would be somewhat more diffcult.

L_{1} norm

The definition for the L_{1} norm was

$$
L_{1}(p, q)=\sum_{i}\left|p_{i}-q_{i}\right|
$$

With intuition we could say that the answer is the same as with information radius, but let's try to prove it more mathematically. We separate the elementary events I to two sets. In set $j \in I$ were have the cases where $p_{j}>q_{j}$ and in set $k \in I$ the cases where $q_{k}>p_{k}$. Using these,

$$
\begin{aligned}
L_{1}(p, q) & =\sum_{j}\left(p_{j}-q_{j}\right)+\sum_{k}\left(q_{k}-p_{k}\right) \\
& =\sum_{j} p_{j}-\sum_{k} p_{k}+\sum_{k} q_{k}-\sum_{j} q_{j}
\end{aligned}
$$

As the probabilities are positive and sum up to one, the largest distance is get when

$$
\begin{aligned}
& \text { if } p_{i}>0 \Rightarrow q_{i}=0 \\
& \text { if } q_{i}>0 \Rightarrow p_{i}=0
\end{aligned}
$$

so the distance is

$$
L_{1}(p, q)=\sum_{i} p_{i}+\sum_{i} q_{i}=2
$$

Conclusions

For both information radius and L_{1} norm, the same conditions for the distributions are required to get the largest distance. The KL divergence, however, goes to infinity already when the distribution q is zero somewhere where the reference distribution p is not.

