
T-61.5020 Statistical Natural Language Processing
Answers 10 — Speech recognition and language model evaluation
Version 1.1

1. Again, we will use the Viterbi algorithm to find the most probable state sequence
from a Hidden Markov Model. There are three differences to the weather model
presented in the earlier exercise: The emissions are now done in the state transitions,
the model has some null transitions, and the final state is determined.

a) Let’s initialize the grid such that the initial state is S1. We will collect only
non-zero probability values.

δ0(1) = 1

The first observation

The initial state can lead only the second or fourth state, so let’s calculate those
probabilities:

δ1(2) = a12b12(o1) = 0.5 · 10−1 = 5 · 10−2

ψ1(2) = 1

δ1(4) = a14b14(o1) = 0.5 · 10−3 = 5 · 10−4

ψ1(4) = 1

The second observation

From the second state we can go to the third state, and from the fourth state
to the fifth state, so there is no choices to be made for those steps.

δ2(3) = δ1(2)a23b23(o2) = 5 · 10−2 · 1.0 · 10−1 = 5 · 10−3

ψ2(3) = 2

δ2(5) = δ1(4)a45b45(o2) = 5 · 10−4 · 1.0 · 10−4 = 5 · 10−8

ψ2(5) = 4

However, we should notice that the states S3 and S5 can lead to the initial state
with a null transition. Thus after the second observation we can go also to S1:

δ2(1) = max(δ2(3)a31 , δ2(5)a51)

= max(5 · 10−3 · 0.9 , 5 · 10−8 · 1.0)

= 4.5 · 10−3

ψ2(1) = 3

The third observation

Now the possible transitions are from S1 to S2 or S4, and from S3 to S4.

δ3(2) = δ2(1)a12b12(o3) = 4.5 · 10−3 · 0.5 · 10−3 = 2.25 · 10−6

ψ3(2) = 1

δ3(4) = max(δ2(1)a14b14(o3) , δ2(3)a34b34(o3))

= max(4.5 · 10−3 · 0.5 · 10−2 , 5 · 10−3 · 0.1 · 10−1)

= 5 · 10−5

ψ3(4) = 3

The fourth observation

Again, from S2 we can go only to S3 and from S4 to S5.

δ4(3) = δ3(2)a23b23(o4) = 2.25 · 10−6 · 1.0 · 10−3 = 2.25 · 10−9

ψ4(3) = 2

δ4(5) = δ3(4)a45b45(o4) = 5 · 10−5 · 1.0 · 10−1 = 5 · 10−6

ψ4(5) = 4

Final state

In the end we should arrive to the final state S1. With a null transition:

δ4(1) = max(δ4(3)a31 , δ4(5)a51)

= max(2.25 · 10−9 · 0.9 , 5 · 10−6 · 1.0)

= 5 · 10−6

ψ4(1) = 5

The calculated grid is in the Figure 1. By following the arrows from the end to
the beginning, we obtain the most probable sequence S1 → S2 → S3 → S4 →
S5 → S1. This corresponds to the word “jaon”.

2

δ(2)

δ(1)

δ(3)

δ(4)

δ(5)

t=1 t=2 t=3 t=4

1

0

0

0

0

10−4

4.5

2.25

5

2.25

5

5

10

10

10

10

5 10

10−3

−3

−6

−6

−6

−5

10−9

5 10−8

−210

5

5

t=0

Figure 1: The Viterbi grid after the calculations.

3

b) In this case we must take into account the probabilities given by the language
model. The probability values δ are calculated conditioned by the different
choice of the word wj : δt(i, wj). The probability for the word is added to the
calculations at each point where the word is selected. When we arrive to the
initial state again, the selections determine which of the bigram probabilities is
used. After that, they can be forgotten, as the language model does not use
longer contexts.

Let’s initialize the grid as before. We do not select the word yet.

δ0(1,_) = 1

The first observation

The initial state leads to S2 and S4. The second state can start either the word
“ja” or “jaon”, so both must be taken into account.

δ1(2, ja) = P (ja)a12b12(o1) = 10−2 · 0.5 · 10−1 = 5 · 10−4

ψ1(2, ja) = 1

δ1(2, jaon) = P (jaon)a12b12(o1) = 10−5 · 0.5 · 10−1 = 5 · 10−7

ψ1(2, jaon) = 1

δ1(4, on) = P (on)a14b14(o1) = 10−2 · 0.5 · 10−3 = 5 · 10−6

ψ1(4, on) = 1

The second observation

The second state leads only to the third state and the fourth state to the fifth
state. In addition, the first state can be reached with a null transition. This is
of course possible only for the words that end at this point.

δ2(3, ja) = δ1(2, ja)a23b23(o2) = 5 · 10−4 · 1.0 · 10−1 = 5 · 10−5

ψ2(3, ja) = 2

δ2(3, jaon) = δ1(2, jaon)a23b23(o2) = 5 · 10−7 · 1.0 · 10−1 = 5 · 10−8

ψ2(3, jaon) = 2

δ2(5, on) = δ1(4, on)a45b45(o2) = 5 · 10−6 · 1.0 · 10−4 = 5 · 10−10

ψ2(5, on) = 4

δ2(1, ja) = δ2(3, ja)a31 = 5 · 10−5 · 0.9 = 4.5 · 10−5

ψ2(1, ja) = 3

δ2(1, on) = δ2(5, on)a51 = 5 · 10−10 · 1.0 = 5 · 10−10

ψ2(1, on) = 5

The third observation

4

Possible transitions are from S1 to S2 or S4, and from S3 to S4. The transitions
from S1 start new words, so the probabilities from the language model are taken
into account. In addition, as we had two possible words in state S1, we can now
select the more probable one.

δ3(2, ja) = max(P (ja|ja)δ2(1, ja) , P (ja|on)δ2(1, on)) · a12b12(o3)

= max(10−4 · 4.5 · 10−5 , 10−2 · 5 · 10−10) · 0.5 · 10−1

= 2.25 · 10−10

ψ3(2, ja) = 1

δ3(4, on) = max(P (on|ja)δ2(1, ja) , P (on|on)δ2(1, on)) · a14b14(o3)

= max(10−2 · 4.5 · 10−5 , 10−4 · 5 · 10−10) · 0.5 · 10−2

= 2.25 · 10−9

ψ3(4, on) = 1

δ3(4, jaon) = δ2(3, jaon)a34b34(o3)

= 5 · 10−8 · 1.0 · 10−1 = 5 · 10−10

ψ3(4, jaon) = 3

The fourth observation

From the second state we can only to the third state, and from the fourth state
only to the fifth state. Also the first state can be reached with a null transition.

δ4(3, ja) = δ3(2, ja)a23b23(o4) = 2.25 · 10−10 · 1.0 · 10−3 = 2.25 · 10−13

ψ4(3, ja) = 2

δ4(5, on) = δ3(4, on)a45b45(o4) = 2.25 · 10−9 · 1.0 · 10−1 = 2.25 · 10−10

ψ4(5, on) = 4

δ4(5, jaon) = δ3(4, jaon)a45b45(o4) = 5 · 10−10 · 1.0 · 10−1 = 5 · 10−11

ψ4(5, jaon) = 4

δ4(1, ja) = δ4(3, ja)a31 = 0.9 · 2.25 · 10−10 = 2.025 · 10−13

ψ4(1, ja) = 3

δ4(1, on) = δ4(5, on)a51 = 1.0 · 2.25 · 10−9 = 2.25 · 10−10

ψ4(1, on) = 5

δ4(1, jaon) = δ4(5, jaon)a51 = 1.0 · 5 · 10−10 = 5 · 10−11

ψ4(1, jaon) = 5

The grid after the final step is in Figure 2. The different word choices are drawn
with different arrows. The most probable of the three paths that have led to
the final state is δ4(1, on). When we follow the arrows backwards in time, we
get the most probable sequence S1 → S2 → S3 → S1 → S4 → S5 → S1. This
corresponds to the two-word sequence “ja on”.

5

δ(2)

δ(1)

δ(3)

δ(4)

δ(5)

t=1 t=2 t=3 t=4t=0

ja
on
jaon

2.25 10−10

−1110

10−13

5

2.025

Figure 2: The grid after reaching the final state.

6

2. The models build with the units from segmentation B have about three times as
many unit types as models build from segmentation A. The tokens in A are smaller
on average, and thus the evaluation data includes more of them. The tokenwise
cross-entropies cannot be compared directly because of this. For example, if the text
was segmented to individual letters, the tokens would be quite easy to predict on
average, but the likelihood of the whole data is not likely to be very high.

Instead of direct comparison, we can first normalize the entropies so that they are
based on words. The cross-entropy of test data D could be calculated as

HM(D) =
1

n

n∑

i=1

logPM(Di) =
1

n
logPM(D). (1)

If we divide the logarithm of data likelihood PM(D) by the number of words in the
data, WD, instead of the number of tokens in the data, n, we get the normalized,
word-based entropy:

HW
M (D) =

1

WD

logPM(D). (2)

As we know HM(D), n and WD, we can calculate the normalized entropy as follows:

HW
M (D) =

n

WD

HM(D). (3)

Let’s convert the given entropies to word-based estimates:

HW
A1

(D) =
344 960

100 000
· 4.54 = 15.66

HW
A2

(D) =
344 960

100 000
· 4.39 = 15.14

HW
A3

(D) =
344 960

100 000
· 4.31 = 14.87

HW
B1

(D) =
301 271

100 000
· 5.19 = 15.64

HW
B2

(D) =
301 271

100 000
· 5.02 = 15.12

HW
B3

(D) =
301 271

100 000
· 4.93 = 14.85

It seems that the entropies with the segmentation B are somewhat better in models
of all magnitudes. However, as the differences are small, and models B have larger
models, the exact sizes must be taken into account. The comparison is easy if we
draw plot the results to size–entropy coordinates; see Figure 3.

The break-line that connects the points of the segmentation A is nearer to the left-
down corner that the lines of connecting B, which means better accuracies for the
models of same size.

7

4 6 8 10 12

x 10
5

14.8

15

15.2

15.4

15.6

15.8

Size (n−grams)

E
nt

ro
py

 (
bi

ts
)

Cross−entropy vs. size

A
B

Figure 3: Normalized cross-entropies.

Next we will take a look at the recognition results. The error rates have been calcu-
lated per words, so there is no need for normalization. The word error rates (WER)
are plotted against model sizes in Figure 4. We see that the results are mixed for
the small and large models: Segmentation A works better for the small models, but
B seems to outperform it after the size grows over 900 000 n-grams.

4 6 8 10 12

x 10
5

13

14

15

16

17

18

Size (n−grams)

W
or

d
er

ro
r

ra
te

 (
%

)

WER vs. size

A
B

Figure 4: Word error rates.

It seems to be quite clear that the models based on segmentation A are better than
those based on B, if the model size is small. For larger models, the results are very
close. In addition, the performance is not known for models smaller than half million
or larger than one million n-grams. To get more reliable results, we would need more
measurement points and test the statistical significance between the values (e.g. with
Wilcoxon signed-rank test).

8

