
T-61.5020 Statistical Natural Language Processing
Answers 1 — Basics of probability calculus
Version 1.0

1. First of the given probabilities, P (word is abbreviation | word has three letters) =
0.8, tells that is we see a word of three letters, the probability that it is an abbreviation
is 0.8, and 0.2 for something else. Next one, P (word has three letters) = 0.0003,
tells that the probability for a random word being exactly three letters long is 0.0003.

The probability for a random word being three letter abbreviation is get by product
of the given probabilities. First we look how probable it is for a word to be three
letters long, then how probable it is to be abbreviation when being three letters:

P (word is abbreviation, word has three letters)

= P (word has three letters) · P (word is abbreviation | word has three letters)

= 0.0003 ∗ 0.8 = 0.00024

2. Let’s mark the stem “se” by C1 ja stem “siittää” by C2. The result of the recognition
is T and correct stem O. Now we can write the given probabilities:

P (T = C1|O = C1) = 0.95

P (T = C1|O = C2) = 0.05

P (T = C2|O = C1) = 0.05

P (T = C2|O = C2) = 0.95

P (O = C1) = 0.999

P (O = C2) = 0.001

To answer the given question, we need the Bayes’ theorem:

P (Bj|A) =
P (A|Bj)P (Bj)

P (A)
=

P (A|Bj)P (Bj)∑
i P (A|Bi)P (Bi)

Using the theorem, the probability that the program is right, when it tells that the
stem is “siittää”, is:

P (O = C2|T = C2)

=
P (T =C2|O=C2)P (O=C2)

P (T =C2|O=C2)P (O=C2) + P (T =C2|O=C1)P (O=C1)

=
0.95 · 0.001

0.95 · 0.001 + 0.05 ∗ 0.999
≈ 0.019

3. To generate a one letter word, the given random language should generate two sym-
bols, i.e. word boundary after something else. The probability for this is

P (s = t1) =
1

30
·

1

30

1

and there are 29 words of this kind.

Respectively, the probability of a word of two letters is

P (s = t1, t1) =
1

30
·

1

30
·

1

30

There are 292 words of this kind. For three letter words,

P (s = 3) =
1

30
·

1

30
·

1

30
·

1

30

and the number of words is 293.

As the probability of the word is directly proportional to its expected incidence in
the test data, we can make a table similar to the table 1.3 in the book by directly
calculating probabilities. As words of same length have equal probability, and they
cannot be sorted by frequency, we count the k value for only one word per length.
The results are presented in table 1 and drawn to Figure 1.

Table 1: Zipf constant. Left column tells the ranking number in a list sorted by frequency, middle column

how many times we would expect the word to occur in a text of 1000000 words, and the right column is

the product of those two.

r f k
15 1111 16111
450 37.04 16648

13064 1.235 16129
378900 0.0412 15593
1098800 0.00137 15073

318660000 0.0000457 14570

10
0

10
5

10
10

10
15

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4 Zipf:in laki satunnaiselle kielelle

r

k

Figure 1: k in function of r

We can see that the even for a random language, k remains quite constant for a large
range of r. Zipf’s discovery may not seem so extraordinary in this light.

2

4. In the solution it is assumed that the following formulas are known:

E(x) =

∫
∞

−∞

xp(x)dx

V ar(x) =

∫
∞

−∞

(x − E(x))2p(x)dx

a) Let’s calculate the expected value for one toss of the dice. Each side of the dice
is of equal probability, so the probability of each event is p(x) = 1

101
.

Expectation value:

E(x) =

100∑
i=0

ip(x = i)

=
1

101
(1 + 2 + 3 + 4 + · · ·+ 100)

=
1

101
((1 + 100) + (2 + 99) + (3 + 98) + · · ·+ (50 + 51))

=
50 ∗ 101

101
= 50

Variance:

V ar(x) =

100∑
i=0

(i − E(x))2p(x = i)

=
1

101
(502 + 492 + · · ·+ 1 + 0 + 1 + 22 + · · · + 492 + 502)

=
2

101
(1 + 22 + · · ·+ 492 + 502)

Now we can use formula

1 + 22 + 32 + 42 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

to get the result:

V ar(x) =
2

101

50 · 51 · 101

6
= 850

b) To solve the problem, we will need a couple of basic formulas for probability
calculation, which are derived here. (However, the derivations are not essential
for the course.)

Expectation value of the sum of independent random variables

3

E(x + y) =

∫
(x + y)p(x, y)dxdy

=

∫
(x + y)p(x)p(y)dxdy

=

∫
xp(x)p(y)dxdy +

∫
yp(x)p(y)dxdy

=

∫
p(y)dy

∫
xp(x)dx +

∫
p(x)dx

∫
yp(y)dy

= 1 ·

∫
xp(x)dx + 1 ·

∫
yp(y)dy

= E(x) + E(y)

Variance of a random variable multiplied by a constant

V ar(ax) =

∫
(ax − E(ax))2p(x)dx

=

∫
(ax − aE(x))2p(x)dx

= a2

∫
(x − E(x))2p(x)

= a2V ar(x)

Variance of the sum of independent random variables

V ar(x + y) =

∫ ∫
(x + y − E(x + y))2p(x, y)dxdy

=

∫ ∫
(x + y)2p(x, y)dxdy − 2

∫ ∫
(x + y)E(x + y)p(x, y)dxdy

+

∫ ∫
E(x + y)2p(x, y)dxdy

= E((x + y)2) − 2E(x + y)2 + E(x + y)2

= E((x + y)2) − E(x + y)2

= E(x2 + 2xy + y2) − (E(x) + E(y))2

= E(x2) + E(2xy) + E(y2) − E(x)2 − 2E(x)E(y) − E(y)2

= E(x2) − E(x)2 + E(y2) − E(y)2

+

∫ ∫
2xyp(x)p(y)dxdy − 2

∫
xp(x)dx

∫
yp(y)dy

= E(x2) − E(x)2 + E(y2) − E(y)2

= V ar(x) + V ar(y)

4

Now we have all the needed formulas. We want to calculate expectation value
for the sum (x+ y)/2, where x is the random variable corresponding to the first
throw and y to the second.

E(
x + y

2
) =

1

2
(E(x) + E(y)) =

1

2
(50 + 50) = 50

We notice that the expectation value does not change. What about variance,
then?

V ar(
x + y

2
) = V ar(

x

2
) + V ar(

y

2
) =

1

4
V ar(x) +

1

4
V ar(y)

=
1

4
(850 + 850) = 425

c) We throw ten dices. Using the learned solutions:

E(
x1 + x2 + · · · + x10

10
) =

1

10
· 10 · 50 = 50

V ar(
x1 + x2 + · · ·+ x10

10
) =

1

100
· 10 · 850 = 85

d) As we throw even more dices, the distribution will sharpen around the expecta-
tion value. At the inifinite, expectation value is 50 and variance 0, which means
that we will always get a result of 50.

The expectation value and variance do not tell everything about the distribution. In
figure 2 there are results for varying number of dice tosses simulated using Matlab.
The shape of the distribution moves nearer to the normal (gaussian) distribution
as the number of dices grow. This is why natural phenomena are often modelled
using normal distribution: If many small random events affect to the result, it will
be normal distributed. This is also is good excuse for transforming calculations to
easier forms.

More formal proof for that the distribution will approach normal is found from http://
mathworld.wolfram.com/CentralLimitTheorem.html

5

20 40 60 80
0

5000

10000
1 noppaa

20 40 60 80
0

5000

10000

15000

2 noppaa

20 40 60 80
0

0.5

1

1.5

2

x 10
4 3 noppaa

20 40 60 80
0

1

2

x 10
4 5 noppaa

20 40 60 80
0

1

2

3

4

x 10
4 10 noppaa

20 40 60 80
0

5

10

x 10
4 100 noppaa

Figure 2: Throwing dices. The throw was simulated million times for each curve.

6

5. The goal is to minimize the total code length

L(x, θ) = L(θ) + L(x | θ).

Let’s denote the set of parameters that minimize the previous expression as θ̂:

θ̂ = arg min
θ

L(x, θ) = arg min
θ

{L(θ) + L(x | θ)}.

Now we substitute the code lengths for their optimal values L(θ) = − log p(θ) and
L(x | θ) = − log p(x | θ):

θ̂ = arg min
θ

{− log p(θ) − log p(x | θ)}

The logarithmic terms can be combined using the product rule of logarithms:

θ̂ = arg min
θ

{− log(p(θ)p(x | θ))}

As logarithm is a monotonically increasing function, and thus its complement mono-
tonically decreasing, the minimum can be obtained by maximixing the product of
the two probabilities:

θ̂ = arg max
θ

{p(θ)p(x | θ)}

Finally, from Bayes’ theorem we get p(x, θ) = p(x)p(θ | x) = p(θ)p(x | θ):

θ̂ = arg max
θ

{p(x)p(θ | x)}

Probability p(x) does not depend on the parameters, so we can leave it out. Thus
we see that the same goal is obtained by maximizing the posterior distribution of the
model:

θ̂ = arg max
θ

p(θ | x)

7

