
5.5 Regularization Theory

• In regularization techniques, a suitable auxiliary constraint is applied
to an ill-posed problem to make it well-posed.

• The constraint includes some prior information about the solution.

• A typical regularization constraint: smoothness condition.

• Assume that we know N pairs of input vectors xi and corresponding
desired responses di, i = 1, . . . , N .

• The desired responses are here one-dimensional for simplicity (not a
limitation)

• Let the approximating function be F (x) = F (x,w).
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• Regularization theory (Tikhonov, 1963) involves basically two terms:

1. Standard Error Term.

Es(F ) =
1

2

N∑
i=1

(di − yi)
2 =

1

2

N∑
i=1

[di − F (xi)]
2

- This measures the error between the desired response di and
the actual response yi for the training set i = 1, . . . , N .

2. Regularizing Term.

Ec(F ) =
1

2
‖ DF ‖2

- Here D is a linear differential operator.

- It contains prior information about the form of the solution
(input-output mapping F (x)).

- The selection of the stabilizer D is problem-dependent.

• The problem can be treated by representing a continuous function as
a vector in a function space.
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• The function space is here the L2 space consisting of all real-valued
functions f(x) for which ‖ f(x) ‖2 is integrable.

• We shall not go into mathematical details in this course.

• The quantity to be minimized in regularization theory is

E(F ) = Es(F ) + λEc(F )

=
1

2

N∑
i=1

[di − F (xi)]
2 +

1

2
λ ‖ DF ‖2

• Here λ is a positive real number called the regularization parameter.

• The minimizer of the Tikhonov functional E(F ) is the solution Fλ(x)
of the regularization problem.

• If λ → 0, the problem is unconstrained, and its solution is completely
determined by the training examples.

• On the other hand, if λ →∞, the solution depends completely on the
smoothness condition.
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• In this case, the training examples are regarded unreliable.

• In practice, the regularization parameter λ has a value between these
two extremes.

• The regularizing term Ec(F ) represents a model complexity-penalty
function.

• The rest of Section 5.5 describes how the regularization problem can
be solved.

– We shall skip most of this highly mathematical and advanced
theory.

– Let us summarize some main points very briefly.

• First, so-called Frechet differential is used to differentiate the Tikhonov
functional.

• Then Rietz representation theorem is applied for representing the result
in a more suitable form.
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• After some manipulations, Euler-Lagrange equation can be derived for
the Tikhonov functional E(F ).

D̃DFλ(x) =
1

λ

N∑
i=1

[di − F (xi)]δ(x− xi)

• Using so-called Green’s functions defined for differential operators, the
solution of the regularization problem can be represented in the form

Fλ(x) =
1

λ

N∑
i=1

[di − F (xi)]G(x,xi)

• In the next subsection, the coefficients of the expansion are determined.

• This yields as the solution of the regularization problem the expansion

Fλ(x) =
N∑

i=1

wiG(x,xi)
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• Here wi is the ith element of the weight vector w defined by

(G + λI)w = d

• G(x,xi) is the Green’s function defined by the partial differential equa-
tion

LG(x, ξ) = δ(x− ξ)

• Assume now that the stabilizer (smoothing operator) D is required to
be both translationally and rotationally invariant.

• This case is important in practice.

• Then the Green’s function must be a radial-basis function:

G(x,xi) = G(‖ x− xi ‖)
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• The regularized solution

Fλ(x) =
N∑

i=1

wiG(x,xi)

becomes in this case

Fλ(x) =
N∑

i=1

wiG(‖ x− xi ‖)

• This solution has a similar form as the standard RBF solution given
by:

F (x) =
N∑

i=1

wiϕ(‖ x− xi ‖)

• Both the solutions use a strict interpolation technique.

• There are as many (N) basis functions as training data points.

• However, the first solution is regularized while the latter one is not.
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• The two solutions become the same only when the regularization pa-
rameter λ = 0.

• A translationally and rotationally invariant Green’s function is the mul-
tivariate Gaussian function defined by

G(x,xi) = exp

(
− 1

2σ2
i

‖ x− xi ‖2

)
• For this important choice, the regularizing solution becomes a linear

superposition of multivariate Gaussian functions:

Fλ(x) =
N∑

i=1

wi exp

(
− 1

2σ2
i

‖ x− xi ‖2

)

• The weights wi are solved from the equation:

(G + λI)w = d
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• G is the Green’s matrix with elements G(xi,xj).

G =


G(x1,x1) G(x1,x2) · · · G(x1,xN)
G(x2,x1) G(x2,x2) · · · G(x2,xN)

...
...

...
G(xN ,x1) G(xN ,x2) · · · G(xN ,xN)


• The Gaussians have often the same variances σi = σ; such RBF

networks are still universal approximators.
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5.6 Regularization Networks

• The regularized approximating function

Fλ(x) =
N∑

i=1

wiG(x,xi)

can be implemented using the network structure shown below.

• This three-layer network is called a regularization network.
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• In the first layer the components of the input vector x are inputted to
the network.

• The second (hidden) layer has nonlinear units connected directly to all
the nodes of the input layer.

• There is one hidden unit for each data point xi, i = 1, . . . , N .

• The output of the ith hidden unit is defined by the Green’s function
G(x,xi).

• The output layer consists of a single linear unit fully connected to the
hidden layer.

• The weights of the output layer are the unknown coefficients of the
expansion.

• The architecture of figure can easily be generalized for any desired
number of outputs.
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• If the Green’s function G(x,xi) is positive definite for all i, following
RBF network can be used.

• This holds for example for the multivariate Gaussian function.
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• The regularization network has three desirable properties:

1. Universal approximator: it can approximate arbitrarily well any
multivariate continuous function if there are enough hidden units.

2. Best-approximation property: the output layer is linear with res-
pect to the unknown coefficients.

3. Optimality: it minimizes the Tikhonov cost functional.
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5.7 Generalized Radial-Basis Function Networks

• If the number N of the training vectors xi grows large, the basic regu-
larization network may become prohibitively expensive to implement.

• Reason: there are as many hidden nodes as training points.

• The weights of the regularization network are solved from the equation:

w = (G + λI)−1d

• Here the element (i, j) of the N ×N matrix G is G(xi,xj).

• I is the N ×N unit matrix.

• The desired response vector d = [d1, d2, . . . , dN ]T , and the weight
vector w = [w1, w2, . . . , wN ]T .

• The computational load needed for inversing the matrix grows roughly
cubically (as N3) with N .
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• The complexity of the network can be reduced by approximating the
regularized solution.

Fλ(x) =
N∑

i=1

wiG(x,xi)

• This can be done by using Galerkin’s method.

• There the approximated solution F ∗(x) is expanded on a finite basis:

F ∗(x) =

m1∑
i=1

wiϕi(x)

• Typically, the number m1 of the basis functions ϕi(x) is less than the
number N of the data points.

• With radial-basis functions in mind, we set

ϕi(x) = G(‖ x− ti ‖), i = 1, 2, . . . ,m1
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• The set of centers t1, t2, . . . , tm1 should be determined.

• It turns out that the optimal weight vector for the approximated solu-
tion F ∗(x) is obtained by solving the equation

(GTG + λG0)w = GTd

• The non-square N ×m1 matrix G is defined:

G =


G(x1, t1) G(x1, t2) · · · G(x1, tm1)
G(x2, t1) G(x2, t2) · · · G(x2, tm1)

...
...

...
G(xN , t1) G(xN , t2) · · · G(xN , tm1)


its element (i, j) is G(xi, tj).

• The element (i, j) of the symmetric square m1 × m1 matrix G0 is
respectively G(ti, tj).

• The mathematical derivation is skipped here (see Haykin, pp. 279-280,
for details).
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• Consider the limiting case where the regularization parameter λ ap-
proaches zero.

• Then the weight vector w converges to the pseudoinverse solution

w = G+d = (GTG)−1GTd

• This is the optimal solution of the overdetermined least-squares data
fitting problem where m1 < N .
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Weighted Norm

• Instead of the standard Euclidean norm, it is sometimes more ap-
propriate to use a more general weighted norm in radial-basis func-
tions.

• This is defined by the quadratic form

‖ x ‖2
C= (Cx)T (Cx) = xTCTCx

• Here C is m0 ×m0 norm weighting matrix, and m0 is the dimension
of the input vector x.

• For Gaussian radial-basis functions, the use of the weighted norm
means that we replace the basis function

G(x,xi) = exp

(
− 1

2σ2
i

‖ x− xi ‖2

)
by

G(‖ x− ti ‖C) = exp[−(x− ti)
TCTC(x− ti)]
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• Here CTC = 1
2
Σ−1.

• Using this notation, G(‖ x− ti ‖C) represents a multivariate Gaussian
distribution with mean vector ti and covariance matrix Σ.

• The approximative solution obtained using Galerkin’s method provides
the framework for the generalized radial-basis function (RBF) network.

• Structurally, the generalized RBF network is similar to the regulariza-
tion network (except for the bias term).

• However, they differ from each other in two important ways:
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Regularized network Generalized RBF network

1. The number of nodes m1 in the hidden layer is smaller than the number
N of training vectors in the generalized RBF network.
- In the regularized RBF network these numbers are the same.

2. In the regularized RBF network, the only unknown parameters are the
linear weights of the output layer.
- In the generalized RBF network, the center positions of the radial-basis functions

as well as the norm weighting matrix are also unknown in addition to the weight

vector.
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Receptive Field

• The covariance matrix Σ determines the receptive field of the Gaussian
radial-basis function

G(‖ x− ti ‖C) = exp[−(x− ti)
TCTC(x− ti)]

= exp[−1
2
(x− ti)

TΣ−1(x− ti)]

• The receptive field of G(‖ x−ti ‖C) is the domain of the input vectors
x for which

G(‖ x− ti ‖C) > α

where α is a positive constant.

• An illustration of a general Gaussian radial basis function and its recep-
tive field.
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– m is the mean vector of the Gaussian

– the eigenvectors e1 and e2 of the covariance matrix Σ determine
the direction of the hyperellipsoid.

– the lengths of the axes are determined by the eigenvalues λ1 and
λ2 of the covariance matrix.

– now λ1 = σ2
1 → λ

1
2
1 = σ1, similarly λ

1
2
2 = σ2 (standard dev.).
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• We can specify three different types of the covariance matrix Σ and
the respective receptive field:

1. Σ = σ2I, where σ2 is a common variance.

- The receptive field is a hypersphere centered at ti with a radius
σ.

2. Σ = diag(σ2
1, σ

2
2, . . . , σ

2
m0

). Thus the covariance matrix Σ is dia-
gonal with different variances σ2

i .

- The receptive field is a hyperellipse; the variances determine the
length of the axes.

3. Σ is a nondiagonal positive definite matrix.

- Diagonalization using a similarity transformation shows that
the situation is essentially similar than for a diagonal covariance
matrix, but the orientation of Σ is rotated.
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5.8 XOR Problem (Revisited)

• In this section, solution of the XOR problem using an RBF network is
studied.

• Network uses Gaussian basis functions

G(‖ x− ti ‖) = exp(−‖ x− ti ‖2), i = 1,2

where centers t1 and t2 are

t1 = [1, 1]T

t2 = [0, 0]T

• The output unit uses weight-sharing, justified by the symmetry of the
problem.

• Therefore, the weight vector w must be computed using the pseudoin-
verse solution.
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• The network uses also a bias term.
x1

x2

ϕ2

w

w

b

Gaussian
functions

Input 
nodes

Linear
output
neuron

ϕ1

Fixed input = +1

• The input-output relation of the network is defined by

y(x) =
2∑

i=1

wG(‖ x− ti ‖) + b
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Input-output transformation computed for XOR Problem
Data Point j Input Pattern, xj Desired output, dj

1 (1,1) 0
2 (0,1) 1
3 (0,0) 0
4 (1,0) 1

• To fit training data, we require that

y(xj) = dj , j = 1, 2, 3, 4

where xj is an input vector and dj corresponding desired output.

• Let
gji = G(‖ xj − ti ‖) , j = 1, 2, 3, 4; i = 1, 2

• Then the equations can be written in matrix form

Gw = d
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where

G =


1 0.1353 1

0.3678 0.3678 1
0.1353 1 1
0.3678 0.3678 1


d =

[
0 1 0 1

]T

w =
[

w w b
]T

• Problem is overdetermined in the sense that we have more data points
than free parameters.

– That is why G is not square.

– No unique inverse exists for G.

• Problem can be solved using pseudoinverse solution.

w = G+d = (GTG)−1GTd

• GTG is a square matrix with unique inverse.
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• After substitutions we get

G+ =

 1.8292 −1.2509 0.6727 −1.2509
0.6727 −1.2509 1.8292 −1.2509
−0.9202 1.4202 −0.9202 1.4202


and

w =

 −2.5018
−2.5018
2.8404
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5.10 Approximation Properties of RBF Networks

• Multilayer perceptrons have the universal approximation property.

• Also the family of RBF networks can uniformly approximate any con-
tinuous function on a compact set.

• Formally, let G : Rn → R be integrable, continuous, and bounded
function satisfying the condition∫

Rn

G(x)dx 6= 0

• Let FG denote the family of RBF networks consisting of functions
F : Rn → R

F (x) =

m1∑
i=1

wiG

(
x− ti

σ

)
• Here σ > 0, wi ∈ R and ti ∈ Rn for i = 1, 2, . . . ,m1.
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The universal approximation theorem for RBF networks:

• For any continuous input-output mapping function f(x) there is an
RBF network with

– a set of centers ti, i = 1, 2, . . . ,m1 and a common width σ such
that

– the input-output mapping function F (x) realized by the RBF
network is close to f(x) in the Lp norm, p ∈ [1,∞).

• Note that the kernel G : Rn → R need not be radially symmetric.

• The theorem provides a theoretical basis for using RBF networks in
practical applications.
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5.11 Comparison of RBF Networks and
Multilayer Perceptrons

• Both RBF and MLP networks are nonlinear layered networks having
universal approximation properties.

• The most important differences between them are:

1. An RBF network has a single hidden layer, while an MLP can
have several hidden layers.

2. The computational nodes in the MLP network are similar in va-
rious layers, while in the RBF network they are quite different in
the output and hidden layers.

3. In the RBF network, the output layer is linear, while it is usually
nonlinear in an MLP network.

4. In each hidden node, the activation function of RBF network
computes an Euclidean distance, while in MLP networks an inner
product between the input and the weight vector is computed.
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5. MLPs construct global approximations, while RBF networks ap-
proximate locally nonlinear input-output mappings.

• MLP may require less parameters than the RBF network for achieving
the same accuracy.
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