
4.12 Generalization

• In back-propagation learning, as many training examples as possible
are typically used.

• It is hoped that the network so designed generalizes well.

• A network generalizes well when its input-output mapping is (almost)
correct also for test data.

• The test data is not used in creating or training the network.

• Assumption: test data comes from the same population (distribution)
as the training data.

1

• Training of a neural network may be viewed as a curve fitting (nonlinear
mapping) problem.

• The network can simply be considered as a nonlinear input-output
mapping.

• Generalization can be studied in terms of the nonlinear interpolation
ability of the network.

• MLP networks with continuous activation functions perform useful in-
terpolation because they have continuous outputs.

2

• An example of good generalization for a data vector not used in trai-
ning.

3

• Using too many training examples may lead to a poor generalization
ability.

• This is called overfitting or overtraining.

• The network then learns even unwanted noise present in the training
data.

• More generally, it learns “features” which are present in the training
4

set but actually not in the underlying function to be modeled.

• Basic reason for overfitting: there are more hidden neurons than neces-
sary in the network.

• Similar phenomena appear in other modeling problems if the chosen
model is too complicated, containing too many free parameters.

• For example least-squares fitting, autoregressive modeling, etc.

• Occam’s razor principle in model selection: select the simplest model
which describes the data adequately.

• In the neural network area, this implies choosing the smoothest func-
tion that approximates the input-output mapping for a given error
criterion.

• Such a choice generally demands the fewest computational resources.

5

Sufficient Training Set Size for a Valid Generalization

• Three factors affect generalization:
1. The size and representativeness of the training set.
2. The architecture of the neural network.
3. The physical complexity of the problem at hand.

• Only the first two factors can be controlled.

• The issue of generalization may be viewed from two different perspec-
tives:

– The architecture of the network is fixed. Determine the size of
the training set for a good generalization.

– The size of the training set is fixed. Determine the best architec-
ture of network for achieving a good generalization.

• Here we focus on the first viewpoint, hoping that the fixed architecture
matches the complexity of the problem.

6

• Distribution-free, worst-case formulas are available for estimating the
size of sufficient training set for a good generalization performance.

• See section 2.14; skipped in this course.

• However, these formulas give often poor results.

7

• A practical condition for a good generalization:

• The size N of the training set must satisfy the condition

N = O

(
W

ε

)
• Here W is the total number of free parameters (weights and biases)

in the network.

• ε denotes the fraction of classification errors permitted on test data
(as in pattern classification).

• O(.) is the order of quantity enclosed within it.

• Example: If an error of 10% is permitted, the number of training
examples should be about 10 times the number of free parameters.

• Justifications for this empirical rule are presented in the next section.

8

4.13 Approximations of Functions

• A MLP network trained with back-propagation is a practical tool for
performing a general nonlinear input-output mapping.

• Let m0 be the number of input nodes (neurons), and M = mL the
number of output nodes.

• The input-output mapping of the MLP network is fromm0-dimensional
input space to M -dimensional output space.

• If the activation function is infinitely continuously differentiable, the
mapping is also.

• A fundamental question: What is the minimum number of hidden layers
in a MLP network providing an approximate realization of any conti-
nuous mapping?

9

Universal Approximation Theorem

• The universal approximation theorem for a nonlinear input-output map-
ping provides the answer.

• The theorem is presented in Haykin’s book, pp. 208-209.

• Its essential contents are as follows:

• Let ϕ(.) be a nonconstant, bounded, and monotonically increasing
continuous function.

• Let Im0 denote them0-dimensional unit hypercube [0, 1]m0 , and C(Im0)
the space of continuous functions on Im0 .

• For any given function f ∈ C(Im0) and ε > 0, there exist an integer
M and sets of real constants αi, bi, and wij, where i = 1, . . . ,m1 and
j = 1, . . . ,m0 so that:

10

• The function

F (x1, . . . , xm0) =

m1∑
i=1

αiϕ

(
m0∑
j=1

wijxj + bi

)
(1)

is an approximate realization of the function f(.).

• That is,
| F (x1, . . . , xm0) − f(x1, . . . , xm0) | < ε

for all x1, x2, . . . , xm0 that lie in the input space.

• The universal approximation theorem is directly applicable to multilayer
perceptrons.

• The logistic function ϕ(v) = 1/[1+ exp(−v)] is a nonconstant, boun-
ded, and monotonically increasing function.

• Furthermore, Eq. (1) represent the output of a MLP network described
as follows:

11

1. The network has m0 input nodes with inputs x1, x2, . . . , xm0 , and
a single hidden layer consisting of m1 neurons.

2. Hidden neuron i has synaptic weights wi1, . . . , wim0 , and bias bi.

3. The network output is a linear combination of the outputs of
the hidden neurons, with α1, . . . , αm1 defining the weights of the
output layer.

• The universal approximation theorem is an existence theorem.

• In effect, the theorem states that a MLP network with a single hidden
layer is sufficient for uniform approximation with accuracy ε.

• However, the theorem does not say that a single hidden layer is optimal
with respect to:
- learning time
- ease of implementation
- generalization ability (most important property).

12

Bounds on Approximation Errors

• This theoretical treatment is not essential in this course.

• A result worth mentioning: the size of the hidden layer m1 must be
large for getting a good approximation.

13

Curse of Dimensionality

• This part is skipped, too, though it contains some interesting results.

• One important matter: multilayer perceptrons are more effective than
for example polynomials or trigonometric functions in approximation.

• That is, the number of terms required for sufficient approximation
grows slower with the dimension of the problem.

• The reason is basically that nonlinearities are used in an efficient way
in MLP networks.

14

Practical Considerations

• The universal approximation theorem is important from a theoretical
viewpoint.

• It gives a rigorous mathematical foundation for using multilayer percept-
rons in approximating nonlinear mappings.

• However, the theorem is not constructive.

• It does not actually tell how to specify a MLP network with the stated
approximation properties.

• Some assumptions made in the theorem are unrealistic in most practical
applications:
- The continuous function to be approximated is given.
- A hidden layer of unlimited size is available.

• A problem with MLP’s using a single hidden layer:
the hidden neurons tend to interact globally.

15

• In complex situations, improving the approximation at one point ty-
pically worsens it at some other point.

• With two hidden layers, the approximation (nonlinear mapping) process
becomes more manageable.

• One can proceed as follows:

1. Local features are extracted in the first hidden layer.
- The input space is divided into regions by some neurons.
- Other neurons in the first hidden layer learn the local features
characterizing these regions.

2. Global features corresponding to each region are extracted in the
second hidden layer.
- Neurons in this layer combine the outputs of the neurons desc-
ribing certain region.

• This procedure somehow corresponds to piecewise polynomial (spline)
approximation in curve fitting.

16

4.14 Cross-Validation

• It is hoped that an MLP network trained with back-propagation learns
enough from the past to generalize to the future.

• How the network parameterization should be chosen for a specific data
set?

• This is a model selection problem: choose the best one of a set of
candidate model structures (parameterizations).

• A useful statistical technique for model selection: cross-validation.

• The available data set is first randomly partitioned into a training set
and a test set.

• The training set is further partitioned into two disjoint subsets:

– Estimation subset, used to select the model.

– Validation subset, used to test or validate the model.

17

• The motivation is to validate the model on a data set different from
the one used for parameter estimation.

• In this way, the training set can be used to assess the performance of
various model.

• The “best” of the candidate models is then chosen.

• This procedure ensures that a model which might in the worst case
end up with overfitting the validation subset is not chosen.

• The use of cross-validation is appealing when one should design a large
network with good generalization ability.

• For MLP networks, cross-validation can be used to determine:
- the optimal number of hidden neurons.
- when it is best to stop training.

18

• These matters are described in the next subsections:
- Model Selection
- Early Stopping Method of Training
- Variants of Cross-Validation

• They are skipped in this course.

19

4.16 Virtues and Limitations of Back-Propagation Lear-
ning

• Back-propagation (BP) is the most popular algorithm for supervised
training of multilayer perceptrons (and neural networks in general).

• It is basically a gradient (derivative) technique, not an optimization
method.

• Back-propagation has two distinct properties:

– It is simple to compute locally.

– It performs stochastic gradient descent in weight space.

• These two properties are responsible for the advantages and disadvan-
tages of back-propagation learning.

20

Connectionism

• BP is an example of connectionist paradigms.

• They use local computations only for processing information in a neural
network.

• Locality constraint: a computing neuron needs information only from
neurons connected physically to it.

• Local computations are preferred in the design of artificial neural networks
for three principal reasons:

1. Biological neural networks use local computations.

2. Local computations are fault-tolerant against hardware errors.

3. Local computations favor the use of computationally efficient pa-
rallel architectures.

• BP has been realized using VLSI architectures and parallel computers
(point 3).

21

• Also point 2 holds on certain conditions.

• However, back-propagation learning is not biologically plausible (point
1) for several reasons given in Haykin’s book, p. 227.

• Anyway, BP learning is important from an engineering point of view.

22

Feature Detection

• The hidden neurons of a multilayer perceptron trained by BP act as
feature detectors (Section 4.9).

• This property can be exploited by using a MLP network as a replicator
or identity map.

Replicator network with a single
hidden layer used as an encoder.

23

• Structural constraints:
- The input and output layers have the same size, m.
- The size of the hidden layer, M , is smaller than m.
- The network is fully connected.

• The desired response is the same as the input vector x.

• The actual output x̂ is the estimate of x.

24

• The network is trained otherwise normally by using as an error vector
e = x− x̂.

• Actually this is a form of unsupervised learning (there is no teacher).

• The replicator network performs data compression in its hidden layer.

• After learning, the network provides a coding/decoding system for the
input vectors x.

• Block diagram for the supervised training of the replicator network

25

• Decoder part of the replicator network

26

Function Approximation

• A multilayer perceptron trained with the back-propagation algorithm
is a nested sigmoidal scheme.

• Its output vector y can be written in the form

y = F(x,W) = fL(WLfL−1(WL−1fL−2(. . . f1(W1x))))

• W1, . . . ,WL are the weight matrices of the L layers of the network,
including bias terms.

• fi(.) are vector-valued functions; their each component is the common
sigmoid activation function ϕ(.).

• W denotes the set of all the weight matrices.

• The dimensions of the weight matrices Wi and vectors fi are generally
different in different layers i = 1, . . . , L.

• However, they must fit each other.
27

• The mapping F(x,W) is an universal approximator.

• Multilayer perceptrons can approximate not only smooth, continuously
differentiable functions, but also piecewise differentiable functions.

28

Computational Efficiency

• The computational complexity of an algorithm is usually measured by
counting the number of multiplications, additions and storage required
per iteration.

• The back-propagation algorithm is computationally efficient.

• This means that its computational complexity is polynomial as a func-
tion of adjustable parameters.

• If a MLP network contains a total of W weights, the computational
complexity of the BP algorithm is linear in W .

29

Sensitivity Analysis

• The sensitivity analysis of the input-output mapping provided by BP
can be carried out efficiently.

• A more detailed discussion of this property is skipped in our course.

Robustness

• The back-propagation algorithm is locally robust on certain conditions.

• This means that disturbances with small energy can only give rise to
small estimation errors.

30

Convergence

• The back-propagation algorithm uses an instantaneous estimate of the
gradient of the error surface.

• The direction of the instantaneous gradient fluctuates from iteration
to iteration.

• Such stochastic approximation algorithms converge slowly.

• Some fundamental causes of the slow convergence:

1. If the error surface is fairly flat along a weight dimension, many
iterations may be required to reduce the error significantly.

2. The direction of the negative instantaneous gradient vector may
point away from the minimum.
- This leads to a correction in a wrong direction for that iteration.

• The slow convergence of the back-propagation algorithm may make it
computationally excruciating.

31

• Basic reason: large-scale neural network training problems are inhe-
rently very difficult and ill-conditioned.

• No supervised learning strategy is alone feasible.

• Suitable preprocessing may be necessary in practice.

• For example Principal Component Analysis or whitening.

• See Haykin’s Chapter 8, and a problem in exercises.

32

Local Minima

• The error surface has local minima in addition to the global minimum.

• It is clearly undesirable if the learning process terminates at a local
minimum.
- Especially if this is located far above the global minimum.

• Basic reason for the existence of local minima: nonlinearities.

• If linear activation functions were used in BP, no local minima exist,
but the network can then learn only linear mappings.

33

Scaling

• Scaling problem: How well the network behaves as the computational
task increases in size and complexity?

• One can typically consider:
- The time required for training.
- The best attainable generalization performance.

• There exists many possible ways to measure the complexity or size of
a computational task.

• Most useful measure: predicate order.

• Predicate is a binary function ψ(X) having only two values 0 and 1,
or FALSE and TRUE.

34

• An empirical study: how well a MLP network trained with back-propagation
learns the parity function

ψ(X) = 1, if | X | is an odd number

ψ(X) = 0, if | X | is an even number

• The order of the parity function is equal to the number of inputs.

• It turned out that the time BP required to learn the parity function
scales exponentially with the number of inputs.

• An effective method of alleviating the scaling problem:

– Incorporate prior knowledge into the design of the network.

35

	Generalization
	Approximations of Functions
	Cross-Validation
	Virtues and Limitations of Back-Propagation Learning

