4. Multilayer Perceptrons

4.1 Introduction

- A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output layer.
- Computations take place in the hidden and output layers only.
- The input signal propagates through the network in a forward direction, layer-by-layer.
- Such neural networks are called *multilayer perceptrons* (MLPs).
- They have been successfully applied to many difficult and diverse problems.
- Multilayer perceptrons are typically trained using so-called error *back-propagation algorithm*.
- This is a supervised error-correction learning algorithm.

- It can be viewed as a generalization of the LMS algorithm.
- Back-propagation learning consists of two passes through the different layers of a MLP network.
- In the *forward pass*, the output (response) of the network to an input vector is computed.
- Here all the synaptic weights are kept fixed.
- During the *backward pass*, the weights are adjusted using an error-correction rule.
- The error signal is propagated backward through the network.
- After adjustment, the output of the network should have moved closer to the desired response in a statistical sense.

Properties of Multilayer Perceptron

- Each neuron has a *smooth* (differentiable everywhere) *nonlinear activation function.*
- This is usually a sigmoidal nonlinearity defined by the *logistic function*

$$y_j = \frac{1}{1 + \exp(-v_j)}$$

where v_j is the local field (weighted sum of inputs plus bias).

- Nonlinearities are important: otherwise the network could be reduced to a linear single-layer perceptron.
- The network contains hidden layer(s), enabling learning complicated tasks and mappings.
- The network has a high connectivity.
- These properties give the multilayer perceptron its computational power.

- On the other hand, distributed nonlinearities make the theoretical analysis of a MLP network difficult.
- Back-propagation learning is more difficult and in its basic form slow because of the hidden layer(s).

Contents of the Chapter 4

- The chapter contains 100 pages (including notes and exercises) divided in seven major parts:
 - Back-propagation learning (Sections 4.2-4.6)
 - Multilayer perceptrons in pattern recognition (4.7-4.9)
 - Error surface (4.10-4.11)
 - Performance of a MLP trained using backpropagation (4.12-4.15)
 - Advantages, drawbacks, and heuristics for backpropagation learning (4.16-4.17)
 - Improved learning methods based on optimization (4.18)
 - Convolutional multilayer perceptron (4.19)
- In this basic course, we shall skip less important or too advanced topics.

4.2 Some preliminaries

• An architectural graph of a multilayer perceptron with two hidden layers and an output layer.

- Recall that in the input layer, no computations take place; the input vector is only fed in componentwise.
- The network is *fully connected*.
- Two kinds of signals appear in the MLP network:

- 1. *Function Signals.* Input signals propagating forward through the network, producing in the last phase output signals.
- 2. *Error signals.* Originate at output neurons, and propagate layer by layer backward through the network.

- Each hidden or output neuron performs two computations:
 - 1. The computation of the function signal appearing at its output. This is a nonlinear function of the input signal and synaptic weights of that neuron.
 - 2. The computation of an estimate of the gradient vector, needed in the backward pass.
- The derivation of the back-propagation algorithm is rather involved.

Notation

- The indices *i*, *j* and *k* refer to neurons in different layers. Neuron *j* lies in the layer right to neuron *i*, and neuron *k* right to neuron *j*.
- In iteration n, the nth training vector is presented to the network.
- The symbol $\mathcal{E}(n)$ refers to the instantaneous sum of error squares or error energy at iteration n.
 - \mathcal{E}_{av} is the average of $\mathcal{E}(n)$ over all n.
- $e_j(n)$ is the error signal at the output of neuron j for iteration n.
- $d_j(n)$ is the desired response for neuron j.
- $y_j(n)$ is the function signal at the output of neuron j for iteration n.
- $w_{ji}(n)$ is the weight connecting the output of neuron i to the input of neuron j at iteration n.
 - The correction applied to this weight is denoted by $\Delta w_{ji}(n)$.

- $v_j(n)$ denotes the local field of neuron j at iteration n.
 - It is the weighted sum of inputs plus bias of that neuron.
- The activation function (nonlinearity) associated with neuron j is denoted by $\varphi_j(.).$
- b_j denotes the bias applied to neuron j, corresponding to the weight $w_{j0} = b_j$ and a fixed input +1.
- $x_i(n)$ denotes the *i*th element of the input vector.
- $o_k(n)$ denotes the *k*th element of the overall output vector.
- η denotes the learning-rate parameter.
- m_l denotes the number of neurons in layer l.
 - The network has L layers.
 - For output layer, the notation $m_L = M$ is also used.

4.3 Back-Propagation Algorithm

• The error signal at the output of neuron j at iteration n is defined by

 $e_j(n) = d_j(n) - y_j(n)$, neuron j is an output node (1)

- The instantaneous value of the error energy for neuron j is defined by $e_{j}^{2}(n)/2.$
- The total instantaneous error energy $\mathcal{E}(n)$ for all the neurons in the output layer is therefore

$$\mathcal{E}(n) = \frac{1}{2} \sum_{j \in C} e_j^2(n) \tag{2}$$

where the set C contains all the neurons in the output layer.

- Let N be the total number of training vectors (examples, patterns).
- Then the average squared error is

$$\mathcal{E}_{av} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(n) \tag{3}$$

- For a given training set, \mathcal{E}_{av} is the *cost function* which measures the learning performance.
- It depends on all the free parameters (weights and biases) of the network.
- The objective is to derive a learning algorithm for minimizing \mathcal{E}_{av} with respect to the free parameters.
- In the basic back-propagation, a similar training method as in the LMS algorithm is used.
- Weights are updated on a pattern-by-pattern basis during each epoch.
- *Epoch* is one complete presentation of the entire training set.
- In other words, instantaneous stochastic gradient based on a single sample only is used for getting simple adaptive update formulas.
- The average of these updates over one epoch estimates the gradient of $\mathcal{E}_{av}.$

- Neuron j.
- It is fed by a set of function signals produced by a layer of neurons to its left.
- The local field $v_j(n)$ of neuron j is clearly

$$v_{j}(n) = \sum_{\substack{i=0\\13}}^{m} w_{ji}(n) y_{i}(n)$$
(4)

• The function signal $y_j(n)$ appearing at the output of neuron j at iteration n is then

$$y_j(n) = \varphi_j(v_j(n)).$$
(5)

- The correction $\Delta w_{ji}(n)$ made to the synaptic weight $w_{ji}(n)$ is proportional to the partial derivative $\partial \mathcal{E}(n)/\partial w_{ji}(n)$ of the instantaneous error.
- Using the *chain rule* of calculus, this gradient can be expressed as follows:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \frac{\partial v_j(n)}{\partial w_{ji}(n)}$$
(6)

- The partial derivative $\partial \mathcal{E}(n) / \partial w_{ji}(n)$ represents a sensitivity factor.
- It determines the direction of search for the weight $w_{ji}(n)$.
- Differentiating both sides of Eq. (2) with respect to $e_j(n)$, we get

$$\frac{\partial \mathcal{E}(n)}{\partial e_j(n)} = e_j(n) \tag{7}$$
14

• Differentiating Eq. (1) with respect to $y_j(n)$ yields

$$\frac{\partial e_j(n)}{\partial y_j(n)} = -1 \tag{8}$$

• Differentiating Eq. (5) with respect to $v_j(n)$, we get

$$\frac{\partial y_j(n)}{\partial v_j(n)} = \varphi'_j(v_j(n)) \tag{9}$$

where φ'_j denotes the derivative of φ_j .

• Finally, differentiating (4) with respect to $w_{ji}(n)$ yields

$$\frac{\partial v_j(n)}{\partial w_{ji}(n)} = y_i(n). \tag{10}$$

• Inserting these partial derivatives into (6) yields

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\varphi'_j(v_j(n))y_i(n)$$
(11)

15

• The correction $\Delta w_{ji}(n)$ applied to the weight $w_{ji}(n)$ is defined by the delta rule:

$$\Delta w_{ji}(n) = -\eta \frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$$
(12)

where η is the learning-rate parameter of the back-propagation algorithm.

- The minus sign comes from using gradient descent in learning for minimizing the error $\mathcal{E}(n)$.
- Inserting (11) into (12) yields

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_j(n) \tag{13}$$

where the local gradient is defined by

$$\delta_j(n) = -\frac{\partial \mathcal{E}(n)}{\partial v_j(n)} = e_j(n)\varphi'_j(v_j(n))$$
(14)

• We note that a key factor in the calculation of the weight adjustment $\Delta w_{ji}(n)$ is the error signal $e_j(n)$ at the output of neuron j.

• This error signal depends on the location of the neuron in the MLP network.

Case 1: Neuron j is an Output Node

- Computation of the error $e_j(n)$ is straightforward in this case.
- The desired response $d_j(n)$ for the neuron j is directly available.
- One can use the previous formulas (13) and (14).

Case 2: Neuron j is a Hidden Node

- Now there is no desired response available for neuron *j*.
- Question: how to compute the responsibility of this neuron for the error made at the output?

- This is the *credit-assignment problem* discussed earlier.
- The error signal for a hidden neuron must be determined recursively in terms of the error signals of all neurons connected to it.
- Here the development of the back-propagation algorithm gets complicated.

 Using Eq. (14), we may redefine the local gradient δ_j(n) for hidden neuron j as follows:

$$\delta_j(n) = -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} = -\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} \varphi'_j(v_j(n))$$
(15)

- The partial derivative $\partial \mathcal{E}(n)/\partial y_j(n)$ may be calculated as follows.
- From the figure we see that

$$\mathcal{E}(n) = \frac{1}{2} \sum_{k \in C} e_k^2(n)$$
, neuron k is an output node (16)

• Differentiating this with respect to the function signal $y_j(n)$ and using the chain rule we get

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_k e_k \frac{\partial e_k(n)}{\partial y_j(n)} = \sum_k e_k \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)}$$
(17)

• From the figure we note that when the neuron k is an output node

$$e_k(n) = d_k(n) - y_k(n) = d_k(n) - \varphi_k(v_k(n))$$
(18)

19

so that

$$\frac{\partial e_k(n)}{\partial v_k(n)} = -\varphi'_k(v_k(n)) \tag{19}$$

• Figure shows also that the local field of neuron \boldsymbol{k} is

$$v_k(n) = \sum_{j=0}^m w_{kj}(n) y_j(n)$$
 (20)

where the bias term is again included as the weight $w_{k0}(n)$.

• Differentiating this with respect to $y_j(n)$ yields

$$\frac{\partial v_k(n)}{\partial y_j(n)} = w_{kj}(n) \tag{21}$$

• Inserting these expressions into (17) we get the desired partial derivative

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = -\sum_k e_k(n)\varphi'_k(v_k(n))w_{kj}(n) = -\sum_k \delta_k(n)w_{kj}(n)$$
(22)

- Here again $\delta_k(n)$ denotes the local gradient for neuron k.
- Finally, inserting (22) into (15) yields the back-propagation formula for the local gradient δ_j(n):

$$\delta_j(n) = \varphi'_j(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$$
(23)

- This holds when neuron j is hidden.
- Let us briefly study the factors in this formula:
 - $\varphi_j'(v_j(n))$ depends solely on the activation function $\varphi_j(.)$ of the hidden neuron j.
 - The local gradients $\delta_k(n)$ require knowledge of the error signals $e_k(n)$ of the neurons in the next (right-hand side) layer.
 - The synaptic weights $w_{kj}(n)$ describe the connections of neuron j to the neurons in the next layer to the right.
- We may summarize the results derived thus far in this section as follows:

- The correction $\Delta w_{ji}(n)$ of the weight connecting neuron i to neuron j is described by Eq. (4.25) in book
- The local gradient $\delta_j(n)$ is computed from Eq. (14) of previous lecture if neuron j lies in the output layer.
- If neuron *j* lies in the hidden layer, the local gradient is computed from Eq. (23).

Back-Propagation Algorithm: (4.25) in Haykin

$$\begin{pmatrix} Weight \\ correction \\ \Delta w_{ij}(n) \end{pmatrix} = \begin{pmatrix} Learning \\ parameter \\ \eta \end{pmatrix} \begin{pmatrix} Local \\ gradient \\ \delta_j(n) \end{pmatrix} \begin{pmatrix} Input \ signal \\ of \ neuron \ j \\ y_i(n) \end{pmatrix}$$

• The local gradient is given by

$$\delta_j(n) = e_j(n)\varphi'_j(v_j(n)) \tag{4.14}$$

when the neuron j is in the output layer.

• In the hidden layer, the local gradient is

$$\delta_j(n) = \varphi'_j(v_j(n)) \sum_k \delta_k(n) w_{kj}(n) \tag{4.24}$$

computed recursively from the local gradients of the following layer, back-propagating error

The Two Passes of Computation

- In applying the back-propagation algorithm, two distinct passes of computation are distinguished.
- Forward pass
 - The weights are not changed in this phase.
 - The function signal appearing at the output of neuron \boldsymbol{j} is computed as

$$y_j(n) = \varphi(v_j(n)) \tag{24}$$

– Here the local field $v_j(n)$ of neuron j is

$$v_j(n) = \sum_{i=0}^m w_{ji}(n) y_i(n)$$
 (25)

- In the first hidden layer, $m = m_0$ is the number of input signals $x_i(n)$, $i = 1, ..., m_0$, and in Eq. (25)

$$\begin{array}{l} y_i(n) = \ x_i(n) \\ \textbf{24} \end{array}$$

- In the output layer, $m = m_L$ is the number of outputs Eq. (24).
- The outputs (components of the output vector) are denoted by

$$y_j(n) = o_j(n)$$

- These outputs are then compared with the respective desired responses $d_j(n)$, yielding the error signals $e_j(n)$.
- In the forward pass, computation starts from the first hidden layer and terminates at the output layer.

• Backward pass

- In the backward pass, computation starts at the output layer, and ends at the first hidden layer.
- The local gradient δ is computed for each neuron by passing the error signal through the network layer by layer.
- The delta rule of Eq. (4.25) is used for updating the synaptic weights.
- The weight updates are computed recursively layer by layer.
- The input vector is fixed through each round-trip (forward pass followed by a backward pass).
- After this, the next training (input) vector is presented to the network.

Activation Function

- The derivative of the activation function $\varphi(.)$ is needed in computing the local gradient δ .
- Therefore, $\varphi(.)$ must be continuous and differentiable.
- In MLP networks, two forms of sigmoidal nonlinearities are commonly used as activation functions.
 - 1. Logistic function

$$\varphi(v) = \frac{1}{1 + \exp(-av)}, \ a > 0 \text{ and } -\infty < v < \infty$$

For clarity, we have omitted here the neuron index \boldsymbol{j} and the iteration number $\boldsymbol{n}.$

- The range of $\varphi(v)$ and hence the output $y=\varphi(v)$ always lies in the interval $0\leq y\leq 1.$

The derivative of $y=\varphi(v)$ can be expressed in terms of the output y as

$$\varphi'(v) = ay(1-y)$$

- This formula allows writing the local gradient $\delta_j(n)$ in somewhat simpler form.

If neuron j is an output node,

$$\delta_j(n) = a[d_j(n) - o_j(n)]o_j(n)[1 - o_j(n)]$$

The respective equation for a hidden node is given in Eq. (4.34) in Haykin's book.

2. Hyperbolic tangent function

 $\varphi(v) = a \tanh(bv),$

where a and b are positive constants.

- In fact, the hyperbolic tangent is just the logistic function rescaled and biased.

Its derivative with respect to \boldsymbol{v} is

$$\varphi'(v) = ab[1 - \tanh^2(bv)] = \frac{b}{a}[a - y][a + y]$$

Using this, the local gradients of output neurons and hidden neurons can be simplified to Eqs. (4.37) and (4.38).

Rate of Learning

- Back-propagation approximates steepest descent method.
- A small learning-rate parameter η leads to a slow learning rate.
- Generally, basic back-propagation suffers from very slow learning if the network is large (several layers, a lot of nodes).
- On the other hand, choosing too large a learning parameter may lead to oscillatory behavior.
- A simple method of improving the learning speed without oscillatory behavior:
- Use a *generalized delta rule* including a momentum term:

$$\Delta w_{ji}(n) = \alpha \Delta w_{ji}(n-1) + \eta \delta_j(n) y_i(n)$$
(26)

- Here α is a positive momentum constant.
- If $\alpha = 0$, the corresponding momentum term vanishes.

- Then Eq. (26) reduces to the standard delta rule derived earlier.
- The effect of the momentum term is analyzed somewhat in Haykin's book.
- The conclusions are:
 - 1. The momentum constant should be in the interval $0 \le \alpha < 1$.
 - 2. The momentum term tends to accelerate descent in steady downhill direction.
 - 3. In directions where the partial derivative $\partial \mathcal{E}(t) / \partial w_{ji}(t)$ oscillates in sign, the momentum term has a stabilizing effect.
- In deriving the back-propagation algorithm, it was assumed that the learning parameter η is a constant.
- In practice, it is better to use a *connection-dependent* learning parameter η_{ij}.
- This will be discussed later.

Sequential and Batch Modes of Training

- Recall that one complete presentation of the entire training set is called an epoch.
- The learning process is continued over several/many epochs.
- Learning is stopped when the weight values and biases stabilize, and the average squared error converges to some minimum value.
- It is useful to present the training samples in a randomized order during each epoch.
- In back-propagation, one may use either sequential (on-line, stochastic) or batch learning mode.

1. Sequential Mode

- The weights are updated after presenting each training example (input vector).
- The derivation before was given for this mode.

2. Batch Mode

- Here the weights are updated after each epoch only.
- All the training examples are presented once before updating the weights and biases.

• In batch mode, the cost function is the average squared error

$$\mathcal{E}_{av} = \frac{1}{2N} \sum_{n=1}^{N} \sum_{j \in C} e_j^2(n)$$
 (27)

• The synaptic weight is updated using the batch delta rule

$$\Delta w_{ji} = -\eta \frac{\partial \mathcal{E}_{av}}{\partial w_{ji}} = -\frac{\eta}{N} \sum_{n=1}^{N} e_j(n) \frac{\partial e_j(n)}{\partial w_{ji}}$$
(28)

- The partial derivative $\partial e_j(n)/\partial w_{ji}$ may be computed as in the sequential mode.
- Advantages of sequential mode:
 - requires less storage
 - less likely to get trapped in a local minimum.
- Advantages of the batch mode:
 - Provides an accurate estimate of the gradient vector.
 - Convergence to a local minimum at least is guaranteed.

- The sequential mode of back-propagation has several disadvantages.
- In spite of that, it is highly popular for two important practical reasons:
 - The algorithm is simple to implement.
 - It provides effective solutions to large and difficult problems.

Stopping Criteria

- In general, the back-propagation algorithm cannot be shown to converge.
- There are no well-defined criteria for stopping its operation.
- However, there are reasonable practical criteria for terminating learning.
- Consider first the unique properties of a *local* or *global minimum* of the error surface.
- $\bullet\,$ Denote by \mathbf{w}^* a weight vector at a local or global minimum.
- Necessary condition: the gradient vector $\mathbf{g}(\mathbf{w})$ vanishes at the minimum point $\mathbf{w}^*.$
- This yield the following criterion for the convergence of back-propagation learning:

- Stop learning when the Euclidean norm $\parallel \mathbf{g}(\mathbf{w}) \parallel$ of the gradient vector is below a certain threshold.
- Drawbacks of this stopping criterion:
 - Learning times may be long.
 - Requires computation of the gradient vector $\mathbf{g}(\mathbf{w})$.
- Another criterion is based on the stationarity of the average squared error measure \mathcal{E}_{av} at the point $\mathbf{w} = \mathbf{w}^*$:
- Stop learning when the absolute rate of change in the average squared error per epoch is sufficiently small.
- A small rate of change is usually taken to be 0.1% 1% per epoch.
- This criterion may result in a premature termination of the learning process.
- Another useful, theoretically sound criterion for convergence: test the generalization performance of the network.
- This is discussed later on in Section 4.14.