
4. Multilayer Perceptrons

4.1 Introduction

• A multilayer feedforward network consists of an input layer, one or
more hidden layers, and an output layer.

• Computations take place in the hidden and output layers only.

• The input signal propagates through the network in a forward direction,
layer-by-layer.

• Such neural networks are called multilayer perceptrons (MLPs).

• They have been successfully applied to many difficult and diverse
problems.

• Multilayer perceptrons are typically trained using so-called error back-
propagation algorithm.

• This is a supervised error-correction learning algorithm.
1

• It can be viewed as a generalization of the LMS algorithm.

• Back-propagation learning consists of two passes through the different
layers of a MLP network.

• In the forward pass, the output (response) of the network to an input
vector is computed.

• Here all the synaptic weights are kept fixed.

• During the backward pass, the weights are adjusted using an error-
correction rule.

• The error signal is propagated backward through the network.

• After adjustment, the output of the network should have moved closer
to the desired response in a statistical sense.

2

Properties of Multilayer Perceptron

• Each neuron has a smooth (differentiable everywhere) nonlinear acti-
vation function.

• This is usually a sigmoidal nonlinearity defined by the logistic function

yj =
1

1 + exp(−vj)

where vj is the local field (weighted sum of inputs plus bias).

• Nonlinearities are important: otherwise the network could be reduced
to a linear single-layer perceptron.

• The network contains hidden layer(s), enabling learning complicated
tasks and mappings.

• The network has a high connectivity.

• These properties give the multilayer perceptron its computational power.
3

• On the other hand, distributed nonlinearities make the theoretical ana-
lysis of a MLP network difficult.

• Back-propagation learning is more difficult and in its basic form slow
because of the hidden layer(s).

4

Contents of the Chapter 4

• The chapter contains 100 pages (including notes and exercises) divided
in seven major parts:

– Back-propagation learning (Sections 4.2-4.6)

– Multilayer perceptrons in pattern recognition (4.7-4.9)

– Error surface (4.10-4.11)

– Performance of a MLP trained using backpropagation (4.12-4.15)

– Advantages, drawbacks, and heuristics for backpropagation lear-
ning (4.16-4.17)

– Improved learning methods based on optimization (4.18)

– Convolutional multilayer perceptron (4.19)

• In this basic course, we shall skip less important or too advanced topics.

5

4.2 Some preliminaries

• An architectural graph of a multilayer perceptron with two hidden layers
and an output layer.

• Recall that in the input layer, no computations take place; the input
vector is only fed in componentwise.

• The network is fully connected.

• Two kinds of signals appear in the MLP network:
6

1. Function Signals. Input signals propagating forward through the
network, producing in the last phase output signals.

2. Error signals. Originate at output neurons, and propagate layer
by layer backward through the network.

7

• Each hidden or output neuron performs two computations:

1. The computation of the function signal appearing at its out-
put. This is a nonlinear function of the input signal and synaptic
weights of that neuron.

2. The computation of an estimate of the gradient vector, needed
in the backward pass.

• The derivation of the back-propagation algorithm is rather involved.

8

Notation

• The indices i, j and k refer to neurons in different layers. Neuron j lies
in the layer right to neuron i, and neuron k right to neuron j.

• In iteration n, the nth training vector is presented to the network.

• The symbol E(n) refers to the instantaneous sum of error squares or
error energy at iteration n.
- Eav is the average of E(n) over all n.

• ej(n) is the error signal at the output of neuron j for iteration n.

• dj(n) is the desired response for neuron j.

• yj(n) is the function signal at the output of neuron j for iteration n.

• wji(n) is the weight connecting the output of neuron i to the input of
neuron j at iteration n.
- The correction applied to this weight is denoted by ∆wji(n).

9

• vj(n) denotes the local field of neuron j at iteration n.
- It is the weighted sum of inputs plus bias of that neuron.

• The activation function (nonlinearity) associated with neuron j is de-
noted by ϕj(.).

• bj denotes the bias applied to neuron j, corresponding to the weight
wj0 = bj and a fixed input +1.

• xi(n) denotes the ith element of the input vector.

• ok(n) denotes the kth element of the overall output vector.

• η denotes the learning-rate parameter.

• ml denotes the number of neurons in layer l.
- The network has L layers.
- For output layer, the notation mL = M is also used.

10

4.3 Back-Propagation Algorithm

• The error signal at the output of neuron j at iteration n is defined by

ej(n) = dj(n)− yj(n), neuron j is an output node (1)

• The instantaneous value of the error energy for neuron j is defined by
e2

j(n)/2.

• The total instantaneous error energy E(n) for all the neurons in the
output layer is therefore

E(n) =
1

2

∑
j∈C

e2
j(n) (2)

where the set C contains all the neurons in the output layer.

• Let N be the total number of training vectors (examples, patterns).

• Then the average squared error is

Eav =
1

N

N∑
n=1

E(n) (3)

11

• For a given training set, Eav is the cost function which measures the
learning performance.

• It depends on all the free parameters (weights and biases) of the
network.

• The objective is to derive a learning algorithm for minimizing Eav with
respect to the free parameters.

• In the basic back-propagation, a similar training method as in the LMS
algorithm is used.

• Weights are updated on a pattern-by-pattern basis during each epoch.

• Epoch is one complete presentation of the entire training set.

• In other words, instantaneous stochastic gradient based on a single
sample only is used for getting simple adaptive update formulas.

• The average of these updates over one epoch estimates the gradient
of Eav.

12

• Neuron j.

yi(n)

wj0(n) = bj(n)

wji(n)
vj(n)

φ(·)

yj(n)

−1

dj(n)

ej(n)

y0 = +1

Neuron j

• It is fed by a set of function signals produced by a layer of neurons to
its left.

• The local field vj(n) of neuron j is clearly

vj(n) =
m∑

i=0

wji(n)yi(n) (4)

13

• The function signal yj(n) appearing at the output of neuron j at
iteration n is then

yj(n) = ϕj(vj(n)). (5)

• The correction ∆wji(n) made to the synaptic weight wji(n) is pro-
portional to the partial derivative ∂E(n)/∂wji(n) of the instantaneous
error.

• Using the chain rule of calculus, this gradient can be expressed as
follows:

∂E(n)

∂wji(n)
=

∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wji(n)
(6)

• The partial derivative ∂E(n)/∂wji(n) represents a sensitivity factor.

• It determines the direction of search for the weight wji(n).

• Differentiating both sides of Eq. (2) with respect to ej(n), we get

∂E(n)

∂ej(n)
= ej(n) (7)

14

• Differentiating Eq. (1) with respect to yj(n) yields

∂ej(n)

∂yj(n)
= −1 (8)

• Differentiating Eq. (5) with respect to vj(n), we get

∂yj(n)

∂vj(n)
= ϕ′

j(vj(n)) (9)

where ϕ′
j denotes the derivative of ϕj.

• Finally, differentiating (4) with respect to wji(n) yields

∂vj(n)

∂wji(n)
= yi(n). (10)

• Inserting these partial derivatives into (6) yields

∂E(n)

∂wji(n)
= −ej(n)ϕ′

j(vj(n))yi(n) (11)

15

• The correction ∆wji(n) applied to the weight wji(n) is defined by the
delta rule:

∆wji(n) = −η
∂E(n)

∂wji(n)
(12)

where η is the learning-rate parameter of the back-propagation algo-
rithm.

• The minus sign comes from using gradient descent in learning for mi-
nimizing the error E(n).

• Inserting (11) into (12) yields

∆wji(n) = ηδj(n)yj(n) (13)

where the local gradient is defined by

δj(n) = − ∂E(n)

∂vj(n)
= ej(n)ϕ′

j(vj(n)) (14)

• We note that a key factor in the calculation of the weight adjustment
∆wji(n) is the error signal ej(n) at the output of neuron j.

16

• This error signal depends on the location of the neuron in the MLP
network.

Case 1: Neuron j is an Output Node

• Computation of the error ej(n) is straightforward in this case.

• The desired response dj(n) for the neuron j is directly available.

• One can use the previous formulas (13) and (14).

Case 2: Neuron j is a Hidden Node

• Now there is no desired response available for neuron j.

• Question: how to compute the responsibility of this neuron for the error
made at the output?

17

• This is the credit-assignment problem discussed earlier.

• The error signal for a hidden neuron must be determined recursively in
terms of the error signals of all neurons connected to it.

• Here the development of the back-propagation algorithm gets complica-
ted.

yk(n)

−1

dk(n)

ek(n)

wj0(n) = bj(n)

wji(n)
vj(n)

φ(·)

y0 = +1

yi(n)

wk0(n) = bk(n)

wkj(n)
vk(n)

φ(·)

Neuron kNeuronj

+1

yj(n)

18

• Using Eq. (14), we may redefine the local gradient δj(n) for hidden
neuron j as follows:

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)
= − ∂E(n)

∂yj(n)
ϕ′

j(vj(n)) (15)

• The partial derivative ∂E(n)/∂yj(n) may be calculated as follows.

• From the figure we see that

E(n) =
1

2

∑
k∈C

e2
k(n), neuron k is an output node (16)

• Differentiating this with respect to the function signal yj(n) and using
the chain rule we get

∂E(n)

∂yj(n)
=

∑
k

ek
∂ek(n)

∂yj(n)
=

∑
k

ek
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
(17)

• From the figure we note that when the neuron k is an output node

ek(n) = dk(n)− yk(n) = dk(n)− ϕk(vk(n)) (18)
19

so that
∂ek(n)

∂vk(n)
= −ϕ′

k(vk(n)) (19)

• Figure shows also that the local field of neuron k is

vk(n) =
m∑

j=0

wkj(n)yj(n) (20)

where the bias term is again included as the weight wk0(n).

• Differentiating this with respect to yj(n) yields

∂vk(n)

∂yj(n)
= wkj(n) (21)

• Inserting these expressions into (17) we get the desired partial deriva-
tive

∂E(n)

∂yj(n)
= −

∑
k

ek(n)ϕ′
k(vk(n))wkj(n) = −

∑
k

δk(n)wkj(n)

(22)
20

• Here again δk(n) denotes the local gradient for neuron k.

• Finally, inserting (22) into (15) yields the back-propagation formula
for the local gradient δj(n):

δj(n) = ϕ′
j(vj(n))

∑
k

δk(n)wkj(n) (23)

• This holds when neuron j is hidden.

• Let us briefly study the factors in this formula:

– ϕ′
j(vj(n)) depends solely on the activation function ϕj(.) of the

hidden neuron j.

– The local gradients δk(n) require knowledge of the error signals
ek(n) of the neurons in the next (right-hand side) layer.

– The synaptic weights wkj(n) describe the connections of neuron
j to the neurons in the next layer to the right.

• We may summarize the results derived thus far in this section as follows:

21

• The correction ∆wji(n) of the weight connecting neuron i to neuron
j is described by Eq. (4.25) in book

• The local gradient δj(n) is computed from Eq. (14) of previous lecture
if neuron j lies in the output layer.

• If neuron j lies in the hidden layer, the local gradient is computed from
Eq. (23).

22

Back-Propagation Algorithm: (4.25) in Haykin

 Weight
correction
∆wij(n)

 =

 Learning
parameter

η

 Local
gradient
δj(n)

 Input signal
of neuron j

yi(n)

• The local gradient is given by

δj(n) = ej(n)ϕ′
j(vj(n)) (4.14)

when the neuron j is in the output layer.

• In the hidden layer, the local gradient is

δj(n) = ϕ′
j(vj(n))

∑
k

δk(n)wkj(n) (4.24)

computed recursively from the local gradients of the following layer,
back-propagating error

23

The Two Passes of Computation

• In applying the back-propagation algorithm, two distinct passes of com-
putation are distinguished.

• Forward pass

– The weights are not changed in this phase.

– The function signal appearing at the output of neuron j is com-
puted as

yj(n) = ϕ(vj(n)) (24)

– Here the local field vj(n) of neuron j is

vj(n) =
m∑

i=0

wji(n)yi(n) (25)

– In the first hidden layer, m = m0 is the number of input signals
xi(n), i = 1, . . . ,m0, and in Eq. (25)

yi(n) = xi(n)
24

– In the output layer, m = mL is the number of outputs Eq. (24).

– The outputs (components of the output vector) are denoted by

yj(n) = oj(n)

– These outputs are then compared with the respective desired res-
ponses dj(n), yielding the error signals ej(n).

– In the forward pass, computation starts from the first hidden layer
and terminates at the output layer.

25

• Backward pass

– In the backward pass, computation starts at the output
layer, and ends at the first hidden layer.

– The local gradient δ is computed for each neuron by passing
the error signal through the network layer by layer.

– The delta rule of Eq. (4.25) is used for updating the
synaptic weights.

– The weight updates are computed recursively layer by layer.

• The input vector is fixed through each round-trip (forward pass followed
by a backward pass).

• After this, the next training (input) vector is presented to the network.

26

Activation Function

• The derivative of the activation function ϕ(.) is needed in computing
the local gradient δ.

• Therefore, ϕ(.) must be continuous and differentiable.

• In MLP networks, two forms of sigmoidal nonlinearities are commonly
used as activation functions.

1. Logistic function

ϕ(v) =
1

1 + exp(−av)
, a > 0 and −∞ < v < ∞

For clarity, we have omitted here the neuron index j and the ite-
ration number n.

- The range of ϕ(v) and hence the output y = ϕ(v) always
lies in the interval 0 ≤ y ≤ 1.

27

The derivative of y = ϕ(v) can be expressed in terms of the
output y as

ϕ′(v) = ay(1− y)

- This formula allows writing the local gradient δj(n) in somewhat
simpler form.

If neuron j is an output node,

δj(n) = a[dj(n)− oj(n)]oj(n)[1− oj(n)]

The respective equation for a hidden node is given in Eq. (4.34)
in Haykin’s book.

28

2. Hyperbolic tangent function

ϕ(v) = a tanh(bv),

where a and b are positive constants.

- In fact, the hyperbolic tangent is just the logistic function resca-
led and biased.

Its derivative with respect to v is

ϕ′(v) = ab[1− tanh2(bv)] =
b

a
[a− y][a + y]

Using this, the local gradients of output neurons and hidden
neurons can be simplified to Eqs. (4.37) and (4.38).

29

Rate of Learning

• Back-propagation approximates steepest descent method.

• A small learning-rate parameter η leads to a slow learning rate.

• Generally, basic back-propagation suffers from very slow learning if the
network is large (several layers, a lot of nodes).

• On the other hand, choosing too large a learning parameter may lead
to oscillatory behavior.

• A simple method of improving the learning speed without oscillatory
behavior:

• Use a generalized delta rule including a momentum term:

∆wji(n) = α∆wji(n− 1) + ηδj(n)yi(n) (26)

• Here α is a positive momentum constant.

• If α = 0, the corresponding momentum term vanishes.
30

• Then Eq. (26) reduces to the standard delta rule derived earlier.

• The effect of the momentum term is analyzed somewhat in Haykin’s
book.

• The conclusions are:

1. The momentum constant should be in the interval 0 ≤ α < 1.

2. The momentum term tends to accelerate descent in steady down-
hill direction.

3. In directions where the partial derivative ∂E(t)/∂wji(t) oscillates
in sign, the momentum term has a stabilizing effect.

• In deriving the back-propagation algorithm, it was assumed that the
learning parameter η is a constant.

• In practice, it is better to use a connection-dependent learning para-
meter ηij.

• This will be discussed later.

31

Sequential and Batch Modes of Training

• Recall that one complete presentation of the entire training set is called
an epoch.

• The learning process is continued over several/many epochs.

• Learning is stopped when the weight values and biases stabilize, and
the average squared error converges to some minimum value.

• It is useful to present the training samples in a randomized order during
each epoch.

• In back-propagation, one may use either sequential (on-line, stochastic)
or batch learning mode.

32

1. Sequential Mode

• The weights are updated after presenting each training example (input
vector).

• The derivation before was given for this mode.

2. Batch Mode

• Here the weights are updated after each epoch only.

• All the training examples are presented once before updating the weights
and biases.

33

• In batch mode, the cost function is the average squared error

Eav =
1

2N

N∑
n=1

∑
j∈C

e2
j(n) (27)

• The synaptic weight is updated using the batch delta rule

∆wji = −η
∂Eav

∂wji

= − η

N

N∑
n=1

ej(n)
∂ej(n)

∂wji

(28)

• The partial derivative ∂ej(n)/∂wji may be computed as in the sequen-
tial mode.

• Advantages of sequential mode:

- requires less storage
- less likely to get trapped in a local minimum.

• Advantages of the batch mode:

- Provides an accurate estimate of the gradient vector.
- Convergence to a local minimum at least is guaranteed.

34

• The sequential mode of back-propagation has several disadvantages.

• In spite of that, it is highly popular for two important practical reasons:

– The algorithm is simple to implement.

– It provides effective solutions to large and difficult problems.

35

Stopping Criteria

• In general, the back-propagation algorithm cannot be shown to con-
verge.

• There are no well-defined criteria for stopping its operation.

• However, there are reasonable practical criteria for terminating lear-
ning.

• Consider first the unique properties of a local or global minimum of
the error surface.

• Denote by w∗ a weight vector at a local or global minimum.

• Necessary condition: the gradient vector g(w) vanishes at the mini-
mum point w∗.

• This yield the following criterion for the convergence of back-propagation
learning:

36

• Stop learning when the Euclidean norm ‖ g(w) ‖ of the gradient vector
is below a certain threshold.

• Drawbacks of this stopping criterion:
- Learning times may be long.
- Requires computation of the gradient vector g(w).

• Another criterion is based on the stationarity of the average squared
error measure Eav at the point w = w∗:

• Stop learning when the absolute rate of change in the average squared
error per epoch is sufficiently small.

• A small rate of change is usually taken to be 0.1% - 1% per epoch.

• This criterion may result in a premature termination of the learning
process.

• Another useful, theoretically sound criterion for convergence: test the
generalization performance of the network.

• This is discussed later on in Section 4.14.

37

	Multilayer Perceptrons
	Introduction
	Some preliminaries
	Back-Propagation Algorithm

