3.4 Linear Least-Squares Filter

- Two characteristics of *linear least-squares filter:*
 - 1. The filter is built around a single linear neuron.
 - 2. The cost function is the sum of error squares, as defined in the Gauss-Newton method.
- The error of the input vector $\mathbf{x}(i)$ at time n is (section 3.2)

$$e(i) = d(i) - \mathbf{x}^{T}(i)\mathbf{w}(n)$$

• Collecting these equations into matrix-vector form yields

$$\mathbf{e}(n) = \mathbf{d}(n) - \mathbf{X}(n)\mathbf{w}(n)$$

where $\mathbf{d}(n)$ is the $n \times 1$ desired response vector:

$$\mathbf{d}(n) = [d(1), d(2), \dots, d(n)]^T$$

and $\mathbf{X}(n)$ is the $n \times m$ data matrix:

$$\mathbf{X}(n) = \begin{bmatrix} \mathbf{x}(1), \mathbf{x}(2), \dots, \mathbf{x}(n) \end{bmatrix}^T$$

• The Jacobian of the error vector $\mathbf{e}(n)$ with respect to the weight vector $\mathbf{w}(n)$ is simply

$$\mathbf{J}(n) = -\mathbf{X}(n)$$

• Substituting this into the Gauss-Newton iteration formula yields the linear least-squares filter

$$\mathbf{w}(n+1) = [\mathbf{X}^T(n)\mathbf{X}(n)]^{-1}\mathbf{X}^T(n)\mathbf{d}(n) = \mathbf{X}^+(n)\mathbf{d}(n)$$

where

$$\mathbf{X}^{+}(n) = [\mathbf{X}^{T}(n)\mathbf{X}(n)]^{-1}\mathbf{X}^{T}(n)$$

is the *pseudoinverse* of $\mathbf{X}(n)$.

• The $n \times m$ matrix $\mathbf{X}(n)$ has usually not a standard inverse.

Wiener Filter

- Assume now that the input vectors $\mathbf{x}(i)$ and the desired responses d(i) are *stationary*.
- This means that their statistical properties do not depend on the time instant *i*.
- Then expectations (ensemble averages) can be computed from long-term sample or time averages.
- In particular, the following second-order statistics are used:
- The correlation matrix $\mathbf{R}_x = \mathsf{E}[\mathbf{x}(i)\mathbf{x}^T(i)]$ of the inputs $\mathbf{x}(i)$.
- The cross-correlation vector $\mathbf{r}_{xd} = \mathsf{E}[\mathbf{x}(i)d(i)]$ between the input vector $\mathbf{x}(i)$ and the desired response d(i).
- Using the stationarity assumption, the correlation matrix can be com-

puted from the formula

$$\mathbf{R}_x = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mathbf{x}(i) \mathbf{x}^T(i) = \lim_{n \to \infty} \frac{1}{n} \mathbf{X}^T(n) \mathbf{X}(n)$$

Similarly, the cross-correlation vector becomes

$$\mathbf{r}_{xd} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}(i) d(i) = \lim_{n \to \infty} \frac{1}{n} \mathbf{X}^{T}(n) \mathbf{d}(n)$$

• Using these formulas, the linear least-squares (pseudoinverse) solution to the filtering problem can be expressed in the form

$$\mathbf{w}_o = \lim_{n \to \infty} \mathbf{w}(n+1) = \mathbf{R}_x^{-1} \mathbf{r}_{xd}$$

• This is called the Wiener filter.

3.5 Least-Mean-Square Algorithm

- Wiener filter requires the knowledge or estimation of the correlation matrix \mathbf{R}_x and the cross-correlation vector \mathbf{r}_{xd} .
- The least-mean-square (LMS) algorithm is a simple adaptive way to estimate the Wiener filter.
- It uses the *instantaneous values* of the cost function:

$$\mathcal{E}(\mathbf{w}) = \frac{1}{2}e^2(n)$$

where e(n) is the error signal at time n.

• One can easily derive the result

$$\frac{\partial \mathcal{E}(\mathbf{w})}{\partial \mathbf{w}(n)} = -\mathbf{x}(n)e(n) = \hat{\mathbf{g}}(n)$$

where $\hat{\mathbf{g}}(n)$ is the instantaneous estimate for the gradient vector at time n.

• Using this estimate for the gradient vector in the method of steepest descent yields the LMS algorithm

$$\hat{\mathbf{w}}(n+1) = \hat{\mathbf{w}}(n) + \eta \mathbf{x}(n) e(n).$$

- LMS algorithm is a standard tool in adaptive signal processing.
- LMS algorithm is a *stochastic gradient algorithm*.
- After convergence, $\hat{\mathbf{w}}(n)$ fluctuates randomly around the correct Wiener solution.

Summary of LMS algorithm

- Training sample: Input signal vector $= \mathbf{x}(n)$ Desired response = d(n)
- User selected parameter: η
- Initialization. Set $\hat{\mathbf{w}}(0) = 0$
- Computation. For $n = 1, 2, \ldots$ compute

$$e(n) = d(n) - \hat{\mathbf{w}}^T(n)\mathbf{x}(n)$$
$$\hat{\mathbf{w}}(n+1) = \hat{\mathbf{w}}(n) + \eta \mathbf{x}(n)e(n)$$

• The LMS algorithm converges near the correct Wiener solution if the learning parameter satisfies the condition

$$0 < \eta < \frac{2}{\mathsf{tr}[\mathbf{R}_x]}$$

- Here $tr[\mathbf{R}_x]$ denotes the trace of the correlation matrix \mathbf{R}_x .
- Generally, the trace of a square matrix is the sum of its diagonal elements.
- Therefore, tr[\mathbf{R}_x] can be estimated easily by computing the average of $\mathbf{x}^T(i)\mathbf{x}(i)$, or squares of the inputs.

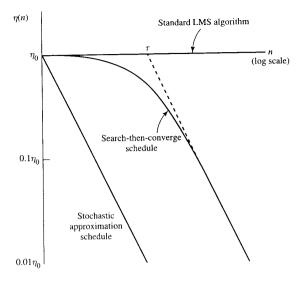
Properties of the LMS Algorithm

- Computationally simple.
- Model independent, leading to *robustness*.
- Robustness: small model uncertainties result in small estimation errors.
- It has recently been shown that the LMS algorithm minimizes the maximum possible estimation error.
- In practice, LMS algorithm is often used for tracking nonstationary variations in the input data.
- On the other hand, the LMS algorithm converges slowly.
- It is also sensitive to the condition number (eigenvalue spread) of the data correlation matrix \mathbf{R}_x .
- Typically the learning parameter of the LMS algorithm is chosen to be a suitable constant $\eta(n) = \eta_0$ for all n.

• In a stationary environment, a better strategy is to use a variable learning rate

$$\eta(n) = \frac{\eta_0}{1 + n/\tau}$$

- Using the search time constant τ allows the algorithm first get fairly close to the correct solution.
- After this, the decreasing $\eta(n)$ makes the algorithm converge closer to the optimal solution.
- A similar time-varying learning parameter $\eta(n)$ is useful also in other stochastic gradient algorithms.

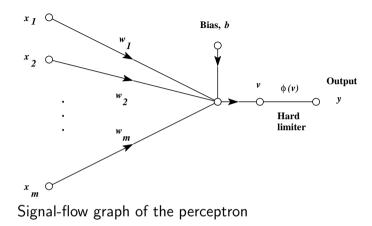


3.8 Perceptron

- Whereas the LMS algorithm uses a linear neuron, Rosenblatt's *percept-ron* is built around a nonlinear neuron.
- It uses the classic *McCulloch-Pitts neuron model* discussed briefly in Chapter 1.
- This consists of a linear combiner followed by a hard limiter (signum function).
- The output of the neuron is thus either +1 or -1.
- The hard limiter input or induced local field of the neuron is

$$v = \sum_{i=1}^{m} w_i x_i + b$$

Inputs

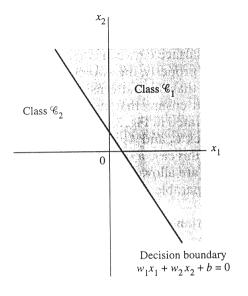


• The goal of the perceptron is to correctly classify the set of inputs x_1, x_2, \ldots, x_m into one of two classes, C_1 or C_2 .

- The decision rule is: assign the point represented by the inputs x_1, x_2, \ldots, x_m to:
 - class \mathcal{C}_1 if the perceptron output y is +1;
 - class C_2 if the output y is -1.
- In the simplest form of the perceptron, there are two decision regions corresponding to classes C_1 and C_2 .
- They are separated by a *hyperplane* defined by the equation

$$\sum_{i=1}^m w_i x_i + b = 0.$$

• An example for the case of two input variables x_1 and x_2 .



- In this case, the hyperplane becomes a straight line.
- A nonzero bias merely shifts the decision boundary (hyperplane) away from the origin.

3.9 Perceptron Convergence Theorem

- In the following, an error-correction type learning algorithm is derived for the perceptron.
- It is more convenient to work with $(m+1)\mbox{-dimensional}$ augmented input column vector

$$\mathbf{x}(n) = [+1, x_1(n), x_2(n), \dots, x_m(n)]^T$$

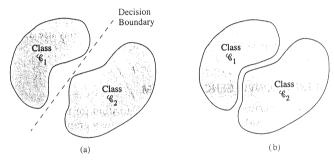
and the respective augmented weight vector

$$\mathbf{w}(n) = [b(n), w_1(n), w_2(n), \dots, w_m(n)]^T.$$

- Here the bias b(n) is treated as a synaptic weight $w_0(n)$ driven by a fixed input $x_0(n) = 1$.
- Then the linear combiner output (local field) is simply

$$v(n) = \mathbf{w}^{T}(n)\mathbf{x}(n) = \sum_{i=0}^{m} w_{i}(n)x_{i}(n)$$
16

- For fixed n, the equation $\mathbf{w}^T \mathbf{x} = 0$ defines a hyperplane.
- This is the decision surface between the two input classes.
- The perceptron functions properly if the two classes C_1 and C_2 are *linearly separable* by some hyperplane.



• See figure; in case (b), there does not exist any separating hyperplane (a line in the 2-dimensional case shown here).

- Assume now that the input variables of the perceptron originate from two linearly separable classes.
- Denote by $\mathbf{x}_1(1), \mathbf{x}_1(2), \ldots$ the subset of training vectors belonging to the class \mathcal{C}_1 .
- Respectively, the training vectors $\mathbf{x}_2(1),\mathbf{x}_2(2),\ldots$ come from the class $\mathcal{C}_2.$
- The total training set is the union of these sets.
- The perceptron learning algorithm adjusts the weight vector **w** until a separating hyperplane is found.
- $\bullet\,$ After convergence, the weight vector ${\bf w}$ satisfies the conditions

 $\mathbf{w}^T \mathbf{x} > 0$ for every input vector $\mathbf{x} \in \mathcal{C}_1$

 $\mathbf{w}^T \mathbf{x} \leq 0$ for every input vector $\mathbf{x} \in \mathcal{C}_2$

• The algorithm for adapting the weight vector of the elementary perceptron may now be formulated as follows: 1. If the *n*-th training vector $\mathbf{x}(n)$ is correctly classified by the weight vector $\mathbf{w}(n)$ computed at the *n*-th iteration, no correction is made:

$$\mathbf{w}(n+1) = \mathbf{w}(n), \text{ if } \mathbf{w}^T \mathbf{x}(n) > 0 \text{ and } \mathbf{x}(n) \in \mathcal{C}_1$$
$$\mathbf{w}(n+1) = \mathbf{w}(n), \text{ if } \mathbf{w}^T \mathbf{x}(n) \le 0 \text{ and } \mathbf{x}(n) \in \mathcal{C}_2$$

- 2. Otherwise, the weight vector $\mathbf{w}(n)$ is updated using the rule $\mathbf{w}(n+1) = \mathbf{w}(n) - \eta(n)\mathbf{x}(n)$ if $\mathbf{w}^T(n)\mathbf{x}(n) > 0$ and $\mathbf{x}(n) \in C_2$ $\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n)$ if $\mathbf{w}^T(n)\mathbf{x}(n) \leq 0$ and $\mathbf{x}(n) \in C_1$ Here again $\eta(n)$ is a positive learning-rate parameter.
- If $\eta(n) = \eta > 0$ is a constant, this learning algorithm is called a *fixed increment adaptation rule* for the perceptron.
- One can prove that the fixed increment rule *always converges* to a separating weight vector for linearly separable classes.
- The proof can be found in Haykin's book, pp. 139-141.

- The convergence takes place in a *finite* number of iterations.
- The separating weight vector is not unique.
- Another variant of perceptron learning algorithm: *absolute error correction procedure.*
- In this algorithm, the learning parameter $\eta(n)$ is variable.
- It is defined as the smallest integer for which

 $\eta(n) \parallel \mathbf{x}(n) \parallel^2 > \mid \mathbf{w}^T(n)\mathbf{x}(n) \mid$

- Assume that the inner product $\mathbf{w}^T(n)\mathbf{x}(n)$ at iteration n has an incorrect sign.
- Using this procedure $\mathbf{w}^T(n+1)\mathbf{x}(n)$ at iteration n+1 would have a correct sign.
- The absolute error procedure can be realized using standard fixed increment adaptation.

- This is done by showing each pattern $\mathbf{x}(i)$ repeatedly to the perceptron until $\mathbf{x}(i)$ is classified correctly.
- The quantized response of the perceptron

$$y(n) = \operatorname{sgn}[\mathbf{w}^T(n)\mathbf{x}(n)]$$

is written compactly using the signum function sgn(.)

- Recall that sgn(v) = +1, if v > 0; sgn(v) = -1, if v < 0.
- The quantized desired response is used: d(n) = +1 if $\mathbf{x}(n)$ belongs to the class C_1 ; d(n) = -1 if $\mathbf{x}(n) \in C_2$.
- This allows to write the adaptation algorithm compactly in the form of the error-correction learning rule

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)[d(n) - y(n)]\mathbf{x}(n)$$

• Here the learning parameter is a positive constant limited to the range $0 < \eta \leq 1$.

- A small learning parameter η provides stable weight vector estimates by averaging the input data.
- However, then the algorithm responds slowly to statistical variations in the input data.

Summary of the Perceptron Convergence Algorithm

Variables and parameters:

$$\begin{split} \mathbf{x}(n) &= (m+1)\text{-by-1 input vector} \\ &= [+1, x_1(n), x_2(n), \dots, x_m(n)]^T \\ \mathbf{w}(n) &= (m+1)\text{-by-1 weight vector} \\ &= [b(n), w_1(n), w_2(n), \dots, w_m(n)]^T \\ b(n) &= \text{bias} \\ y(n) &= \text{actual response (quantized)} \end{split}$$

$$d(n) =$$
 desired response

$$\eta$$
 = learning-rate parameter, a positive constant less than unity

- 1. Initialization. Set $\mathbf{w}(0) = 0$. Then perform the following computations for time step n = 1, 2, ...
- 2. Activation. At time step n activate the perceptron by applying continuous-valued input vector $\mathbf{x}(n)$ and desired response d(n)
- 3. Computation of actual reponse.

$$y(n) = \operatorname{sgn}[\mathbf{w}^T(n)\mathbf{x}(n)]$$

 $\mathsf{sgn}(\cdot)$ is the signum function.

4. Adaptation of weight vector.

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta[d(n) - y(n)]\mathbf{x}(n)$$

where

$$d(n) = \begin{cases} +1 \text{ if } \mathbf{x}(n) \text{ belongs to class } \mathcal{C}_1 \\ -1 \text{ if } \mathbf{x}(n) \text{ belongs to class } \mathcal{C}_2 \end{cases}$$

5. Continuation. Increment time step n by one and go back to step 2.

3.10 Bayes Classifier and Perceptron

Bayes Classifier

- Bayes classifier is the classical optimal statistical classifier.
- It is discussed more thoroughly in our course "Principles of Pattern Recognition".
- Bayes classifier is needed also in neural computing, so we shall review it briefly in the following.
- It minimizes the average risk \mathcal{R} .
- Drawback: requires knowledge of the class distributions.
- This information is often not available in practice.

• For two classes C_1 and C_2 , the average risk is defined by

$$\mathcal{R} = c_{11}p_1 \int_{\mathcal{H}_1} f(\mathbf{x} \mid \mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{H}_2} f(\mathbf{x} \mid \mathcal{C}_2) d\mathbf{x}$$
$$+ c_{21}p_1 \int_{\mathcal{H}_2} f(\mathbf{x} \mid \mathcal{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{H}_1} f(\mathbf{x} \mid \mathcal{C}_2) d\mathbf{x}$$

- Here the various terms are defined as follows:
 - p_i is the a priori probability that the observation (pattern) vector **x** belongs to the class C_i . The sum of class probabilities $p_1 + p_2 = 1$.
 - c_{ij} is the cost of the decision that x belongs to the class C_i when it actually comes from the class C_j .
 - $f(\mathbf{x} | C_i)$ is the conditional probability density of the vectors \mathbf{x} belonging to the class C_i .
 - \mathcal{H}_i is a tentative decision region of the class \mathcal{C}_i . It is called also the *hypothesis* that the input vector \mathbf{x} comes from the class \mathcal{C}_i .

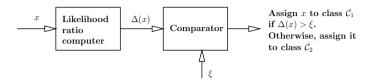
- The first two term of the risk \mathcal{R} represent correct decisions (classifications).
- Note: they are often omitted by setting the costs of correct classifications to zero: $c_{11} = c_{22} = 0$.
- The last two terms of the risk \mathcal{R} represent incorrect decisions (misclassifications).
- $\bullet\,$ The task is now to minimize the average risk ${\cal R}.$
- This leads to the following Bayes classification rule:
- Define the likelihood ratio of the class densities

$$\Lambda(\mathbf{x}) = \frac{f(\mathbf{x} \mid \mathcal{C}_1)}{f(\mathbf{x} \mid \mathcal{C}_2)}$$

and the threshold of the Bayes classifier

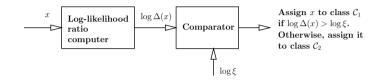
$$\xi = \frac{p_2(c_{12} - c_{22})}{p_1(c_{21} - c_{11})}.$$
27

If Λ(x) > ξ, assign the observation vector x to class C₁. Otherwise, assign it to class C₂.



- Note that all the data processing is involved in the computation of the likelihood ratio $\Lambda({\bf x}).$
- The prior probabilities and costs affect only the value of the threshold $\xi.$
- Note that both $\Lambda(\mathbf{x})$ and ξ are positive.

- Therefore, Bayes classifier may as well be implemented by first taking logarithms of both these quantities.
- This log-likelihood ratio is often more convenient in practice.



Bayes Classifier for a Gaussian Distribution

• Consider now the special case of a two-class problem where both classes have a *multivariate Gaussian distribution*:

$$f(\mathbf{x} \mid C_i) = \kappa \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{C}_i^{-1}(\mathbf{x} - \mathbf{m}_i)\right]$$

The terms here have the following general meaning:

- $\mathbf{m}_i = \mathsf{E}[\mathbf{x} \mid \mathcal{C}_i]$ is the mean vector of the class \mathcal{C}_i .
- $\mathbf{C}_i = \mathsf{E}[(\mathbf{x} \mathbf{m}_i)(\mathbf{x} \mathbf{m}_i)^T \mid C_i]$ is the covariance matrix of the class C_i .
- κ is a scaling constant which normalises the multivariate Gaussian distribution to have a unit probability mass. It is defined by

$$\kappa = \ \frac{1}{(2\pi)^{m/2} [\mathsf{det}\mathbf{C}_i]^{1/2}}$$

– In κ , m is the dimensionality of the observation vector \mathbf{x} .

- In this specific classification problem, we make the following further assumption:
 - The classes \mathcal{C}_1 and \mathcal{C}_2 have the same covariance matrix $\mathbf{C}.$
 - \mathbf{C} is nonsingular (its inverse exists) and nondiagonal (variables are correlated).
 - The classes C_1 and C_2 are equiprobable: $p_1 = p_2 = 1/2$.
 - Misclassifications have the same cost $c_{21} = c_{12}$, and correct classifications have zero costs $c_{11} = c_{22} = 0$.
- It is now fairly easy to derive the Bayes classifier by inserting these values into its formula.

• After some manipulations, one gets (Haykin pp. 146-147)

$$y = \mathbf{w}^T \mathbf{x} + b$$

where:

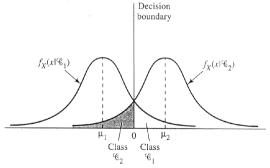
-
$$y = \log \Lambda(\mathbf{x})$$

- $\mathbf{w} = \mathbf{C}_i^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$

- b a constant given in Haykin's formula (3.87).
- The classification rule is simply: if y > 0, x belongs to the class C_1 , otherwise to the class C_2 .
- Thus the Bayes classifier reduces to a linear classifier in this Gaussian special case.

A Comparison with the Perceptron

- Perceptron is also a linear classifier.
- However, there are some important differences between the perceptron and the Bayes classifiers in Gaussian case.
- The perceptron assumes that the classes are linearly separable, while the Gaussian distributions of the two classes overlap each other and are not separable.



• The Bayes classifier minimizes the probability of the classification error. 33

- The shaded areas in the figure correspond to misclassifications.
- The perceptron convergence algorithm is *nonparametric*: it makes no assumptions on the underlying distributions.
- It may work well for non-Gaussian, heavily skewed input distributions.
- The Bayes classifier assumes Gaussian distributions (in the special case leading to the linear classifier), and is therefore *parametric*.
- The perceptron convergence algorithm is adaptive and simple to implement.

3.11 Summary and Discussion

- Both the perceptron and the LMS algorithms are based on errorcorrection learning.
- They can be used for a single neuron.
- The LMS algorithm uses a linear neuron.
- The perceptron uses a hard-limiting (signum) nonlinearity.
- The LMS algorithm is still used widely in adaptive signal processing.
- The perceptron algorithm is not used in practice currently.
- Reason: perceptron is not capable of making some global generalizations based on locally learned examples.
- Minsky and Papert (1969) showed this in their book.
- They conjectured that the same would hold also for multilayer perceptrons.

- This guess led to a decrease in interest in neural networks.
- Neural networks did not become important until in the mid-1980s.
- Both multilayer perceptrons (Chapter 4) and radial basis function networks (Chapter 5) overcome the limitations of the single-layer perceptron.