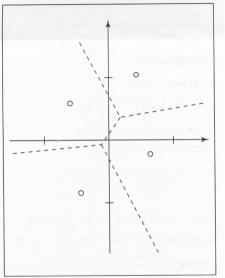
9.7 Learning Vector Quantization

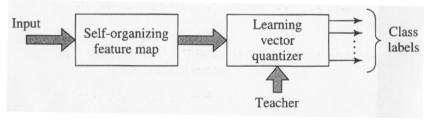
- In vector quantization, the data (input) space is divided into a number of distinct regions.
- For each region, a reconstruction vector is defined.
- For a new incoming data vector, its region is determined at first.
- The data vector is then represented by using the reproduction vector for that region.
- Using an encoded version of this reproduction vector, considerable savings in storage or transmission bandwidth can be realized.
- The collection of possible reproduction vectors is called the *code book* of the vector quantizer.
- Its members are called *code words*.
- A vector quantizer with minimum encoding distortion is called a *Vo-ronoi* or *nearest-neighbor quantizer*.

• *Voronoi cells* are partition cells provided by the nearest-neighbor rule based on the Euclidean metric.



• An example of 4 Voronoi cells with their associated reconstruction (Voronoi) vectors.

- The SOM method provides an approximate method for computing the Voronoi cells in an unsupervised manner.
- Computation of the SOM feature map can be viewed as the first stage of adaptively solving a pattern classification problem.
- The second stage is learning vector quantization, which fine tunes the SOM feature map.



- Learning vector quantization (LVQ) is a supervised learning technique.
- Using class information, it moves the Voronoi vectors slightly for improving the decision regions of the classifier.
- Take an input vector x at random from the data space.
- If the class labels of ${\bf x}$ and a Voronoi vector ${\bf w}$ agree, ${\bf w}$ is moved in the direction of ${\bf x}.$
- If the class labels of ${\bf x}$ and ${\bf w}$ are different, ${\bf w}$ is moved away from the input vector ${\bf x}.$
- Assumption: there are many more input (data) vectors $\mathbf{x}_1, \ldots, \mathbf{x}_N$ than Voronoi vectors $\mathbf{w}_1, \ldots, \mathbf{w}_l$ ($N \gg l$).

The Learning Vector Quantization (LVQ) algorithm:

- Suppose that the Voronoi vector \mathbf{w}_c is the closest to the input vector \mathbf{x}_i .
- Let $C_{\mathbf{w}_c}$ denote the class of \mathbf{w}_c and $C_{\mathbf{x}_i}$ the class of \mathbf{x}_i .
- The Voronoi vector \mathbf{w}_c is adjusted as follows:

– If the classes are the same: $\mathcal{C}_{\mathbf{w}_c} = \mathcal{C}_{\mathbf{x}_i}$, then

$$\mathbf{w}_c(n+1) = \mathbf{w}_c(n) + \alpha_n[\mathbf{x}_i - \mathbf{w}_c(n)]$$

– If the classes are different: $\mathcal{C}_{\mathbf{w}_c}
eq \mathcal{C}_{\mathbf{x}_i}$, then

$$\mathbf{w}_c(n+1) = \mathbf{w}_c(n) - \alpha_n[\mathbf{x}_i - \mathbf{w}_c(n)]$$

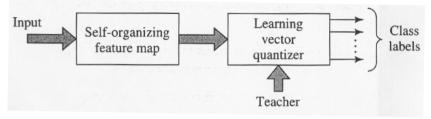
- The other (non-closest) Voronoi vectors are not changed.
- The learning parameter α_n usually decreases monotonically with the number of iterations n.

- For example, α_n may decrease linearly from its initial value 0.1.
- The Voronoi vectors typically converge after several epochs.

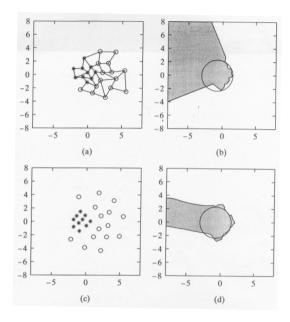
9.8 Computer Experiment: Adaptive Pattern Classification

- A pattern classification task can be divided into feature selection (extraction) and actual class assignment steps.
- In *feature selection*, a reasonably small set of features containing the essential information needed for classification is sought.
- This important step is usually performed using some unsupervised method.
- The self-organizing map is well suited to feature selection.
- It can extract nonlinear features describing the data.
- After feature extraction, any suitable classification method can be used.
- Usually some supervised classifier trained using known prototype patterns is applied for achieving the best performance.

• An adaptive hybrid pattern classification approach: SOM + LVQ.



- Recall the classification test problem introduced in Section 4.8.
- Two two-dimensional overlapping Gaussian distributed classes.



(a) Labeled twodimensional 5 × 5 SOM map after training.
(b) decision boundary given by SOM only.
(c) Labeled map after LVQ fine tuning.
(d) decision boundary given by combined use of SOM and LVQ.

• A comparison of Fig. a with c and Fig. b with d shows qualitatively the advantage of fine tuning using LVQ.

• Summary of the Classification Performances (percentage) for the Computer Experiment on Overlapping Two-Dimensional Gaussian Distribution Using 5×5 Lattice

SOM	Cascade combination
50101	of SOM and LVQ
79.05	80.18
79.79	80.56
79.41	81.17
79.38	79.84
80.30	80.43
79.55	80.36
79.79	80.86
78.48	80.21
80.00	80.51
80.32	81.06
79.61	80.52
	79.79 79.41 79.38 80.30 79.55 79.79 78.48 80.00 80.32

• The use of LVQ improves the performance in all the 10 trials.

- The average percentage of correct classification is:
 - 79.61% for SOM only
 - 80.52% for combined SOM and LVQ
 - 81.51% for the optimal Bayes classifier.

9.11 Summary and Discussion

- This section describes briefly some theoretical results derived for SOM.
- Generally, it is very difficult to analyze SOM rigorously.
- The results on convergence etc. are mainly for one-dimensional lattices only.