
T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 1

1. An odd sigmoid function is defined by

ϕ(v) =
1 − exp(−av)

1 + exp(−av)
= tanh(av/2),

where tanh denotes a hyperbolic tangent. The limiting values of this second sigmoid function are
−1 and +1. Show that the derivate of ϕ(v) with respect to v is given by

dϕ

dv
=

a

2
(1 − ϕ2(v)).

What is the value of this derivate at the origin? Suppose that the slope parameter a is made
infinitely large. What is the resulting form of ϕ(v)?

2. (a) Show that the McCulloch-Pitts formal model of a neuron may be approximated by a sigmoidal
neuron (i.e., neuron using a sigmoid activation function with large synaptic weights).

(b) Show that a linear neuron may be approximated by a sigmoidal neuron with small synaptic
weights.

3. Construct a fully recurrent network with 5 neurons, but with no self-feedback.

4. Consider a multilayer feedforward network, all the neurons of which operate in their linear regions.
Justify the statement that such a network is equivalent to a single-layer feedforward network.

5. (a) Figure 1(a) shows the signal-flow graph of a recurrent network made up of two neurons. Write
the nonlinear difference equation that defines the evolution of x1(n) or that of x2(n). These
two variables define the outputs of the top and bottom neurons, respectively. What is the
order of this equation?

(b) Figure 1(b) shows the signal-flow graph of a recurrent network consisting of two neurons with
self-feedback. Write the coupled system of two first-order nonlinear difference equations that
describe the operation of the system.

(b)(a)

-1
Z

-1
Z Z

-1
Z

-1

Figure 1: The signal-flow graphs of the two recurrent networks.

1

T-61.3030 Principles of Neural Computing

Answers to Exercise 1

1. An odd sigmoid function is defined as

ϕ(v) =
1 − exp(−av)

1 + exp(−av)
= tanh(av/2). (1)

The derivative:

dϕ

dv
=

a exp(−av)(1 + exp(−av)) + a exp(−av)(1 − exp(−av))

(1 + exp(−av))2

=
a(exp(−av) + exp(−2av) + exp(−av) − exp(−2av))

(1 + exp(−av))2

=
a

2

(1 + exp(−av))2 − (1 − exp(−av))2

(1 + exp(−av))2
=

a

2
(1 − ϕ2(v))

(2)

At the origin:

dϕ

dv

∣∣∣∣
v=0

=
a

2
(1 −

(
1 − exp(−a ∗ 0)

1 + exp(−a ∗ 0)

)2

=
a

2
. (3)

When a → ∞, ϕ(v) →






+1, v > 0
−1, v < 0

0, v = 0
(4)

Fig. 2 shows the values of the sigmoid function (1) with different values of a.

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

v

ph
i(v

)

a=1
a=2
a=5
a=20

Figure 2: Sigmoid function ϕ(v) with different values of a. The function behaves linearly near the origin.

2

2. (a) The McCulloch-Pitts formal of a neuron is defined as a threshold function:

ϕ(v) =

{
1, v ≥ 0
0, v < 0

, (5)

where vk =
∑m

j=1 wkjxj + bk, where wkj ’s are the synaptic weights and bk is the bias.

A sigmoid activation function on interval [0, 1] is e.g. σ(v) = 1/(1 + exp(−av)), where we
assume a > 0 without loss of generality.

When synaptic weights have large values, also |v| tends to have a large value:

lim
v→∞

σ(v) =
1

1 + exp(−av)

∣∣∣∣
v→∞

=
1

1 + 0
= 1

lim
v→−∞

σ(v) =
1

1 + exp(−av)

∣∣∣∣
v→−∞

=
1

1 −∞
= 0

(6)

(b) We expand the exp(−av) in Taylor series around point v = 0:

σ(v) =
1

1 + exp(−av)
=

1

1 + 1 − av +
(av)2

2!
−

(av)3

3!
+ · · ·

︸ ︷︷ ︸
≈ 0, for small values of v

≈
1

2(1 − av
2)

=
1

2

1 + av
2

1 +
(av)2

4︸ ︷︷ ︸
≈0

≈
1

2

(
1 +

av

2

)
= L(v) �

(7)

3

3. The fully recurrent network of 5 neurons.

4. A single neuron is depicted in Fig. 3

x1

xn

vk ykϕ

wk1

wkn

Σ

wk0

x0 = 1

Figure 3: A single sigmoidal neuron.

There the input vk to the nonlinearity ϕ is defined as vk =
∑n

j=0 wkjxj = wT
k x,

where x =
(
1 x1 · · · xn

)T
and wk =

(
wk0 · · · wkn

)T
.

When the neuron operates in its linear region, ϕ(v) ≈ αv and yk ≈ αwT
k x. For the whole layer,

this gives:

y =




y1

· · ·
ym



 ≈ α




wT

1 x

· · ·
wT

mx



 = α




wT

1

· · ·
wT

m



x = Wx, (8)

4

where

W = α




w10 · · · w1n

...
. . .

...
wm0 · · · wmn


 (9)

The whole network is constructed from these single layers:

W1 W2
x u1 u2

· · · yWN

and the output of the whole network is

y = WNuN−1 = WNWN−1uN−2 =

N∏

i=1

Wix. (10)

The product T =
∏N

i=1 Wi is a matrix of size m × n:

y = Tx =




t10 · · · t1n

...
. . .

...
tm0 · · · tmn


x =




tT
1

· · ·
tT
m



x, (11)

which is exactly the output of a single layer linear network having T as the weights �

5. (a) Fig. 4 shows the first signal-flow graph of a recurrent network made up of two neurons.

Z
−1

Z
−1

u2 x2

x1u1

Figure 4: The signal-flow graphs of the first recurrent network.

From the figure it is evident that

{
u1(n) = x2(n − 1)

u2(n) = x1(n − 1)
(12)

5

On the other hand:
{

x1(n) = ϕ(w1u1(n))

x2(n) = ϕ(w2u2(n))
(13)

By eliminating the ui’s, we get

{
x1(n) = ϕ(w1x2(n − 1)) = ϕ(w1ϕ(w2x1(n − 2)))

x2(n) = ϕ(w2x1(n − 1)) = ϕ(w2ϕ(w1x2(n − 2)))
(14)

These equations are 2nd order difference equations.

(b) Fig. 5 shows the second signal-flow graph of a recurrent network made up of two neurons.

Z
−1

Z
−1

x2

x1

u21

u11

u22

u12

Figure 5: The signal-flow graphs of the second recurrent network.

Again from the figure:






u11(n) = x1(n − 1)

u21(n) = x2(n − 1)

u12(n) = x1(n − 1)

u22(n) = x2(n − 1)

(15)

and
{

x1(n) = ϕ(w11u11(n) + w21u21(n))

x2(n) = ϕ(w12u12(n) + w22u22(n))
(16)

Giving two coupled first order equations:

{
x1(n) = ϕ(w11x1(n − 1) + w21x2(n − 1))

x2(n) = ϕ(w12x1(n − 1) + w22x2(n − 1))
(17)

6

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 2

1. The error-correction learning rule may be implemented by using inhibition to subtract the desired
response (target value) from the output, and then applying the anti-Hebbian rule. Discuss this
interpretation of error-correction learning.

2. Figure 6 shows a two-dimensional set of data points. Part of the data points belongs to class C1

and the other part belongs to class C2. Construct the decision boundary produced by the nearest
neighbor rule applied to this data sample.

3. A generalized form of Hebb’s rule is described by the relation

∆wkj(n) = αF (yk(n))G(xj(n)) − βwkj(n)F (yk(n))

where xj(n) and yk(n) are the presynaptic and postsynaptic signals, respectively; F (·) and G(·)
are functions of their respective arguments; and ∆wkj(n) is the change produced in the synaptic
weight wkj at time n in response to the signals xj(n) and yj(n). Find the balance point and the
maximum depression that are defined by this rule.

4. An input signal of unit amplitude is applied repeatedly to a synaptic connection whose initial value
is also unity. Calculate the variation in the synaptic weight with time using the following rules:

(a) The simple form of Hebb’s rule described by

∆wkj(n) = ηyk(n)xj(n)

assuming the learning rate η = 0.1.

(b) The covariance rule described by

∆wkj = η(xj − x)(yk − y)

assuming that the time-averaged values of the presynaptic signal and postsynaptic signal are
x = 0 and y = 1.0, respectively.

5. Formulate the expression for the output yj of neuron j in the network of Figure 7. You may use
the following notations:

xi = ith input signal

wji = synaptic weight from input i to neuron j

ckj = weight of lateral connection from neuron k to neuron j

vj = induced local field of neuron j

yj = ϕ(vj)

What is the condition that would have to be satisfied for neuron j to be the winning neuron?

7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y

x

Figure 6: Data point belonging to class C1 and C2 are plotted with ’x’ and ’*’, respectively.

Figure 7: Simple competitive learning network with feedforward connections from the source nodes to
the neurons, and lateral connections among the neurons.

8

T-61.3030 Principles of Neural Computing

Answers to Exercise 2

1. In the error correction learning, a desired output dk(n) is learned to mimick by the outputs yk(n)
of the learning system. This is achieved by minimizing a cost function or index of performance,
E(n), which is defined in terms of the error signal

E(n) =
1

2
e2

k(n), (18)

where ek(n) = dk(n)−yk(n) is the difference between the desired output and the kth neuron output
to input signal x(n).

E(n) can be minimized using a gradient descent method:

wkj(n + 1) = wkj(n) + ∆wkj(n), (19)

where ∆w = −η∇E. In ∇E the partial differentials are ∂E/∂wkj = 2 · 1
2eke′k = −eky′

k = −ekxj ,

because yk =
∑N

j=1 wkjxj .

Thus (19) gives for the particular wkj an update:

∆wkj = ηekxj = η(dk − yk)xj (20)

On the other hand, the Anti-Hebbian learning rule weakens positively correlated presynaptic and
postsynaptic connections, and strengthens the negatively correlated signals:

∆wkj = −ηykxj (21)

The update rule (20) of error-correction learning can be interpreted as Anti-Hebbian learning, when
the output of the Anti-Hebbian system is set to be the error −ek:

∆wkj = −η(output)(input) = −η(yk − dk)xj (22)

2. Let x = (x1, x2) and y = (y1, y2) denote two points belonging to different classes. Then the decision
boundary between the points is the line of points z = (z1, z2), to which the Euclidean distance from
both these points is equal:

d(z,x) = d(z,y)

(z1 − x1)
2 + (z2 − x2)

2 = (z1 − y1)
2 + (z2 − y2)

2

z2
1 + z2

2 + x2
1 + x2

2 − 2z1x1 − 2z2x2 = z2
1 + z2

2 + y2
1 + y2

2 − 2z1y1 − 2z2y2

2(y2 − x2)︸ ︷︷ ︸
α

z2 + 2(y1 − x1)︸ ︷︷ ︸
β

z1 + x2
1 + x2

2 − y2
1 − y2

2︸ ︷︷ ︸
γ

= 0

αz2 + βz1 + γ = L = 0,

(23)

which is a line in z1z2 space.

The gradient ∇L is parallel to the line connecting the points x and y i.e. ∇L||y−x. On the other
hand, on the line there is a point z′ lying exactly in the middle of y− x that is αz′2 + βz′1 + γ = 0,
when z′ =

(
x1+y1

2 , x2+y2

2

)
,

which is verified by inserting them in (23):

2(y2 − x2)
1

2
(y2 + x2) + 2(y1 − x1)

1

2
(y1 + x1) + γ

y2
2 − x2

2 + y2
1 − x2

1︸ ︷︷ ︸
−γ

+γ = 0 (24)

9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y

x .

Figure 8: Data oint belonging to class C1 and C2 are plotted with ’x’ and ’*’, respectively.

3. A generalized form of Hebb’s rule is described by the relation

∆wkj(n) = αF (yk(n))G(xj(n)) − βwkj(n)F (yk(n)) (25)

= F (yk(n))[αG(xj(n)) − βwkj(n)] (26)

(a) At the balance point the weights do not change:

wkj(n + 1) = wkj(n), (27)

meaning that the difference ∆wkj = wkj(n + 1) − wkj(n) = 0. Using (26), and neglecting the
trivial solution F (yk(n)) = 0, we get αG(xj(n)) − βwkj(n) = 0 and the balance point

wkj(∞) =
α

β
G(xj(n)) (28)

(b) When calculating the maximum depression, we assume that α, β, F (·), G(·) and w ≥ 0. Then
the maximum depression is achieved, when α = 0 and

∆wkj(n) = −βwkj(n)F (yk(n)) (29)

10

4. x(n) = 1, for all n > 0. As well the initial weight w(1) = 1.

(a) The update follows the simple Hebb rule: ∆wkj(n) = ηyk(n)xj(n), with learning rate η = 0.1:

wkj(1) = 1

yk(1) = wkj(1)xj(1) = 1 × 1 = 1

∆wkj(1) = 0.1 × 1 = 0.1

wkj(2) = wkj(1) + ∆wkj(1) = 1 + 0.1 = 1.1

yk(2) = 1.1 × 1 = 1.1

∆wkj(2) = 0.11

...

wkj(n) = (1 + η)n−1

...

wkj(∞) = ∞

(30)

(b) The covariance rule ∆wkj(n) = η(xj − x̄)(yk − ȳ), where we assume the averages x̄ = 0 and
ȳ = 1. Note that we do not update the averages during learning!

Introducing the average values gives: ∆wkj(n) = 0.1(wkj(n) − 1). Iterating:

wkj(1) = 1

∆wkj(1) = 0

wkj(2) = 1

∆wkj(2) = 0

...

wkj(n) = 1, for all n

(31)

11

5. In the figure, wji means a forward connection from the source node i to the neuron j, and cjk is
the lateral feedback connection from the neuron k to neuron j.

2

3

1

c31

w31

x1

x2

x3

x4 y3

y2

y1

Output of the neuron j is

yj = ϕ(vj), where

vj =
4∑

i=1

wjixi +
3∑

k=1

cjkyk, j = 1, · · · 3.
(32)

Since there are no self-feedbacks, cjj = 0, j = 1, · · · 3 i.e

vj =

4∑

i=1

wjixi +

3∑

k=1,k 6=j

cjkyk, j = 1, · · · 3. (33)

The winning neuron is defined to be the neuron having the largest output. Thus, the neuron j is a
winning neuron iff yj > yk, for all k 6= j.

12

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 3

1. To which of the two paradigms, learning with a teacher and learning without a teacher, do the
following algorithms belong? Justify your answers.

(a) nearest neighbor rule

(b) k-nearest neighbor rule

(c) Hebbian learning

(d) error-correction learning

2. Consider the difficulties that a learning machine faces in assigning credit for the outcome (win, loss,
or draw) of a game of chess. Discuss the notations of temporal credit assignment and structural
credit assignment in the context of this game.

3. A supervised learning task may be viewed as a reinforcement learning task by using as the rein-
forcement signal some measure of the closeness of the actual response of the system to the desired
response. Discuss this relationship between supervised learning and reinforcement learning.

4. Heteroassociative memory M, a matrix of size c×d, is a solution to the following group of equation
systems:

Mxj = yj , j = 1, . . . , N,

where xj is the jth input vector of size d × 1 and yj is the corresponding desired output vector of
size c × 1. The ith equation of the jth equation system can be written as follows:

mT
i xj = yij ,

where mT
i = [mi1, mi2, . . . , mid]. Derive a gradient method which minimizes the following sum of

squared errors:

N∑

j=1

(mT
i xj − yij)

2.

How it is related to the LMS-algorithm (Widrow-Hoff rule)?

5. Show that M = Y(XT X)−1XT is a solution to the following group of equation systems:

Mxj = yj , j = 1, . . . , N.

Vectors xj and yj are the jth columns of matrixes X and Y, respectively.

13

T-61.3030 Principles of Neural Computing

Answers to Exercise 3

1. Learning with a teacher (supervised learning) requires the teaching data (the prototypes) to be
labeled somehow. In unsupervised learning (learning without a teacher) labeling is not needed, but
the system tries to model the data the best it can.

(a) and (b) Nearest neighbour and k-nearest neighbour learning rules belong clearly to the ”learning with
a teacher” paradigm as a teacher is required to label the prototypes.

(c) Error-correction learning is usually used in a supervised manner, i.e. it usually belongs to
the ”learning with a teacher” paradigm: typically the desired response is provided with the
prototype inputs.

It is also possible to use the error-correction learning in an unsupervised manner, without a
teacher using the input as the desired output of the system. An example of this kind is the
bottle-neck coding (less hidden neurons than input / output neurons, M < n) of the input
vectors (see the figure below).

x x̂

N
output neurons

M
hidden neurons

input neurons
N

y

(d) Hebbian learning belongs to the ”learning without a teacher” as no desired response is required
for updating the weights.

2. The outcome of the game depends on the moves selected; the moves themselves typically depend
on a multitude of internal decisions made by the learning system.

The temporal credit assignment problem is to assign credit to moves based on how they changed
the expected outcome of the game (win, draw, loose).

On the other hand, the structural credit assignment concerns the credit assigment of internal
decisions: which internal decision rules / processes were responsible for the good moves and which
of the worse moves. The credit assignment to moves is thereby converted into credit assignments
to internal decisions.

3. Let f(n) denote a reinforcement signal providing a measure of closeness of the actual response y(n)
of a ninlinear system to the desired response d(n). For example, f(n) might have three possible
values:

(a) f(n) = 0 , if y(n) = d(n),

(b) f(n) = a , if |y(n) − d(n)| is small,

(c) f(n) = b , if |y(n) − d(n)| is large.

This discards some of the information making the learning task actually harder. A longer learning
time is thus expected, when supervised learning is done using reinforcement learning (RL).

14

The reason for studying renforcement learning algorithms is not that they offer the promise of
fastest learning in supervised learning tasks, but rather it is because there are certain tasks that
are naturally viewed as RL tasks, but not as supervised learning tasks. It may also happen that a
teacher is not available to provide a desired response.

4. The error function to be minimised is

E(mi) =
1

2

N∑

j=1

(
mi

Txj − yij

)2
. (34)

The partial differentials:

∂E(mi)

∂mik
=

1

2

N∑

j=1

2
(
mi

Txj − yij

) ∂

∂mik

d∑

l=1

milxjl

︸ ︷︷ ︸
6=0, if l=k

=

N∑

j=1

(
mi

T xj − yij

)
xjk.

(35)

∇E(mi) =




...
∂E(mi)
∂mik

...


 . (36)

A gradient method minimising (34) is

mi
new = mi

old − α∇E(mi
old) = mi

old − α

N∑

j=1

(
mi

oldT

xj − yij

)
xj . (37)

The Widrow-Hoff learning rule also minimises (34) in the following way:

mi
new = mi

old − α
(
mi

oldT

xj − yij

)
xj . (38)

The Widrow-Hoff learning rule (38) can be considered to be an on-line version of the Heteroassocia-
tive memory rule (37): the weights are updated after each single output pair. The Heteroassociative
rule may propvide faster convergence, but the Widrow-Hoff rule is simplerand the learning system
can adapt to some extent to slow changes (non-stationarities) in the data.

5. A group of equation systems Mxj = yj , j = 1, . . . , N can be written in a matrix form in the
following way:

(
Mx1 Mx2 . . . MxN

)
=
(
y1 y2 . . . yN

)
(39)

MX = Y (40)

Introducing M = Y (XT
X)−1

X
T to (39), gives

MX = Y (XT
X)−1

X
T
X = Y � (41)

15

Matrix M̂ = Y X
+, where X

+ is the pseudoinverse of X, minimises the error of linear associator
M , E(M) = 1

2

∑N
j=1 ||Mxj − yj ||

2.

Every matrix has a pseudoinverse and if the columns of the matrix are linearly independent (un-
correlated) it is exactly X

+ = (XT
X)−1

X
T . As it was shown above, the association is perfect,

when M = Y X
+.

16

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 4

1. Let the error function be

E(w) = w2
1 + 10w2

2,

where w1 and w2 are the components of the two-dimensional parameter vector w. Find the minimum
value of E(w) by applying the steepest descent method. Use w(0) = [1, 1]T as an initial value for
the parameter vector and the following constant values for the learning rate:

(a) α = 0.04

(b) α = 0.1

(c) α = 0.2

(d) What is the condition for the convergence of this method?

2. Show that the application of the Gauss-Newton method to the error function

E(w) =
1

2

[
δ‖w − w(n)‖2 +

n∑

i=1

e2
i (w)

]

yields the the following update rule for the weights:

∆w = −
[
JT (w)J(w) + δI

]−1
JT (w)e(w).

All quantities are evaluated at iteration step n. (Haykin 3.3)

3. The normalized LMS algorithm is described by the following recursion for the weight vector:

ŵ(n + 1) = ŵ(n) +
ηe(n)x(n)

‖x(n)‖2
,

where η is a positive constant and ‖x(n)‖ is the Euclidean norm of the input vector x(n). The
error signal e(n) is defined by

e(n) = d(n) − ŵ(n)
T
x(n),

where d(n) is the desired response. For the normalized LMS algorithm to be convergent in the
mean square, show that 0 < η < 2. (Haykin 3.5)

4. The ensemble-averaged counterpart to the sum of error squares viewed as a cost function is the
mean-square value of the error signal:

J(w) =
1

2
E[e2(n)] =

1

2
E[(d(n) − xT (n)w)2].

(a) Assuming that the input vector x(n) and desired response d(n) are drawn from a stationary
environment, show that

J(w) =
1

2
σ2

d − rT
xdw +

1

2
wTRxw,

where σ2
d = E[d2(n)], rxd = E[x(n)d(n)], and Rx = E[x(n)xT (n)].

17

(b) For this cost function, show that the gradient vector and Hessian matrix of J(w) are as follows,
respectively:

g = −rxd + Rxw and

H = Rx.

(c) In the LMS/Newton algorithm, the gradient vector g is replaced by its instantaneous value.
Show that this algorithm, incorporating a learning rate parameter η, is described by

ŵ(n + 1) = ŵ(n) + ηR−1
x x(n)

[
d(n) − xT (n)ŵ(n)

]
.

The inverse of the correlation matrix Rx, assumed to be positive definite, is calculated ahead
of time. (Haykin 3.8)

5. A linear classifier separates n-dimensional space into two classes using a (n−1)-dimensional hyper-
plane. Points are classified into two classes, ω1 or ω2, depending on which side of the hyperplane
they are located.

(a) Construct a linear classifier which is able to separate the following two-dimensional samples
correctly:

ω1 : {[2, 1]T},

ω2 : {[0, 1]T , [−1, 1]T}.

(b) Is it possible to construct a linear classifier which is able to separate the following samples
correctly?

ω1 : {[2, 1]T , [3, 2]T},

ω2 : {[3, 1]T , [2, 2]T}

Justify your answer.

18

T-61.3030 Principles of Neural Computing

Answers to Exercise 4

1. The error function is

E(w) = w2
1 + 10w2

2,

where w1 and w2 are the components of the two-dimensional parameter vector w.

The gradient is

∇wE(w) =

(
∂E(w)
∂w1

∂E(w)
∂w2

)
=

(
2w1

20w2

)
.

The steepest descent method has a learning rule:

w(n + 1) = w(n) − α∇w(n)E(w(n))

=

(
w1

w2

)
− α

(
2w1

20w2

)
=

(
(1 − 2α)w1

(1 − 20α)w2

)
.

It was given w(0) =
(
1 1

)T
:

w(n + 1) =

(
(1 − 2α)n+1w1(0)
(1 − 20α)n+1w2(0)

)
=

(
(1 − 2α)n+1

(1 − 20α)n+1

)
.

(a) α = 0.04:

w(n + 1) =

(
0.92n+1

0.20n+1

)
−−−−→
n→∞

(
0
0

)

(b) α = 0.1:

w(n + 1) =

(
0.8n+1

(−1)n+1

)
−−−−→
n→∞






(
0
−1

)
,when n is even

(
0
1

)
,when n is odd

(c) α = 0.2:

w(n + 1) =

(
0.6n+1

(−3)n+1

)
−−−−→
n→∞






(
0

−∞

)
,when n is even

(
0
∞

)
,when n is odd

(d) Iteration converges if |1 − 2α| < 1 and |1 − 20α| < 1 ⇒ 0 < α < 0.1. No oscillations occur if
0 < 1 − 2α < 1 and 0 < 1 − 20α < 1 ⇒ 0 < α < 0.05

2.

E(w) =
1

2




δ‖w − w(n)‖2 +

n∑

i=1

e2
i (w)

︸ ︷︷ ︸
e(w)T e(w)




19

The linear approximation of e(w) at point w = w(n):

ê(w;w(n)) = e(w(n)) + J(w(n))[w − w(n)]

where

J(w(n)) =




∂e1(w(n))
∂w1

· · · ∂e1(w(n))
∂wm

...
. . .

...
∂en(w(n))

∂w1
· · · ∂en(w(n))

∂wm




An approximation of E(w) at the point w = w(n):

Ê(w;w(n)) =
1

2

[
eT (w(n))e(w(n)) + 2eT (w(n))J(w(n))[w − w(n)] +

+[w − w(n)]T JT (w(n))J(w(n))[w − w(n)] + δ‖w − w(n)‖2
]

According to Gauss-Newton method:

w(n + 1) = argmin
w

Ê(w;w(n))

∇wÊ(w;w(n)) = JT (w(n))e(w(n)) + JT (w(n))J(w(n))[w − w(n)] + δ[w − w(n)] = 0

⇒ JT (w(n))e(w(n)) + (JT (w(n))J(w(n)) + δI)[w − w(n)] = 0

⇒ w(n + 1) = w(n) − (JT (w(n))J(w(n)) + δI)−1JT (w(n))e(w(n))

3. Convergence in the mean square means that E
[
e2(n)

]
−−−−→
n→∞

constant.

In the conventional LMS algorithm we have

w(n + 1) = w(n) + ηe(n)x(n)

which is convergent in the mean square if

0 < η <
2

sum of mean-square values of the inputs

or

0 < η <
2

‖x(n)‖2
∀n.

(This is a stricter condition than the first one!)

In the normalized LMS algorithm we have

w(n + 1) = w(n) + η̃
e(n)x(n)

‖x(n)‖2

Comparing this to the conventional LMS algorithm we have:

η̃ = η‖x(n)‖2

Using this result in the convergence condition yields the condition for convergence of the normalized
LMS algorithm in the mean square as 0 < η̃ < 2.

20

4. (a) We are given the cost function

J(w) =
1

2
E[(d(n) − xT (n)w)2].

Expanding terms, we get

J(w) =
1

2
E[d2(n)] − E[d(n)xT (n)]w +

1

2
wT E[x(n)xT (n)]w

=
1

2
σ2

d − rT
xdw +

1

2
wT

Rxw

(b) The gradient vector is defined by

∂J(w)

∂w
= g = −rxd + Rxw

The Hessian matrix is defined by

∂2J(w)

∂w2
= H = R

T
x = Rx

For the quadratic cost function J(w) the Hessian H is exactly the same as the correlation
matrix Rx of the input x.

(c) According to the conventional form of Newtons method, we have (see equation 3.16 on page
124 in Haykin) ∆w = −H

−1g, where H
−1 is the inverse of the Hessian and g is the gradient

vector. The instantaneous value of the gradient vector is

ĝ(n) = −x(n)d(n) + x(n)xT (n)w

= −x(n)(d(n) − xT (n)w)

⇒ ŵ(n + 1) = ŵ(n) + ηR
−1
x x(n)(d(n) − xT (n)ŵ)

5. (a)

ω1 : {[2, 1]T},

ω2 : {[0, 1]T , [−1, 1]T}.

1

2

3

31 2−1

X X

x1

x2

ω1

ω2

Classifications are carried out as follows:
{

wTx < 0 ⇒ x ∈ ω1

wTx ≥ 0 ⇒ x ∈ ω2

21

(b)

ω1 : {[2, 1]T , [3, 2]T},

ω2 : {[3, 1]T , [2, 2]T}

1

2

3

31 2−1

X

X

x1

x2

ω1

ω2

ω2

ω2

It is not possible to separate the classes with a single hyperplane. At least two hyperplanes
are required to separated the classes correctly.

22

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 5,

1. The McCulloch-Pitts perceptrons can be used to perform numerous logical tasks. Neurons are
assumed to have two binary input signals, x1 and x2, and a constant bias signal which are combined
into an input vector as follows: x = [x1, x2,−1]T , x1, x2 ∈ {0, 1}. The output of the neuron is
given by

y =

{
1, if wT x > 0

0, if wT x ≤ 0

where w is an adjustable weight vector. Demonstrate the implementation of the following binary
logic functions with a single neuron:

(a) A

(b) not B

(c) A or B

(d) A and B

(e) A nor B

(f) A nand B

(g) A xor B.

What is the value of weight vector in each case?

2. A single perceptron is used for a classification task, and its weight vector w is updated iteratively
in the following way:

w(n + 1) = w(n) + α(y − y′)x

where x is the input signal, y′ = sgn(wT x) = ±1 is the output of the neuron, and y = ±1 is the
correct class. Parameter α is a positive learning rate. How does the weight vector w evolve from
its initial value w(0) = [1, 1]T , when the above updating rule is applied with α = 0.4, and we have
the following samples from classes C1 and C2:

C1 : {[2, 1]T},

C2 : {[0, 1]T , [−1, 1]T}

3. Suppose that in the signal-flow graph of the perceptron illustrated in Figure 9 the hard limiter is
replaced by the sigmoidal linearity:

ϕ(v) = tanh(
v

2
)

where v is the induced local field. The classification decisions made by the perceptron are defined
as follows:

Observation vector x belongs to class C1 if the output y > θ where θ is a threshold;

otherwise, x belongs to class C2

Show that the decision boundary so constructed is a hyperplane.

23

4. Two pattern classes, C1 and C2, are assumed to have Gaussian distributions which are centered
around points µ1 = [−2,−2]T and µ2 = [2, 2]T and have the following covariance matrixes:

Σ1 =

[
α 0
0 1

]
and Σ2 =

[
3 0
0 1

]
.

Plot the distributions and determine the optimal Bayesian decision surface for α = 3 and α = 1.
In both cases, assume that the prior probabilities of the classes are equal, the costs associated with
correct classifications are zero, and the costs associated with misclassifications are equal.

x

w

w

w

yv

bx

m
x

(v)φ

1

2 2

1

m

Bias

Inputs

Hard limiter Output

Figure 9: The signal-flow graph of the perceptron.

24

T-61.3030 Principles of Neural Computing

Answers to Exercise 5

1. Let input signals x1 and x2 represent events A and B, respectively, so that

{
A is true ⇔ x1 = 1
B is true ⇔ x2 = 1

(a)

y = A →






w11 + w20 − θ > 0
w11 + w21 − θ > 0
w10 + w20 − θ ≤ 0
w10 + w21 − θ ≤ 0

1

1

x1

x2
wT x = 0

From the figure

x1 =
1

2
⇔
(

1 0 1
2

)



x1

x2

−1



 = 0

w =
(

1 0 1
2

)T

(b)

y = not B →






w11 + w20 − θ > 0
w11 + w21 − θ ≤ 0
w10 + w20 − θ > 0
w10 + w21 − θ ≤ 0

1

1

x1

x2

wT x = 0

From the figure

x2 =
1

2
⇔
(

0 1 1
2

)



x1

x2

−1



 = 0

w =
(

0 −1 − 1
2

)T

25

(c)

y = A or B →






w11 + w20 − θ > 0
w11 + w21 − θ > 0
w10 + w20 − θ ≤ 0
w10 + w21 − θ > 0

1

1

x1

x2

wT x = 0

From the figure

x2 = −x1 +
1

2
⇔
(

1 1 1
2

)



x1

x2

−1



 = 0

w =
(

1 1 1
2

)T

(d)

y = A and B →






w11 + w20 − θ ≤ 0
w11 + w21 − θ > 0
w10 + w20 − θ ≤ 0
w10 + w21 − θ ≤ 0

1

1

x1

x2

wT x = 0

From the figure

x2 = −x1 +
3

2
⇔
(

1 1 3
2

)



x1

x2

−1



 = 0

w =
(

1 1 3
2

)T

(e) y = A nor B = not (A or B) ⇐ w = −
(

1 1 1
2

)T

(f) y = A nand B = not (A and B) ⇐ w = −
(

1 1 3
2

)T

26

(g) y = A xor B = (A or B) and (not(A and B))

OR

NAND

AND

1

1

x1

x2

B

A

y

−1

−1

This can not be solved with a single neuron. Two layers are needed.

2. The updating rule for the weight vector is w(n + 1) = w(n) + α(y − y′)x,
w(0) = (1 1)T and α = 0.4.

n w(n)T x(n)T w(n)T x(n) y(n) y′(n) α(y(n) − y′(n))x(n)

0 (1 1) (2 1) 3 +1 +1 (0 0)
1 (1 1) (0 1) 1 -1 +1 (0 −0.8)
2 (1 0.2) (−1 1) -0.8 -1 -1 (0 0)
3 (1 0.2) (2 1) 2.2 +1 +1 (0 0)
4 (1 0.2) (0 1) 0.2 -1 +1 (0 −0.8)
5 (1 −0.6) (−1 1) -1.6 -1 -1 (0 0)
6 (1 −0.6) (2 1) 1.4 +1 +1 (0 0)
7 (1 −0.6) (0 1) -0.6 -1 -1 (0 0)

...
...

3. The output signal is defined by

y = tanh
(υ

2

)
= tanh

(
b

2
+

1

2

∑

i

wixi

)
.

Equivalently, we may write

y′ = b +
∑

i

wixi = 2tanh−1(y).

This is the equation of a hyperplane.

The decision boundary: y = θ ⇒ 2tanh−1(θ) = b +
∑

i wixi = θ′

27

4. The optimal Bayes decision surface is found by minimizing the expected risk (expected cost)

R =

∫

H1

c11p(x|c1)P (c1)dx+

∫

H2

c22p(x|c2)P (c2)dx+

∫

H2

c21p(x|c1)P (c1)dx+

∫

H1

c12p(x|c2)P (c2)dx,

where cij is the cost associated with the classification of x into class i when it belongs to class j,
Hi is a classification region for class i, p(x|ci) is the probability of x given that its classification is
ci and P (ci) is the prior probability of class ci.

Now H = H1 + H2 and
∫

H−H1
p(x|ci)dx = 1 −

∫
H1

p(x|ci)dx.

⇒ R = c21P (c1) + c22P (c2) +

∫

H1

(c12 − c22)p(x|c2)P (c2) − (c21 − c11)p(x|c1)P (c1)dx

The first two terms are constant and thus don’t affect optimization. The risk is minimized if we
divide the pattern space in the following manner:

if (c21 − c11)p(x|c1)P (c1) > (c12 − c22)p(x|c2)P (c2),x ∈ H1; otherwise x ∈ H2

The decision surface is

(c21 − c11)p(x|c1)P (c1) = (c12 − c22)p(x|c2)P (c2)

Now:





P (c1) = P (c2) = 1
2

c11 = c22 = 0
c21 = c12 = c

p(x|ci) = 1

(2π)
d
2 |Σi|

1
2
e−

1
2 (x−µi)

T Σ−1
i

(x−µi)

and the decision surface becomes

ln

(
1

2π|Σ1|
1
2

)
−

1

2
(x − µ1)

T Σ−1
1 (x − µ1) = ln

(
1

2π|Σ2|
1
2

)
−

1

2
(x − µ2)

T Σ−1
2 (x − µ2).

⇒ ln

(
1

2πα
1
2

)
− ln

(
1

2π3
1
2

)
=

1

2

[
(x +

(
2
2

)
)T

(
1
α 0
0 1

)
(x +

(
2
2

)
) − (x −

(
2
2

)
)T

(
1
3 0
0 1

)
(x −

(
2
2

)
)

]

⇔ ln

(
3

α

)
=

1

α
(x1 + 2)2 + (x2 + 2)2 −

1

3
(x1 − 2)2 − (x2 − 2)2

=

(
1

α
−

1

3

)
x2

1 + 4

(
1

α
+

1

3

)
x1 + 8x2 + 4

(
1

α
−

1

3

)

α = 3 ⇒ 0 = 4 2
3x1 + 8x2 ⇔ x1 + 3x2 = 0

α = 1 ⇒ ln(3) = 2
3x2

1 + 4 4
3x1 + 8x2 + 4 2

3 ⇔ 2x2
1 + 16x1 + 32x2 + 8 − 3 ln 3 = 0

28

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x2

α = 3 α = 1

29

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 6

1. Construct a MLP network which is able to separate the two classes illustrated in Figure 10. Use
two neurons both in the input and output layer and an arbitrary number of hidden layer neurons.
The output of the network should be vector [1, 0]T if the input vector belongs to class C1 and [0, 1]T

if it belongs to class C2. Use nonlinear activation functions, namely McCulloch-Pitts model, for all
the neurons and determine their weights by hand without using any specific learning algorithm.

(a) What is the minimum amount of neurons in the hidden layer required for a perfect separation
of the classes?

(b) What is the maximum amount of neurons in the hidden layer?

2. The function

t(x) = x2, x ∈ [1, 2]

is approximated with a neural network. The activation functions of all the neurons are linear
functions of the input signals and a constant bias term. The number neurons and the network
architecture can be chosen freely. The approximation performance of the network is measured with
the following error function:

E =

∫ 2

1

[t(x) − y(x)]2dx,

where x is the input vector of the network and y(x) is the corresponding response.

(a) Construct a single-layer network which minimizes the error function.

(b) Does the approximation performance of the network improve if additional hidden layers are
included?

3. The MLP network of Figure 11 is trained for classifying two-dimensional input vectors into two
separate classes. Draw the corresponding class boundaries in the (x1, x2)-plane assuming that the
activation function of the neurons is (a) sign, and (b) tanh.

4. Show that (a)

∆wij(n) = η

n∑

t=0

αn−tδj(t)yi(t)

is the solution of the following difference equation:

∆wij(n) = α∆wij(n − 1) + ηδj(n)yi(n),

where α is a positive momentum constant. (b) Justify the claims 1-3 made on the effects of the
momentum term in Haykin pp. 170-171.

5. Consider the simple example of a network involving a single weight, for which the cost function is

E(w) = k1(w − w0)
2 + k2,

where w0, k1, and k2 are constants. A back-propagation algorithm with momentum is used to
minimize E(w). Explore the way in which the inclusion of the momentum constant α influences the
learning process, with particular reference to the number of epochs required for convergence versus
α.

30

Figure 10: Classes C1 and C2.

1

3

3

n3

n2

0

y

-1

0

-a

-b

-1

n1

-1-1

x2

x1

Figure 11: The MLP network.

31

T-61.3030 Principles of Neural Computing

Answers to Exercise 6

1. A possible solution:

3

2

1

1 2 3

x2

x1

x1=x2

x1 = 1

x2 = −x1 + 4

C1

C2

The network:

−1 −1

x2

x1

w1

w2

w3

w4

w5

y1

y2

From the above figure:

w1 = (−1 0 1)T

w2 = (−1 1 0)T

w3 = (1 1 −4)T




 hidden layer

Let zi ∈ {0, 1} be the output of the i:th hidden layer neuron and z = (z1 z2 z3 −1)T .

The outputs of McCulloch-Pitts perceptrons are determined as follows:

zi =

{
1, if wT

i x > 0
0, otherwise

The weights of the output layer neurons, w4 and w5 are set so that

w4 = −w5 and{
wT

4 z > 0, if z1 = 1 or z2 = 1 or z3 = 1
wT

4 z ≤ 0, otherwise

w4 =
(

1 1 1 1
2

)
is a feasible solution. (The above problem has infinitely many solutions!)

(a) The minimum amount of neurons in the hidden layer is two as the classes can be separated
with two lines.

32

(b) There is no upper limit for the number of hidden layer neurons. However, the network might
over learn the training set and loose its generalization capability. When the number of hidden
layer neurons is increased, the boundary between the classes can be estimated more precisely.

2. Function t(x) = x2, x ∈ [1, 2] is approximated with a neural network. All neurons have linear
activation functions and constant bias terms.

(a) Output of a single-layer network is

y(x) =
∑

i

wix + θ = Wx + θ

and the approximation performance measure is

E =

∫ 2

1

(t(x) − y(x))2dx =

∫ 2

1

(x2 − Wx − θ)2dx

=

∫ 2

1

(x4 + θ2 + W 2x2 − 2Wx3 + 2Wθx − 2θx2)dx

=
/2

1

x5

5
+ θ2x +

W 2x3

3
−

Wx4

2
+

Wθx2

−

2

3
θx3

=
31

5
+ θ2 +

7

3
W 2 −

15

2
W + 3Wθ −

14

3
θ

Lets find W and θ which minimize E :
{

∂E
∂W = 14

3 W − 15
2 + 3θ = 0

∂E
∂θ = 2θ + 3W − 14

3 = 0
⇒

{
W ∗ = 3
θ∗ = −2 1

6

As

(
∂2E
∂W 2

∂2E
∂W∂θ

∂2E
∂W∂θ

∂2E
∂θ2

)∣∣∣∣∣ W=W∗

θ = θ∗

is positive definite, E gets its minimum value when W = W ∗

and θ = θ∗.

(b) No because y(x) =
∑

z w
(n)
1z

(∑
y w

(n−1)
zy

(
· · ·
∑

a w
(1)
a1 x

)
· · ·
)

= Wx

33

3. Network

1

3

3

n3

n2

0

y

-1

0

-a

-b

-1

n1

-1-1

x2

x1

y3

y1

y2

(a)






y1 = sign(−x2 + b)
y2 = sign(−x1 + a)
y3 = sign(3y1 + 3y2 − 1︸ ︷︷ ︸

z

)

a

x1

a

x1

b
x2

z=−1
z=−7

x1=a

x2=b

z=5

x2
b

Hidden layer Output layer

class boundary

y2 = −1y2 = +1

y1 = −1

y1 = +1

y3 = −1

y3 = −1

y3 = −1

y3 = +1

(b) Activation function is tanh.

−5

0

5

−5

0

5

−1

−0.5

0

0.5

1

X1

X2

y 1

−5

0

5

−5

0

5

−1

−0.5

0

0.5

1

X1

X2

y 2

−5

0

5

−5

0

5

−1

−0.5

0

0.5

1

x1

x2

y3

34

4. (a)

∆wij(n) = η

n∑

t=0

αn−tδj(t)yi(t) (1)

⇒ ∆wij(0) = ηδj(0)yi(0) (2)

On the other hand

∆wij(n) = α∆wij(n − 1) + ηδj(n)yi(n) (3)

(2) & (3) ⇒ ∆wij(1) = α∆wij(0) + ηδj(1)yi(1)

= αηδj(0)yi(0) + ηδj(1)yi(1)

= η
1∑

t=0

α1−tδj(t)yi(t) (4)

(2) & (4) ⇒ ∆wij(2) = α∆wij(1) + ηδj(2)yi(2)

= αη

1∑

t=0

α1−tδj(t)yi(t) + ηδj(2)yi(2)

= η

2∑

t=0

α2−tδj(t)yi(t) (4)

...

∆wij(n) = η
n∑

t=0

αn−tδj(t)yi(t) ⇒ (1) is solution to (3)

(b) Claims on the effect of the momentum term.

Claim 1 The current adjustment ∆wij(n) represents the sum of an exponentially weighted time
series. For the time series to be convergent, the momentum constant must be restricted
to the range 0 ≤ |α| < 1.
if |α| > 1, clearly then |α|n−t −−−−→

n→∞
∞, and the solution∆wij(n) = η

∑n
t=0 αn−tδj(t)yi(t)

“explodes” (becomes unstable). In the limiting case |α| = 1, the terms δj(t)yi(t) may add
up so that the sum becomes very large, depending on their signs. On the other hand, if
0 ≤ |α| < 1, |α|n−t −−−−→

n→∞
0, and the sum converges.

Claim 2 When the partial derivative ∂E(t)
∂wij(t)

= −δj(t)yi(t) has the same algebraic sign on the

consecutive iterations, the exponentially weighted sum ∆wij(n) grows in magnitude, and
so the weight wij(n) is adjusted by a large amount.

Assume for example that ∂E(t)
∂wij(t)

is positive on consecutive iterations. Then for positive α

the subsequent terms αn−t ∂E(t)
∂wij(t) are all positive, and the sum ∆wij(n) grows in magni-

tude. The same holds for negative ∂E(t)
∂wij(t)

: the terms in summation are now all negative,

and reinforce each other.

Claim 3 When the partial derivative ∂E(t)
∂wij(t)

has opposite signs on consecutive iterations, the ex-

ponentially weighted sum ∆ij(n) shrinks in magnitude, so that weight wij(n) is adjusted
by a small amount.

The terms αn−t ∂E(t)
∂wij(t)

have now different signs for subsequent iterations t − 2, t − 1, · · · ,

and tend to cancel each other.

35

5. From Eq. (4.41 Haykin) we have

∆wij(n) = −η

n∑

t=1

αn−t ∂E(t)

∂wij(t)
(1)

For the case of a single weight the cost function is defined by

E = k1(w − w0)
2 + k2.

Hence, the application of (1) to this case yields

∆w(n) = −2k1η

n∑

t=1

αn−t(w − w0)

In the case the partial derivative ∂E(t)
∂w(t) has the same algebraic sign on the consecutive iterations

and 0 ≤ α < 1, the exponentially weighted adjustment ∆w(n) to the weight w at time n grows in
magnitude. That is, the weight w is adjusted by a large amount. The inclusion of the momentum
constant α in the algorithm for computing the optimum wight w∗ = w0 tends to accelerate the
downhill descent toward the optimum point.

36

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 7

1. In section 4.6 (part 5, Haykin pp. 181) it is mentioned that the inputs should be normalized
to accelerate the convergence of the back-propagation learning process by preprocessing them as
follows: 1) their mean should be close to zero, 2) the input variables should be uncorrelated, and
3) the covariances of the decorrelated inputs should be approximately equal.

(a) Devise a method based on principal component analysis performing these steps.

(b) Is the proposed method unique?

2. A continuous function h(x) can be approximated with a step function in the closed interval x ∈ [a, b]
as illustrated in Figure 12.

(a) Show how a single column, that is of height h(xi) in the interval x ∈ (xi − ∆x/2, xi + ∆x/2)
and zero elsewhere, can be constructed with a two-layer MLP. Use two hidden units and the
sign function as the activation function. The activation function of the output unit is taken
to be linear.

(b) Design a two-layer MLP consisting of such simple sub-networks which approximates function
h(x) with a precision determined by the width and the number of the columns.

(c) How does the approximation change if tanh is used instead of sign as an activation function
in the hidden layer?

3. A MLP is used for a classification task. The number of classes is C and the classes are denoted
with ω1, . . . , ωC . Both the input vector x and the corresponding class are random variables, and
they are assumed to have a joint probability distribution p(x, ω). Assume that we have so many
training samples that the back-propagation algorithm minimizes the following expectation value:

E

(
C∑

i=1

[yi(x) − ti]
2

)
,

where yi(x) is the actual response of the ith output neuron and ti is the desired response.

(a) Show that the theoretical solution of the minimization problem is

yi(x) = E(ti|x).

(b) Show that if ti = 1 when x belongs to class ωi and ti = 0 otherwise, the theoretical solution
can be written

yi(x) = P (ωi|x)

which is the optimal solution in a Bayesian sense.

(c) Sometimes the number of the output neurons is chosen to be less than the number of classes.
The classes can be then coded with a binary code. For example in the case of 8 classes and 3
output neurons, the desired output for class ω1 is [0, 0, 0]T , for class ω2 it is [0, 0, 1] and so on.
What is the theoretical solution in such a case?

37

x4x3x2x1

h1

h(x)

x

dx

h4
h3

h2

Figure 12: Function approximation with a step function.

38

T-61.3030 Principles of Neural Computing

Answers to Exercise 7

1. (a) Making the means to zero for the given set x1,x2, . . . ,xN of training (input) vectors is easy.
Estimate fist the mean vector of the training set:

m̂ =
1

N

N∑

j=1

xj

Then, the modified vectors

zj = xj − m̂

have zero means. (E(zj) = (0, 0, . . . , 0)T)

2) and 3) The estimated covariance matrix of the zero mean vectors zj is

Ĉzz =
1

N

N∑

j=1

zjz
T
j =

1

N

N∑

j=1

(xj − m̂)(xj − m̂)T

Theoretically, the conditions of uncorreltatedness and equal variance can be satisfied by lookin
for a transformation V such that

y = Vz

and

Cyy = E(yyT) = E(VzzVT) = VE(zzT)VT = VCzzV
T = I,

where I is the identity matrix.

Then for the components of y it hods that

Cyy(j, k) = E(yjyk) =

{
1, for i = k
0, for i 6= k

For convenience, the variances are here set to unity. In practice, Czz is replaced by its sample
estimate Ĉzz. Now recall that for a symmetric matrix C its eigenvalue/eigenvector decomposi-
tion satisfies UCUT = D (*), where U = [u1,u2, . . . ,uM] is a matrix having the eigenvectors
of ui of C as its columns and the elements of the diagonal matrix D = [λ1, λ2, . . . , λM] are
the corresponging eigenvalues. These satisfy the condition

Cui = λiui ⇔ CU = DU,

where

uT
i uj = δij ⇔ UT U = I

(U is orthogonal)

When C is the covariance matric, this kind of decomposition is just the principal component
ananlysis:

CDUT =

M∑

i=1

λiuiu
T
i

39

Now multiplying (*) from the left and right by D− 1
2 = [λ

− 1
2

1 , λ
− 1

2
2 , . . . , λ

− 1
2

M] we get

D− 1
2 UCUTD− 1

2 = I

Hence the desired whitening (decorrelation - covariance equalitzation) transformation matrix
V can be chosen as

V = D− 1
2 U, VT = UT D− 1

2

due to the symmetricity on D. Furthermore D− 1
2 always exists since the eigenvalues of a

full-rank covariance matrix C are always positive.

(b) The removal of the mean is unique. However the whitening transformation matrix V is not
unique. For example, we can change the order of the eigenvectors of Czz in U (and respectively
the order of the eigenvalues in D!), and get a different transformation matrix.

More generally, due to the symmetricity of Czz the whitening condition VCzzV
T = I repre-

sents only M(M+1)
2 different conditions for the M2 elements of V (assuming that V and C are

M ∗ M matrices). Thus

M2 −
M(M + 1)

2
=

M2

2
−

M

2
=

M(M − 1)

2

elements of V could be chosen freely.

There exist several other methods for performing whitening. For example , one can easily gen-
eralize the well-known Gram-Schimdt orthonormalization procedure for producing a whitening
transformation matrix.

2. (a) Pillar

(Step 1)

−1

1

(Step 2)

xi

∆x

sign(x − (xi − ∆x/2))

sign(x − (xi + ∆x/2))

y =
h(xi)

2
(step 1 - step 2)

=
h(xi)

2

[
sign

(
x −

(
xi −

∆x

2

))
− sign

(
x −

(
xi +

∆x

2

))]

= wT
3

(
sign(wT

1 x)
sign(wT

2 x)

)

where

x =

(
x
−1

)

and

40

w1 = (1, xi − ∆x/2)T

w2 = (1, xi − ∆x/2)T

w3 = (h(xi)/2,−h(xi)/2)T

xi

h(xi)

x

−1

1

2

3
y

(b) The pillars are combined by summing them up:

y =
P∑

i=1

h(xi)

2
[sign(x − (xi − ∆x/2)) − sign(x − (xi + ∆x/2))] . (42)

If xi and ∆x are correctly chosen (xi+1 = xi + ∆x, ∀i = 1, . . . , P − 1), only one of the terms
in the sum is nonzero.

x

−1

x

−1

x

−1

1

2 y
2P+1

2P

a single pillar

The weights of the hidden layer neurons are

w1 = (1, x1 − ∆x/2)T

w2 = (1, x1 − ∆x/2)T

...

w2P−1 = (1, xP − ∆x/2)T

w2P = (1, xP − ∆x/2)T

and the weight of the output neuron is

w2P+1 = (h(x1)/2,−h(x1)/2, . . . , h(xP)/2,−h(xP)/2)T .

41

(c) If tanh(αx) is used as an activation function instead of sign(x), the corners of the pillars are
less “sharp”.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

−1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

Note! limα→∞ tanh(αx) = sign(x)

3. (a) let yi = yi(x), E(ti) = E(ti|x). Because yi is a deterministic function of x, E(yi) = yi.

E = E(

C∑

i=1

(yi − ti)
2)

= E(

C∑

i=1

(y2
i − 2yiti + t2i))

=
C∑

i=1

y2
i − 2yiE(ti) + E(t2i) + E2(ti) − E2(ti)︸ ︷︷ ︸

=0

=
C∑

i=1

(yi − E(ti))
2 +

C∑

i=1

var(ti)

︸ ︷︷ ︸
Does not depend on yi

∂E

∂yi
= 2(yi − E(ti)) = 0

⇒ yi = E(ti)

⇒ yi = E(ti|x)

42

(b) Let ti(wj) =

{
1, if i = j
0, otherwise

.

yi(x) = E(ti|x) =
C∑

j=1

ti(wj)p(wj |x) = p(wi|x)

(c) Now ti(wj) = 1 or 0 depending on the coding scheme

yi(x) = E(ti|x) =

C∑

j=1

ti(wj)p(wj |x) = p(ti = 1|x)

43

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 8 (Demonstration)

% Create data

Ndat=100;

x=[0:8/(Ndat-1):8];

a=0.1;

y=sin(x)./(x+a);

t=y+0.1*randn(size(y));

plot(x,y,’-b’,x,t,’-r’);

% divide data to a training set and testing set

rind=randperm(Ndat);

x_train=x(rind(1:Ndat/2));

t_train=t(rind(1:Ndat/2));

x_test=x(rind(Ndat/2+1:Ndat));

t_test=t(rind(Ndat/2+1:Ndat));

plot(x_train,t_train,’bo’,x_test,t_test,’r+’);

% create a new MLP (fead forward) network

% net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

% PR - R x 2 matrix of min and max values for R input elements.

% Si - Size of ith layer, for Nl layers.

% TFi - Transfer function of ith layer, default = ’tansig’.

% BTF - Backpropagation network training function, default = ’traingdx’.

% BLF - Backpropagation weight/bias learning function, default = ’learngdm’.

% PF - Performance function, default = ’mse’.

%number of hidden neurons N

N=8;

net=newff([min(x_train),max(x_train)],[N 1],{’tansig’ ’purelin’},’traingdm’,’learngd’,’mse’);

net

%Initialize weights to a small value

% Hidden layer (input) weights

net.IW{1,1}

net.IW{1,1}=0.001*randn([N 1]);

net.IW{1,1}

% Output layer weights

44

net.LW{2,1}

net.LW{2,1}=0.001*randn([1 N]);

net.LW{2,1}

% Biases

net.b{1,1}=0.001*randn([N 1]);

net.b{2,1}=0.001*randn;

%train(NET,P,T,Pi,Ai,VV,TV) takes,

% net - Neural Network.

% P - Network inputs.

% T - Network targets, default = zeros.

% Pi - Initial input delay conditions, default = zeros.

% Ai - Initial layer delay conditions, default = zeros.

% VV - Structure of validation vectors, default = [].

% TV - Structure of test vectors, default = [].

net.trainParam.epochs = 100000;

%net.trainParam.epochs = 10000;

net.trainParam.goal = 0.01;

[net,tr,Y,E]=train(net,x_train,t_train)

[xtr, tr_ind]=sort(x_train);

xts=sort(x_test);

%simulate the output of test set

Yts=sim(net,xts);

%plot the results for training set and test set

plot(x,y,’-k’,xtr,Y(tr_ind),’-r’,xts,Yts,’-g’,x_train,t_train,’b+’)

45

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 9

1. One of the important matters to be considered in the design of a MLP network is its capability
to generalize. Generalization means that the network does not give a good response only to the
learning samples but also to more general samples. Good generalization can be obtained only if the
number of the free parameters of the network is kept reasonable. As a thumb rule, the number of
training samples should be at least five times the number of parameters. If there are less training
samples than parameters, the network easily overlearns – it handles perfectly the training samples
but gives arbitrary responses to all the other samples.

A MLP is used for a classification task in which the samples are divided into five classes. The input
vectors of the network consist of ten features and the size of the training set is 800. How many
hidden units there can be at most according to the rule given above?

2. Consider the steepest descent method, ∆w(n) = −ηg(n), reproduced in formula (4.120) and earlier
in Chapter 3 (Haykin). How could you determine the learning-rate parameter η so that it minimizes
the cost function Eav(w) as much as possible?

3. Suppose that we have in the interpolation problem described in Section 5.3 (Haykin) more ob-
servation points than RBF basis functions. Derive now the best approximative solution to the
interpolation problem in the least-squares error sense.

46

T-61.3030 Principles of Neural Computing

Answers to Exercise 9

1. Let x be the number of hidden neurons. Each hidden neuron has 10 weights for the inputs and one
bias term. Ech output neuron has one weight for each hidden neuron and one bias term. Thus the
total number of weights in the network is:

N = (10 + 1)x + (x + 1)5 = 16x + 5

Thumb rule:
The number of training samples should be at least five times the number of parameters.

5N ≤ 800 ⇒ 5(16x + 5) ≤ 800 ⇒ 80x + 25 ≤ 800 ⇒ x ≤ 9.6875

A reasonable number of hidden units is less than 10.

2. In the steepest descent method the adjustment ∆w(n) applied to the parameter vector w(n) is
defined by ∆w(n) = −ηg(n), where η is the learning-rate parameter and

g(n) =
∂Eav(w)

∂w

∣∣∣∣
w=w(n)

is the local gradient vector of cost function Eav(w) averaged over the learning samples.

The direction of the gradient g(n) defines a search line in multi-dimensional parameter space. Since
we know, or can compute, Eav(w), we may optimize it on the one-dimensional search line. This is
carried out by finding the optimal step size:

η∗ = arg min
η

Eav(w(n) − ηg(n)).

Depending on the nature of Eav(w) the above problem can be solved iteratively or analytically.

Optimal η can be found, for example, as follows:

Take first some suitable guess for η, say η0. Then compute Eav(w(n)−η0g(n)). If this is greater than
Eav(w(n)), take a new point η1 from the search line between w(n) and w(n) − η0g(n). Otherwise,
choose η1 > η0 to see if a larger value of η yields an even smaller value Eav(w(n)−η1g(n)). Continue
this procedure until the optimal η, or a given precicion, is reached.

The simplest way to implement such a iterative search would be to divide the search line into equal
intervals so that

η1 = η0/2, if Eav(w(n) − η0g(n)) > Eav(w(n))

η1 = 2η0, otherwise

when we have found the interval where the minimum lies, we can divide it into two parts and ge
an better estimate of η∗.

Dividing the search interval in two equal parts is not optimal with respect to the number of iterations
needed to find the optimal learning rate parameter. A better way is to use Fibonacci numbers that
can be used for optimal division of a search interval.

47

3. We can still write the interpolation conditions in the matrix form:

Φw = d, (43)

where Φ is a NxN matrix, [Φ]ij = ϕ(‖tj − xi‖). ϕ is a radial-basis function and tj , j = 1, . . . , M ,
are the centers. The centers can be chosen, for example, with the k-means clustering algorithm
(sec. 5.13, Haykin), and they are assumed to be given. xi, i = 1, . . . , N , are the input vectors and
d = (d1, . . . , dN)T is the vector consisting of the desired outputs. w is the weight vector.

Matrix Φ has more rows than columns, N > M , and thus the equation (43) usually has no exact
solution (More equations than unknowns!). However, we may look for the best least-square error
solution.

Let Φw = d + e, where e is the error vector. Now we want ‖e‖2 =
∑N

i=1 e2
i = ‖Φw − d‖2 to be

minimized.

∂‖e‖2

∂w
=

∂

∂w
(Φw − d)T (Φw − d) = 0

⇒
∂

∂w
(wT ΦTΦw − wTΦTd − dTΦw + dTd) = 0

⇒ (ΦTΦ + (ΦTΦ)T)w − ΦTd − (dTΦ)T = 0

⇒ 2ΦTΦw − 2ΦTd = 0

⇒ w = (ΦT Φ)−1ΦT

︸ ︷︷ ︸
=pseudoinverse of Φ

d

48

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 10

1. The thin-plate-spline function is described by

ϕ(r) =
(r

σ

)2

log
(r

σ

)
for some σ > 0 and r ∈ R

+

Justify the use of this function as a translationally and rotationally invariant Green’s function. Plot
the function graphically. (Haykin, Problem 5.1)

2. The set of values given in Section 5.8 for the weight vector w of the RBF network in Figure 5.6.
presents one possible solution for the XOR problem. Solve the same problem by setting the centers
of the radial-basis functions to

t1 = [−1, 1]T and t2 = [1,−1]T .

(Haykin, Problem 5.2)

3. Consider the cost functional

E(F ∗) =

N∑

i=1



di −

m1∑

j=1

wja(‖xj − ti‖)




2

+ λ‖DF ∗‖2

which refers to the approximating function

F ∗(x) =

m1∑

i=1

wiG(‖x − ti‖).

Show that the cost functional E(F ∗) is minimized when

(GT G + λG0)w = GT d

where the N -by-m1 matrix G, the m1-by-m1 matrix G0, the m1-by-1 vector w, and the N -by-1
vector d are defined by Equations (5.72), (5.75), (5.73), and (5.46), respectively. (Haykin, Problem
5.5)

4. Consider more closely the properties of the singular-value decomposition (SVD) discussed very
briefly in Haykin, p. 300.

(a) Express the matrix G in terms of its singular values and vectors.

(b) Show that the pseudoinverse G+ of G can be computed from Equation (5.152):

G+ = VΣ+UT .

(c) Show that the left and right singular vector ui and vj are obtained as eigenvectors of the

matrices GGT and GTG, respectively, and the squared singular values are the corresponding
nonzero eigenvalues.

49

T-61.3030 Principles of Neural Computing

Answers to Exercise 10

1. Starting with the definition of the thin-plate function

ϕ(r) =
(r

σ

)
log
(r

σ

)
, for σ > 0 and r ∈ R

+

We may write

ϕ(‖x;xi‖) =

(
‖x− xi‖

σ

)
log

(
‖x− xi‖

σ

)
.

Hence

ϕ(‖x;xi‖) = ϕ(‖x − xi‖),

which means that ϕ(‖x;xi‖) is both translationally and rotationally invariant.

0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5 σ=0.7

σ=0.8

σ=0.9

σ=1.0
σ=1.1
σ=1.2

2. RBF network for solving the XOR problem

Input nodes

+1

w

w

Linear output neuron

x1

x2

ϕ1

ϕ2

ϕi(x) = G(‖x − ti‖) = e−‖x−ti‖
2

, i = 1, 2

50

Some notes on the above network:

• weight sharing is justified by the symmetry of the problem

• the desired output values of the problem have nonzero mean and thus the output unit includes
a bias

Now the cneters of the radial-basis functions are

t1 = (−1, 1)T

t2 = (1,−1)T .

Let it be assuved that the logical symbol 0 is represented by level -1 and symbol 1 is represented
by level +1.

(a) For the input pattern (0,0):
x = (−1,−1)T and

(1) G(‖x − t1‖) = e−‖(−1,−1)T−(−1,1)T ‖2

= e−‖(0,−2)T ‖2

= e−4 = 0.01832

(2) G(‖x − t2‖) = e−‖(−1,−1)T−(1,−1)T ‖2

= e−‖(−2,0)T ‖2

= e−4 = 0.01832

(b) For the input pattern (0,1):
x = (−1, 1)T and

(3) G(‖x − t1‖) = e−‖(−1,1)T−(−1,1)T ‖2

= e−‖(0,0)T ‖2

= e−0 = 1

(4) G(‖x − t2‖) = e−‖(−1,1)T−(1,−1)T ‖2

= e−‖(−2,2)T ‖2

= e−8 = 0.000336

(c) For the input pattern (1,1):
x = (1, 1)T and

(5) G(‖x − t1‖) = e−‖(1,1)T−(−1,1)T ‖2

= e−‖(2,0)T ‖2

= e−4 = 0.01832

(6) G(‖x − t2‖) = e−‖(1,1)T−(1,−1)T ‖2

= e−‖(0,2)T ‖2

= e−4 = 0.01832

(d) For the input pattern (1,0):
x = (1,−1)T and

(7) G(‖x − t1‖) = e−‖(1,−1)T−(−1,1)T ‖2

= e−‖(2,−2)T ‖2

= e−8 = 0.000336

(8) G(‖x − t2‖) = e−‖(1,−1)T−(1,−1)T ‖2

= e−‖(−0,0)T ‖2

= e−0 = 1

Results (1)-(8) are combinded as a matrix

G =

ϕ1(x) ϕ2(x) bias


e−4 e−4 1
1 e−8 1

e−4 e−4 1
e−8 1 1




pattern (0, 0)
(0, 1)
(1, 1)
(1, 0)

51

and the desired responses as vector d = (−1, 1,−1, 1)T .

The linear parameters of the network are defined by

Gw = d, where w = (w, w, b)T .

The solution to the equation is w = G†d, where G† = (GT G)−1GT is the pseudo inverse of G

G† =




−0.5188 1.0190 −0.5188 0.0187
−0.5188 0.0187 −0.5188 1.0190
−0.5190 −0.0190 −0.5190 −0.0190





w = (2.0753, 2.0753, −1.076)T

3. In equation (5.74) it is shown that ‖DF ∗‖2 = wTG0w where w is the weight vector of the ouptu
layer and G0 is defined by

G0 =




G(t1; t1) G(t1; t2) . . . G(t1; tn)
−G(t2; t1) G(t2; t2) . . . G(t2; tn)

...
...

. . .
...

G(tn; t1) G(tn; t2) . . . G(tn; tn)


 .

We may thus express the cost functional as

E(F ∗) =

N∑

i=1

[di −

m1∑

j=1

wjG(‖xi − tj‖)]
2 + λwT G0w = ‖d− Gw‖2

︸ ︷︷ ︸
Efs(w)

+λwTG0w︸ ︷︷ ︸
Efc(w)

,

where d = (d1, d2 . . . , dN)T and [G]ij = G(‖xi − tj‖). Finding the function F ∗ that minimizes
the cost functional E(F ∗) is equivalent to finding the weight vector w ∈ R

m1 that minimizes the
function Ef (w) = Efs(w) + λEfc(w). A necessary condition for an extremum at w is that

∇wEf (w) = 0

∇wEfs(w) = −2GT (d− Gw)

∇wEfc(w) = 2G0w

⇒ GT (d− Gw) + λG0w = 0

⇒ w = (GT G + λG0)
−1GTd.

4. (a) Singular value decomposition of G

UT G V

L × L L × M M × M
= Σ ⇒

UT U G VVT = UΣVT

= I = I

L × L M × M
,

or in other words, U and V are othogonal matrices. Hence G = UΣVT =
∑w

i=1 σiuiv
T ,

where w is the rank of G. Note that
Σ

L × M
=

[
S 0

0 0

]
, S = diag(σ1, . . . , σ2).

52

(b)

G† = (GT G)−1GT

= (VΣT UTU︸ ︷︷ ︸
=I

ΣVT)−1VΣTUT

= (VΣ2VT)−1VΣTUT

= V−T Σ−2 V−1V︸ ︷︷ ︸
=I

ΣTUT

= VΣ−2ΣT UT = VΣ−1UT = VΣ†UT

Note that here Σ−1 = Σ† = diag(1/σ1, . . . , 1/σw, 0, . . . , 0) and not the usual inverse of
matrix. The above works only because Σ is a diagonal matrix.

(c)

GGT = UΣVTV︸ ︷︷ ︸
=I

ΣTU = U ΣΣT
︸ ︷︷ ︸

=diag(σ2
1, ..., σ2

w)

UT

GGTU = UΣΣT

GT G = VΣT UUT
︸ ︷︷ ︸

=I

ΣVT = V ΣTΣ︸ ︷︷ ︸
=diag(σ2

1 , ..., σ2
w , 0, ..., 0)

VT

GTGV = VΣT Σ

53

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 11

1. The weights of the neurons of a Self-organizing map (SOM) are updated according to the following
learning rule:

wj(n + 1) = wj(n) + η(n)hj,i(x)(n)(x − wj(n)),

where j is the index of the neuron to be updated, η(n) is the learning-rate parameter, hj,i(x) is the
neighborhood function, and i(x) is the index of the winning neuron for the given input vector x.
Consider an example where scalar values are inputted to a SOM consisting of three neurons. The
initial values of the weights are

w1(0) = 0.5, w2(0) = 1.5, w3(0) = 2.5

and the inputs are randomly selected from the set:

X = {0.5, 1.5, 2.0, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5}.

The Kronecker delta function is used as a neighborhood function. The learning-rate parameter has
a constant value 0.02. Calculate a few iteration steps with the SOM learning algorithm. Do the
weights converge? Assume that some of the initial weight values are so far from the input values
that they are never updated. How such a situation could be avoided?

2. Consider a situation in which scalar inputs of a one-dimensional SOM are distibuted according
to the probability distribution function p(x). A stationary state of the SOM is reached when the
expected changes in the weight values become zero:

E[hj,i(x)(x − wj)] = 0

What are the stationary weight values in the following cases:

(a) hj,i(x) is a constant for all j and i(x), and

(b) hj,i(x) is the Kronecker delta function?

3. Assume that the input and weight vectors of a SOM consisting of N × N units are d-dimensional
and they are compared by using Euclidean metric. How many multiplication and adding operations
are required for finding the winning neuron. Calculate also how many operations are required in
the updating phase as a function of the width parameter σ of the neighborhood. Assume then that
of N = 15, d = 64, and σ = 3. Is it computationally more demanding to find the winning neuron
or update the weights?

4. The function g(yj) denotes a nonlinear function of the response yj, which is used in the SOM
algorithm as described in Equation (9.9):

∆wj = ηyjx − g(yj)wj .

Discuss the implications of what could happen if the constant term in the Taylor series of g(yj) is
nonzero. (Haykin, Problem 9.1)

54

T-61.3030 Principles of Neural Computing

Answers to Exercise 11

1. The updating rule:

wj(n + 1) = wj(n) + η(n)hj,i(x)(n)(x(n) − wj(n))

The inital values of the weights: w1(0) = 0.5, w2(0) = 1.5, w3(0) = 2.5 andhj,i(x)(n) =

{
1, if j = i(x(n))
0, otherwise

,

η(n) = 0.02.

n + 1 x(n) i(x(n)) (x(n) − wi(x(n))η(n) wi(x(n))(n + 1)
1 2.5 3 (2.5-2.5)0.002=0 2.5
2 4.5 3 (4.5-2.5)0.002=0.04 2.54
3 2.0 2 (2.0-1.5)0.002=0.01 1.61
4 0.5 1 (0.5-0.5)0.002=0 0.5
5 3.25 3 (3.25-2.54)0.002=0.0142 2.5542
6 3.75 3 (3.75-2.5542)0.002=0.02392 2.578116
7 2.75 3 (2.75-2.578116)0.002=0.00344 2.58155368
8 4.0 3 (4.0-2.58155368)0.002=0.002837 2.609923
9 4.25 3 (4.25-2.609923)0.002=0.0328 2.642742
10 1.5 2 (1.5-1.61)0.002=-0.0022 1.6078
11 3.0 3 (3.0-2.642742)0.002=0.007 2.64987
12 3.5 3 (3.5-2.64987)0.002=0.017 2.666872

Matlab gives the following result:

0 2000 4000 6000 8000 10000
0

1

2

3

4

Situations in which some of the neurons are not updated can be avoided if the range of the inputs
is examined and the inital values are set according to it. Also, a different neighborhood definition
might help: if a single input have an effect on more than one neuron, it is not so probable that
some of the neurons stay still.

55

alpha=.10
function cbt=train_csom(cb,data,alpha,max_rounds)

%data=[.5,1.5,2.0,2.5,2.75,3.0,

3.25,3.5,3.75,4.0,4.25,4.5];

%cb=[.5,1.5,2.5];

%alpha=.02;

N=length(data);

M=length(cb);

cbt=zeros(max_rounds,M);

for t=1:max_rounds,

i=ceil(rand(1)*N);

d=abs(ones(1,M)*data(i)-cb);

[f,wi]=min(d);

cb(wi)=cb(wi)+alpha*(data(i)-cb(wi));

cbt(t,:)=cb;

end 0 2000 4000 6000 8000 10000
0

1

2

3

4

alpha=.02 alpha=.01

0 2000 4000 6000 8000 10000
0

1

2

3

4

0 2000 4000 6000 8000 10000
0

1

2

3

4

cb=[0,0,0]
alpha=.1 alpha=.02

0 2000 4000 6000 8000 10000
0

1

2

3

4

0 2000 4000 6000 8000 10000
0

1

2

3

4

56

2. (a)

E[hj,i(x)︸ ︷︷ ︸
=constant

(x − wj)] = 0

⇒ E[(x − wj)] =

∫

X

(x − wj)p(x)dx = 0

⇒ wj =

∫

X

xp(x)dx = E[x]

This means that all the weights converge to the same point.

(b)

E[hj,i(x)︸ ︷︷ ︸
=δ(j,i(x))

(x − wj)] = 0

⇒ E[(x − wj)] =

∫

X

δ(j, i(x))(x − wj)p(x)dx = 0

Let X =
⋃

j Xj , where Xj is the part of the input space where wj is the nearest weight.
(Voronoi region of wj).

⇒
∑

j

∫

Xj

(x − wj)p(x)dx = 0

⇒

∫

Xj

(x − wj)p(x)dx = 0

⇒ wj =

∫
Xj

xp(x)dx
∫
Xj

p(x)dx

3. For finding the winning neuron i(x), the squared Euclidean distance to the input vector x has to
be calculated for each of the neurons:

‖x− wj‖
2 =

d∑

i=1

(xi − wji)
2.

This involves d multiplication operations and 2d−1 adding operations per a neuron. Thus, in total,
for finding the winner neuron, dN2 multiplication operations and (2d−1)N2 adding operations are
required.

Next, the definition of the topological neighborhood hj,i(x):

If all the neurons lie inside a hypercube (“radius”=σ) around the winning neuron are updated for
input x, (2σ+1)2 neurons are updated at the same time. This is the so called bubble neighborhood.

An other choise for the topological neighborhood definition is to use a Gaussian function:

hj,i(x) = e−dj,i(x)/2σ2

,

where dj,i(x) is the lateral distance between neurons j and i(x). In this case, all the neurons are
updated for every input x.

For findin out which of the neurons belong to the buble neighborhood of the winning neuron
(djh,i(x) = ‖nj − ni(x)‖

2 ≤ σ2, 2N2 multiplication and 3N2 adding operations are required as the
dimension of the map is 2.

Calculating the gaussian function fro all the neurons involves 3N2 multiplication and adding oper-
ations.

57

The weights are updated according to the following rule:

wj(n + 1) = wj(n) + η(n)hj,i(x)(x − wj(n)),

which involves d + 1 multiplications in the case of Gaussian neighborhood and d multiplication
operations in the case of bubble neighborhood, and 2d adding operations in both cases.

(N = 15, d = 64, σ = 3)

multiplications additions
winner search dN2 = 14400 (2d − 1)N2 = 28575
updating (bubble) 2N2 + d(2σ + 1)2 = 3586 3N2 + 2d(2σ + 1)2 = 6722
updating (Gaussian) (d + 4)N2 = 15300 (2d + 3)N2 = 29475

4. Expanding the function g(yj) in a Tayler series around yj = 0, we get

g(yj) = g(0) + g(1)(0)yj +
1

2
g(2)(0)y2

j + . . . , (44)

where g(k)(0) =
∂kg(yj)

∂yk
j

∣∣∣
yj=0

, k = 1, 2,

Let yj =

{
1, neuron j is on
0, neuron j is off

. Then , we may rewrite equation 44 as

g(yj) =

{
g(0) + g(1)(0) + 1

2g(2)(0) + . . . , neuron j is on
g(0), neuron j is off

.

Correspondingly, we may write equation (9.9)

∆wj = ηyjx − g(yj)xj =

{
ηx − wj [g(0) + g(1)(0) + 1

2g(2)(0) + . . .], neuron j is on
−g(0)wj , neuron j is off

.

Consequently, a nonzero g(0) has the effect of making ∆wj assume a nonzero value when neuron j
is off, thereby violating the desired form described in equation (9.13):

wj(n + 1) = wj(n) + η(n)hj,i(x)(n)(x − wj(n)).

To achieve this desired from, we have to make g(0) = 0.

58

T-61.3030 Principles of Neural Computing
Raivio, Koskela, Pöllä

Exercise 12

1. It is sometimes said that the SOM algorithm preserves the topological relationships that exist in
the input space. Strictly speaking, this property can be guaranteed only for an input space of
equal or lower dimensionality than that of the neural lattice. Discuss the validity of this statement.
(Haykin, Problem 9.3)

2. It is said that the SOM algorithm based on competitive learning lacks any tolerance against hard-
ware failure, yet the algorithm is error tolerant in that a small perturbation applied to the input
vector causes the output to jump from the winning neuron to a neighboring one. Discuss the
implications of these two statements. (Haykin, Problem 9.4)

3. In this problem we consider the optimized form of the learning vector quantization algorithm (see
Section 9.7, Haykin) developed by Kohonen. We wish to arrange for the effects of the corrections
to the Voronoi vectors, made at different times, to have equal influence when referring to the end
of the learning period.

(a) First, show that Equation (9.30)

wc(n + 1) = wc(n) + αn[xi − wc(n)]

and Equation (9.31)

wc(n + 1) = wc(n) − αn[xi − wc(n)]

may be integrated into a single equation, as follows:

wc(n + 1) = (1 − snαn)wc(n) + snαnx(n).

In the above equations, wc is the Voronoi vector closest to the input vector xi, 0 < αn < 1 is
a learning constant, and sn is a sign function depending on the classification result of the nth
input vector x(n): sn = +1 if classification is correct, otherwise sn = −1.

(b) Hence, show that the optimization criterion described at the beginning of the problem is
satisfied if

αn = (1 − snαn)αn−1

which yields the optimized value of the learning constant αn as

αopt
n =

αopt
n−1

1 + snαopt
n−1

.

(Haykin, Problem 9.6)

4. The following algorithm introduced by J. Friedman can be used for speeding up winner search
in the SOM algorithm: 1) Evaluate the Euclidean distance between the input vector and weight
vector whose projections on some coordinate axis are least apart, 2) Examine the weight vectors in
the increasing order of their projected distances to the input vector. Continue this until a weight
vector whose projected distance to the input vector is greater than the smallest Euclidean distance
calculated so far is found. At this point of the algorithm, the winning neuron has been found.

Apply the algorithm described above for the problem illustrated in Figure 13.

59

ox
o

o

o

o
o

o

o

o
o

o

o

o

o

x1

x2

Figure 13: The weight vectors (o) among which the nearest one to the input vector (x) has to be found.

(a) Find the winning neuron when the weight vectors and the input vector are projected onto
x1-axis. Show that the weight vector found by the algorithm is indeed the winning one. How
many Euclidean distances one must evaluate for finding it?

(b) Repeat the search but project the vectors onto x2-axis this time.

(c) Which one of the two searches was the fastest? Are there some general rules on how the
projection axis should be chosen?

60

T-61.3030 Principles of Neural Computing

Answers to Exercise 12

1. Consider the “peano curve” shown in figure 14c. The self-organizing map has a one-dimensional
lattice that is taught with two-dimensional data. We can see that the data points inside the circle
map to either unit A or unit B on the map. Some of the data points are mapped very far from
each other on the lattice of the som even though they are close by in the input space. Thus the
topological relationships are not preserved by the SOM. This is true in general for any mehtod that
does dimensinoality reduction. It is not possible to preserve all relationships in the data.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

a b

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

B
A

c

Figure 14: An example of a one-dimensinal SOM with two-dimensional input data. a) Random initial-
izatin. b) After the ordering phase. c) End of the convergence space. The circle marks one area where
the SOM mapping violates the topology of the input space.

2. Consider for ecample a two-dimensional lattice using the SOM algorithm to learn a two-dimensional
input distribution as in Figure 15a and b. Suppose that two neurons break down by getting stuck
at the initial position. The effect is illustrated in Figure 15c. The organization of the SOM is
distrubed. This is evident by the bending of the lattice around the broken units. If the unit breaks
completely, i.e. it can not even be selected as a best match the effect is not as dramatic (Figure
15d). This type of break down effectively creates holes in the lattice of the SOM, but the effect on
the overall organization is not as large. On the other hand small perturbations to the data samples
leaves the map lattice essentially unchanged.

61

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

2))

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

a b

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

c d

Figure 15: An example the effects caused by hardware erros on a two-dimensinal SOM with two-
dimensional input data. a) Input data. b) SOM with no hardware problems c) Two units are stuck
to their initial positions. d) The same two units are completely dead (they are not updated and they
can’t be best matches). The same initialization was used in all cases.

3. (a) If the classification is correct, sn = +1, the update equation

wc(n + 1) = (1 − snαn)wc(n) + snαnx(n) (45)

reduces to

wc(n + 1) = (1 − αn)wc(n) + αnx(n) = wc(n) + αn(x(n) − wc(n)),

whitch is the same as the update rule for correct classification.

Next, we note that if sn = −1, then equation 45 reduces to

wc(n + 1) = (1 + αn)wc(n) − αnx(n) = wc(n) − αn(x(n) − wc(n)),

which is identical to the update rule for incorrect classification.

(b) For equation 45 we note that the updated weight vector wc(n + 1) contains a “trace” from
x(n) by virtue of the last term snαnx(n). More over, it contains traces of previous samples,
namely, x(n−1), x(n−2), . . . , x(1) by virtue of the present value of the weight vector wc(n).

Consider, for exmaple, wc(n) which (according to equation 45) is defined by

wc(n) = (1 − sn−1αn−1)wc(n − 1) + sn−1αn−1x(n − 1) (46)

62

Hence, substituting equation 46 into 45 and combining terms:

wc(n+1) = (1−snαn)(1−sn−1αn−1)wc(n−1)+(1−snαn)sn−1αn−1x(n−1)+snαnx(n). (47)

It follows therefore that the effect of x(n − 1) on the updated weight vector wc(n + 1) is
scaled by the factor (1 − snαn)αn−1. On the other hand, the effect of x(n) is scaled by snαn.
Accordingly, if we require that x(n) and x(n − 1) are to have the same effect on wc(n + 1),
then we must have

αn = (1 − snαn)αn−1.

Solving for αn, we get the optimum

αopt
n =

αopt
n−1

1 + snαopt
n−1

.

4. (a) The Friedman’s algorithm is based on the following fact:

d(w,x) =

[
d∑

i=1

(wi − xi)
2

]− 1
2

≥ [(wk − xk)2]−
1
2 = d(wk, xk), 1 ≤ k ≤ d

Friedman’s algorithm on using the x1 axis:

ox
o

o

o

o
o

o

o

o
o

o

o

o

o

3

2

1

4

x1

x2

r1

r1

r2

r2

r3

r4

r′4

r′4 > r2 ⇒ 3 Euclidean distances must be evaluated before the winning neuron is found.

63

(b) Now apply Friedman’s algorithm on using the x2 axis:

ox
o

o

o

o
o

o

o

o
o

o

o

o

o
1

2
5

3 4

10

x1

x2

r1

r1

r2

r2

r3
r3

r4
r5

r5

r10r′10

r′10 > r5 ⇒ 9 Euclidean distances must be evaluated before the winning neuron is found.

(c) The first search was faster as only 3 Euclidean distances had to be evaluated, which is con-
siderably less than the 9 evaluations in the second case. As a general rule, the projection axis
should be chosen so that the variance of the projected distances is maximized. The variance
can be approximated by the maximum distance between the projected points. This way, the
projected points are located more sparcely on the axis.

64

