T-61.246 Digital Signal Processing and Filtering

Summer exam, Mon 20.6.2005 12-15, main building.

You are NOT ALLOWED to use any math reference book. (Graphical) calculator allowed, if extra memory is erased. Formulas on accompaning paper. Write down clear intermediate steps. Begin a new problem from a new page.

(6p) Multiple choises. Write down a table similar to that one below. Reply one option A, B or C, which is correct or closest. Right answer +0.5 p, wrong answer or no answer 0 p. No explanations needed.

m1	m2	m3	m4	m5	m6	m7	m8	m9	m10	m11	m12

- m1) Notation h[n] means normally [A] input sequence [B] impulse response of the filter [C] output sequence.
- m2) Convolution is [A] multiplication (with respect to time) of two signals, analog or digital, [B] addition of two signals, [C] basic operation in signal processing, with which it is possible to get output of LTI-system, when input and impulse response are known.
- m3) Consider signal which can be expressed $x(t) = A_1 \cos(2\pi f_1 \cdot t + v_1) + A_2 \cos(2\pi f_2 \cdot t + v_2)$. It is filtered with an LTI filter. Constants: $A_i \neq B_i$, $f_i \neq g_i$, $v_i \neq w_i$. Which of the following can be output signal: [A] $y(t) = A_1 \cos(2\pi f_1 \cdot t + v_1) + B_2 \cos(2\pi g_2 \cdot t + w_2)$, [B] $y(t) = B_1 \cos(2\pi g_1 \cdot t + w_1) + B_2 \cos(2\pi g_2 \cdot t + w_2)$, [C] $y(t) = A_1 \cos(2\pi f_1 \cdot t + w_1) + A_2 \cos(2\pi f_2 \cdot t + w_2)$.
- m4) LTI filter, whose impulse response is $\{\underline{1}, -1, 1, -1, 1, -1, \ldots\}$ (notation <u>a</u> represents the sample at origo) [A] is stable, [B] is FIR filter, [C] has feedback.
- m5) The impulse response of a causal second order FIR filter is of form $[\mathbf{A}] h[n] = a\delta[n + 1] + b\delta[n] + c\delta[n-1], [\mathbf{B}] h[n] = a\delta[n] + b\delta[n-1] + c\delta[n-2], [\mathbf{C}] h[n] = a\delta[n] + b\delta[n-1],$ where a, b and c are non-zero constants.
- m6) What is the number of poles outside origo of the filter y[n] 0.5y[n-1] = x[n] + 0.33[n-1] 0.44x[n-2]? [A] 1 [B] 2 [C] 3.
- m7) What can you say about the filter $H(z) = [0.2 0.5z^{-1} + z^{-2}]/[1 0.5z^{-1} + 0.2z^{-2}]?$ [A] Filter is all-pass [B] Filter is FIR [C] The phase response is linear.
- m8) The signal x(t) is sampled with sampling frequency f_s , and the length of the sequence x[n] becomes 80000. If the sampling period T_s was doubled, what would be the length of the sequence x[n]? [A] 40000, [B] 80000, [C] 160000.
- m9) The ripple in amplitude response known as Gibb's phenomen can be removed by [A] increasing the order of the filter [B] using e.g. Hamming window [C] taking the absolute value from the frequency response.
- m10) Minimum-phase filter: **[A]** all poles are outside unit circle **[B]** all zeros are inside unit circle **[C]** all zeros are in origo.
- m11) The sampling frequency of the sequence is decreased by a factor (3/5). There are proper anti-alias and anti-imaging filters $H_i(z)$ availabe. Which of the following works? Next page [A] Figure 1(a) [B] Figure 1(b) [C] Figure 1(c).
- m12) Sequence x[n] of Problem 2 is fed into the multirate system shown in Figure 1(d). The output y[n] is [A] {2.127, 0, -1.314, 0, ...} [B] {2.127, -1.314, 0.000, 1.314, ...} [C] {2.127, 0.191, -1.314, -1.309, ...}.

Figure 1: Figures for Problem 1.

2) (6p) Input sequence x[n] is fed into second order causal FIR filter (with empty registers), and the result is output y[n]. The first values of sequences are drawn in Figure 2 and the values are:

$$\begin{split} x[n] &= \{ \underline{2.127}, 0.191, -1.314, -1.309, 0.000, 1.309, 1.314, -0.191, -2.127, -3, \ldots \} \\ y[n] &= \{ \underline{2.127}, -4.063, 0.431, 1.510, 1.304, 0.000, -1.304, -1.510, -0.431, 1.063, \ldots \} \end{split}$$

Figure 2: Problem 2, input x[n] and output y[n].

- a) What is the impulse response of the filter h[n]?
- b) Draw the flow (block) diagram of the filter.
- 3) (6p) There are two poles in origo and two zeros at z = -1.
 - a) Draw the pole-zero plot of the filter and determine and sketch the amplitude response of the filter. Is the filter lowpass / highpass / bandpass / bandstop / all-pass?
 - b) Filter can be expressed using poles p_i and zeros z_i

$$H(z) = K \cdot \frac{(1 - z_1 z^{-1}) \cdot (1 - z_2 z^{-1}) \cdot \dots \cdot (1 - z_M z^{-1})}{(1 - p_1 z^{-1}) \cdot (1 - p_2 z^{-1}) \cdot \dots \cdot (1 - p_N z^{-1})}$$

where K is scaling factor. Write down the transfer function of the filter in the form

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \ldots + a_N z^{-N}}$$

so that the maximum of the amplitude response is scaled to unity. What is the order of the filter?

c) What is the difference equation of the filter?

4) (6p) Reply to EITHER 4A OR 4B.

- 4A) Design a FIR filter with window method, when the cut-off frequency of the lowpass filter is at $f_c = 2000$ Hz and the sampling frequency is $f_T = 10000$ Hz. Window functions are represented in Table 1.
 - a) Sketch the frequency response of the ideal $H_{ideal}(f)$.
 - b) Compute the impulse response $h_{ideal}[n]$. of the corresponding ideal filter. Give the values, when n = -2...2.
 - c) Compute the coefficients of the FIR filter $h_{FIR}[n]$ using window method and Hamming window $w_H[n]$, whose length is 5 (M = 2).
 - d) Examine the usefulness of this FIR filter, when in stopband 54.5 decibel minimum attenuation is required.

			Relative	Mininum	Length of
		Length of	side	stopband	transition
Window	$w[n], -M \le n \le M$	main lobe	lobe	attenu-	band
		Δ_{ML}	A_{sl}	ation	$\Delta \omega$
Rectangular	1	$4\pi/(2M+1)$	13.3 dB	20.9 dB	$0.92\pi/M$
Hann	$0.5 + 0.5 \cos(\frac{2\pi n}{2M})$	$8\pi/(2M+1)$	$31.5~\mathrm{dB}$	$43.9~\mathrm{dB}$	$3.11\pi/M$
Hamming	$0.54 + 0.46\cos(\frac{2\pi n}{2M})$	$8\pi/(2M+1)$	$42.7~\mathrm{dB}$	$54.5~\mathrm{dB}$	$3.32\pi/M$
Blackman	$0.42 + 0.5\cos(\frac{2\pi n}{2M}) + 0.08\cos(\frac{4\pi n}{2M})$	$12\pi/(2M+1)$	$58.1 \mathrm{dB}$	$75.3~\mathrm{dB}$	$5.56\pi/M$

Table 1: Properties of window functions.

4B) Essay: Digital linear and time-invariant FIR and IIR filters: similarities and differences of filter types, and about basic filter design methods.

5) (6p) Reply to EITHER 5A OR 5B OR 5C.

5A) See the filter in Figure 3. The input values are represented with B bits. After multiplications the number of bits is 2B. In order to get the number of bits in output to B, it is necessary to quantize values of w[n] (block Q).

Quantization error can be compensated using so called error feedback (or error-shaping filter). In Figure 3 there is a second order filter with a second order error feedback system.

Write down first the difference equations for e[n] and w[n], and write down then in frequency domain the quantized output Y(z) using input X(z) and quantization noise E(z), and reply

- a) how does the filter behave, if it is possible to use infinite wordlength, i.e. there is no quantization and $e[n] \equiv 0, \forall n$?
- b) how does the spectrum of the total noise $E_{tot}(z)$ look like if there is no compensation, i.e. k = 0, and if e[n] is white noise so that E(z) = 1 for all frequencies?
- c) with which simple value of k the effect of noise is suppressed in the passband?
- 5B) Essay: What do you know about human speech / voice? Compare different tools (Matlab, Tcl/Snack, TI C6711 DSP-kit) using the experience gained in the summer course.
- 5C) Essay: FFT-algorithms, especially "Decimation-in-Time" and "Decimation-in-Frequency". You do not have to derive formulas.

Figure 3: Second order system with second order error feedback. Have a nice Summer! Deadline for the project work 31.8.2005.