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T-61.3010 Digital Signal Processing and Filtering

Mid term exam 2 / Final exam. Wed 13.5.2009 16-19. Hall A.

You can do MTE2 only once either 6.5. or 13.5. Mid term exam: Problems 1 and 2.

You can do final exam only once either 6.5. or 13.5. Final exam: Problems 3, 4, 5, 6, and 7. Begin each problem
from a new page.

You can have a function calculator. If not, apply variables like k = sin(0.2π). You are not allowed to have any math
formula book of your own. You will be given a course formula paper.

1) (12 x 1p, 0-12 p, ONLY MTE2) Multichoice. There are 1–4 correct answers, but choose one and only one. Fill
in into a separate form, which will be read optically.

Correct answer +1 p, incorrect −0.5 p, no answer 0 p. You do not need to explain your choices. Reply to as many
statements as you want. The maximum points of this problem is 12 and the minimum 0.

1.1 Consider a block diagram in Figure 1, where three subsystems S(z), R(z) and T (z) are LTI. The transfer
function of the filter is

(A) H(z) = R(z)·T (z)
1−R(z)·S(z)

(B) H(z) = R(z)·T (z)
S(z)

(C) H(z) = R(z) · S(z) · T (z)

(D) H(z) = (1 + S(z)) · R(z) · T (z)

y[n]x[n]

S(z)

R(z) T(z)

Figure 1: Multichoice 1.1.

1.2 Consider causal and stable LTI filter in Figure 2(a)

(A) Transfer function of filter is constant H(z) = 1
2 .

(B) Pole-zero plot of filter is in Figure 2(b).

(C) Impulse response of filter is 0.5h[n] = δ[n] − 0.2δ[n− 1] − 0.5δ[n − 2] + 0.2h[n− 1] + 0.5h[n− 2].

(D) Filter is drawn as a canonic (with respect to delays) direct form II structure.
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Figure 2: Multichoice 1.2: block diagram and the pole-zero plot of the option (B) .
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1.3 Consider a LTI system in Figure 3.
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Figure 3: Multichoice 1.3, LTI filter.

(A) The system is expressed as a poly-phase structure FIR filter.

(B) Difference equation of the filter is y[n] = 10y[n− 1] − 2x[n] − 5x[n − 1].

(C) The equivalent transpose structure of the filter is shown in Figure 4.

(D) There is a feedback without any delay (”delay free loop”), and therefore it cannot be realized.
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Figure 4: Multichoice 1.3, option (C) .

1.4 The transfer function H(z) of a high pass filter with monotonic passband is H(z) = K · (1− z−1 + z−2 − z−3).
If the maximum of the filter is scaled to one, what is the gain K?

(A) K = 0.25.

(B) K = 0.5.

(C) K = 1.

(D) K = ∞.

1.5 In the window method of the digital FIR filter design, the purpose of the window function w[n] itself is

(A) to map left plane of s-plane into inside of the unit circle in z-plane.

(B) to cut the infite-length impulse response hideal[n] to finite length.

(C) to attenuate frequency components over half of the sampling frequency.

(D) to compute energy of impulse response hideal[n] in order to ensure that the filter is stable.

1.6 First in digital IIR filter design the specifications are written and after that the order N of the filter is estimated.

(A) Choosing the order does not have any effect on the computation of the filter as long as the specifications
are fulfilled.

(B) Order is chosen to be as low as possible as long as the specifications are fulfilled.

(C) Order N is smaller and smaller when the cut-off frequency ωc is smaller and smaller.

(D) Digital IIR filter of order N is of form H(z) = b0 + b1z
−1 + . . . + bNzN−1

1.7 Analog filter H(s) = Ω/(s + Ω), where prewarped cut-off frequency Ω = k · 0.2, is converted to digital H(z)
using bilinear transform. The digital filter is

(A) H(z) = (1/3) · 1
1+0.5z−1

(B) H(z) = (2/3) · 1+z−1

1+(1/3)z−1

(C) H(z) = 2 · 1+z−1

1−0.5z−1

(D) H(z) = 2 · [1 + z−1]
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1.8 The following equations have been derived from the block diagram of a digital filter in Figure 5

y[n] = ABw[n] + Be[n]

w[n] = x[n] + y[n]

where A and B are positive constants.

(A) The transfer function with respect to x and y is H(z) = AB+B
1−AB .

(B) The impulse response with respect to x and y is h[n] = (AB)n.

(C) The filter cannot be physically realized because there are two inputs.

(D) The filter cannot be physically realized because there is no delay.

A

B

x[n] e[n]

y[n]

w[n]

Figure 5: Multichoice 1.7.

1.9 Effects of finite wordlength are related especially to

(A) the use of impulse invariant method in IIR filter design.

(B) mathematical non-periodic behaviour of the sequence, when the period N0 is not mathematically integer
even if in practice it would be (10π ≈ 31).

(C) the computation of the spectrogram of an audio signal.

(D) the quantization of the filter coefficients.

1.10 Periodic sequence (N0 = 4) x[n] = {. . . , 2, 0, 0, 9, . . .} is fetched into a digital system

x[n] → ↓ 5 → ↑ 2 → y[n].

(A) y[n] is a periodic sequence (N0 = 4) y[n] = {. . . , 0.8, 0, 0, 3.6, . . .}.

(B) y[n] is a periodic sequence with fundamental period N0 = 8.

(C) y[n] is a periodic sequence with fundamental period N0 = 10.

(D) y[n] = x[n].

1.11 Examine the spectrum |X(ejω)| of a real sequence x[n] in Figure 6.

0 π
ω

Figure 6: Multichoice 1.11 tutkittava |X(ejω)|.

The sequence is fed into a multirate system x[n] → ↓ 4 → y[n].

What can be said about the spectrum of the output (assumption: scales in y-axis correct)?

(A) Spectrum of the output y[n] is in Figure 7(a).

(B) Spectrum of the output y[n] is in Figure 7(b).

(C) Spectrum of the output y[n] is in Figure 7(c).

(D) Spectrum of the output y[n] is in Figure 7(d).
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Figure 7: Multichoice 1.11, options (A) , (B) , (C) ja (D) .
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1.12 What for the following lines of code are suited best?

[x, fT] = wavread(’mySignal.wav’);

y = zeros(size(x));

wL = 256;

m = 0;

Z = [zeros(17,1); ones(223,1); zeros(16,1)];

for k = 1 : wL : length(x)-wL

m = m + 1;

tmpx = x(k : k+wL-1);

tmpxF = fft(tmpx);

tmpyF = tmpxF .* Z;

y(k : k+wL-1) = real(ifft(tmpyF));

end;

(A) To compute the signal energy in small time frames of 256 samples.

(B) To create an “echo effect”.

(C) To change the sampling frequency to the fraction of 17/256.

(D) To filter the signal with a highpass filter with the normalized cut-off angular frequency ωc ≈ π/8.

2) (6p, MID TERM EXAM) Choose either 2A or 2B. Write down an exam essay, where introduction, body of essay,
and summary. Use clear visualisations if needed.

2A) OPTION A. FFT algorithms. In addition to common text you can use as an example“radix-2 DIT FFT”algorithm
whose butterfly equations and WN are given in the formula table. Compute with intermediate steps FFT for a
sequence (N = 4) x[n] = −1δ[n]− 4δ[n − 1] + 2δ[n − 2] + 3δ[n − 3].

2B) OPTION B. Automatic speech recognition.
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3) (6p, ONLY FINAL EXAM)

a) Explain that the digital system y[n] = x1[n] · (2 · x2[n − 2]) is not a LTI system.

b) Show that the digital LTI system with impulse response h[n] = (−0.5)n+2µ[−n − 2], is not causal nor stable.

c) Find the fundamental period N0 of the whole sequence x[n]

x[n] = 2 cos(2π · (500/12000)n− π/6) + 3 cos(2π · (3200/12000)n + π/8)

4) (6p, ONLY FINAL EXAM) Consider a LTI system which is composed of four simple filters

h1[n] = δ[n] + 0.5δ[n − 1]

h2[n] = 0.5δ[n]− 0.25δ[n− 1]

h3[n] = 2δ[n]

h4[n] = −2 · 0.5nµ[n]

as shown in Figure 8.

a) Write down the form of the impulse response h[n] of the whole system using impulse responses h1[n], h2[n],
h3[n], and h4[n]. Equivalently, write down the transfer function H(z) of system using transfer functions of the
subsystems.

b) Compute h[n] and H(z).

c) Is the filter lowpass / highpass / bandpass / bandstop / allpass?

h3

h4

h1

h2

x[n] y[n]

Figure 8: Problem 4, LTI system h[n] with four LTI subsystems.

5) (6p, ONLY FINAL EXAM) Consider a LTI system in Figure 9.

a) Determine the difference equations of the system and after that the transfer function in the format

H(z) = G ·
1 + b1z

−1 + . . . + bMz−M

1 + a1z−1 + . . . + aNz−N

b) The structure of the filter is canonic with respect to delays, if the number of the delays is the same as the order
of the filter. Is the filter in the figure canonic wrt delays?

c) What values coefficients a and b may get so that the filter is stable?

z−1 z−1

z−1
x[n]

y[n]

−1 a

b

−1

Figure 9: Problem 5, flow diagram of LTI filter.
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6) (6p, ONLY FINAL EXAM) Consider a digital signal, whose spectrum is depicted in Figure 10. We are interested
in the band up to 5 kHz. Noise begins from 6 kHz. The sampling frequency is fT = 48 kHz.

Design a digital FIR-filter using Window method (“Truncated Fourier series”) and Hamming window.

Hamming window and some parameters are given in the table below when the filter coefficients are computed in
range of −M ≤ n ≤ +M .

Window w[n], −M ≤ n ≤ M Min. stopband attenuation Length of transition band ∆ω
Hamming 0.54 + 0.46 cos((2πn)/(2M)) 54.5 dB 3.32π/M

a) Sketch the filter specifications as a diagram.

b) In the column “Length of transition band ∆ω” there is the width of the transition band (between passband and
stopband) as normalized angular frequency, when M is given. Estimate the order N of your filter.

c) Compute the following values of the impulse response h[−M ], h[−3], h[0], h[3] ja h[2009].

jω|X(e    )|

5 6 24 kHz

f

Figure 10: Problem 6, input spectrum |X(ejω)|.

7) (6p, ONLY FINAL EXAM) Consider a synthetic sequence

x[n] = 3 cos(2π · (200/fT )n) + 2 sin(2π · (1200/fT )n − π/6) + cos(2π · (3400/fT )n + π/8)

with sampling frequency fT = 12000 Hz.

a) Sketch the spectrum |X(ejω)| in range 0 . . . fT /2.

b) Sketch the spectrum |Y1(e
jω)| of sequence y1[n] when x[n] is downsampled with M = 6, that is,

x[n] → ↓ 6 → y1[n].

c) Sketch the spectrum |Y2(e
jω)| of sequence y2[n] when x[n] is first filtered with a lowpass decimation filter

(“anti-aliasing filter”) and after that downsampled with M = 6, that is

x[n] → LP → ↓ 6 → y2[n].

Justify your choice of cut-off frequency in the decimation filter.


