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Digital Processing of 
Continuous-Time Signals4 Continuous-Time Signals4

Introduction

• Analog-to-Digital (A/D) Converter and 
Digital-to Analog (D/A) Converter 
needed to interface the system with 
analog world
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analog world
• Application examples:

– Speech
– Music
– Images

Building Blocks

• Anti-aliasing filter (pre-filter)
• Sample-and-hold (S/H) circuit

D/APre-
filter

Post-
filter

S/H A/D DSP
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Sample and hold (S/H) circuit
• A/D converter (ADC)
• Digital signal processor (DSP)
• D/A converter (DAC)
• Reconstruction (smoothing) filter (post-filter)

Ideal Interfaces

• Simplified block diagram with ideal 
CT-DT and DT-CT converters:

Di t Id l
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Discrete-
time

processor

Ideal 
inter-

polator

Ideal
sampler

x [n]
xa(t) ya(t)

y[n]

• Finite precision A/D and D/A conversion is 
not considered here

Sampling of CT Signals
• Let ga(t) be a continuous-time signal that is 

uniformly sampled at t=nT 

∞<<∞−= nnTgng a ,)(][
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• T is the sampling period
• FT=1/T is the sampling frequency

Spectrum of CT and DT Signals
• Continuous-time Fourier transform of ga(t) is

∫
∞

∞−

Ω−=Ω dtetgjG tj
aa )()(

Di t ti F i t f f [ ] i
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• What is the difference between the two 
different types of Fourier spectra ?

∑
∞

−∞=

−=
n

njj engeG ωω ][)(

• Discrete-time Fourier transform of g[n] is
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Sampling Process

ga(t)

x

p(t)

ga(t) gp(t)=ga(t) p(t)

Continuous-time signal ga(t)
is multiplied by an impulse 
train

Continuous-time signal ga(t)
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0 t

0 t

p(t)
1

T

0 t

T
ga[0] ga[T]

Impulse train p(t)

Weighted impulse train 

gp(t)=ga(t)p(t)

∑∞

−∞=
−=

n
nTttp )()( δ

Impulse-Train Sampling
• The periodic impulse train p(t) is the sampling function
• In time-domain:

• Multiplying ga(t) by a unit impulse, samples the value of 
th i l t th i t t hi h th i l i l t d i

∑
∞

−∞=
−=

n
nTttp )()( δwhere,)()()( tptgtg ap =
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the signal at the point at which the impulse is located, i.e.,
)()()()( 000 tttxtttx −=− δδ

• Thus, gp(t) is an impulse train with the amplitudes of the 
impulses equal to the samples of ga(t) at intervals spaced 
by T, i.e.,

∑
∞

−∞=

−=
n

ap nTtnTgtg )()()( δ

Impulse-Train Sampling
• Using the multiplication property of the convolution theorem

• The Fourier transform of a periodic impulse train p(t) is also 
a periodic impulse train in the frequency domain, i.e.,

)()()()()()( Ω∗Ω=Ω⇔= jPjGjGtptgtg apap
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∑
∞

−∞=

Ω−Ω=Ω
k

Tk
T

jP )(1)( δ

0 Ω

P(jΩ)
1
T

ΩT 2ΩT 3ΩT−ΩT−2ΩT−3ΩT

Spectrum of Sampled Signal with ΩT > 2Ωm

0 Ω

Ga(jΩ)

Ωm−Ωm

P(jΩ)1
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0 Ω−ΩT 2ΩT−2ΩT ΩT

0 Ω

Gp(jΩ)1
T

ΩT−ΩT 2ΩT−2ΩT Ωm−Ωm
(ΩT  -Ωm)

Spectrum of Sampled Signal with ΩT < 2Ωm

0 Ω

Ga(jΩ)

Ωm−Ωm

P(jΩ)1

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 4

11

0 Ω

(j )1

−ΩT 2ΩT−2ΩT ΩT

(ΩT-Ωm)
0 Ω

Gp(jΩ)1
T

ΩT−ΩT 2ΩT−2ΩT Ωm−Ωm

Sampling Process

xga(t)
gp(t)

Hr(jΩ)

∑
+∞

−∞=
−=

n
nTttp )()( δ

gr(t)
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• Sampling process is modeled by multiplying the 
continuous-time signal ga(t) with a periodic impulse 
train p(t) 

• The recovered signal gr(t) is obtained by lowpass 
filtering the sampled signal gp(t)
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• Spectrum for ga(t)

• Corresponding 
spectrum for gp(t)

0 Ω

Ga(jΩ)

Ωm−Ωm

0 Ω

Gp(jΩ)1
T

ΩT−Ωt Ωm−Ωm

Ideal Sampling
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• Ideal lowpass filter 
Hr(jΩ) used to recover
Gr(jΩ) from Gp(jΩ) 

• Spectrum of gr(t)

0 Ω

Hr(jΩ)

Ωc−Ωc

)( mTcm Ω−Ω<Ω<Ω
T

0 Ω

Gr(jΩ)

Ωm−Ωm

1

Sampling Theorem
• If the sampling frequency at least twice as 

high as the highest frequency component of 
the bandlimited signal, i.e., ΩT > 2Ωm ,  then 
the original signal can be recovered from its 
samples
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samples 

• If the above condition is not fulfilled, i.e., the 
frequency components above ΩT/2 will be 
aliased into the band of interest |Ω| < Ωm

Sampling Theorem
• The highest frequency Ωm contained in the 

signal is called the Nyquist frequency since 
it determines the minimum sampling frequency
ΩT = 2Ωm , also called the Nyquist rate
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• The frequency ΩT/2 is referred to as the 
folding frequency

• Critical sampling corresponds to ΩT = 2Ωm

• Undersampling corresponds to ΩT < 2Ωm

• Oversampling corresponds to ΩT >> 2Ωm

Example: Sampling on a Pure Cosine Signal

(a) Spectrum of 
cos(6πt)

• Consider the three continuous-time sinusoidal signals
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(b) Spectrum of 
cos(14πt)

(c) Spectrum of 
cos(26πt)

Example: Sampling on a Pure Cosine Signal

(d) Spectrum of the 
sampled version of 
cos(6πt)

• The spectra of the sampled versions of the original 
cosine signals with the sampling frequency ΩT=20π
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(e) Spectrum of the 
sampled version of 
cos(14πt)

(f) Spectrum of the 
sampled version of 
cos(26πt)

Recovery of the Analog Signal
• Ideal lowpass filter: 

Ω

Ω=ΩΩ= ∫∫
Ω

Ω−

Ω
∞

∞−

Ω deTdejHth tjtj
rr

c

c

)i (

2
)(

2
1)(

ππ

⎩
⎨
⎧

Ω>Ω
Ω≤Ω

=Ω
c

c
r

T
jH

||,0
||,

)(
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∞<<∞−
Ω

Ω
= t

t
tc ,

2/
)sin(

• Impulse train gp(t) : ∑
∞

−∞=

−=
n

ap nTtnTgtg )()()( δ

• Output of the ideal lowpass filter is given by the 
convolution
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Recovery of the Analog Signal

∑
∞ −

=
TnTtngtg ]/)(sin[][)(ˆ π

∑
∞

−∞=

−=
n

ra nTthngtg )(][)(ˆ

• Substituting hr(t) and assuming that Ωc= ΩT/2=π/T
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∑
−∞= −

=
n

a TnTt
ngtg

/)(
][)(

π

• ga(t) is obtained by 
shifting in time and 
scaling hr(t) 

Illustration of the Sampling Process
• Three continuos-time 

signals with band-
limited spectra

• Each of these signals 
is sampled at a 
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p
sampling frequency of 
ΩT 

• The periodic frequency 
spectra of the sampled 
signals are identical 

Analog Filter Design
• Magnitude response specifications for approximation 

of the ideal response
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Analog Filter Specifications
• Passband: ppap jH Ω≤Ω+≤Ω≤− ||,1)(1 δδ

Magnitude approximates unity within +δp

• Stopband: ∞<Ω≤Ω≤Ω ||,)( psa jH δ
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Magnitude approximates zero within +δs

• Finite transition band between passband and 
stopband edge frequencies Ωp and Ωs

• The deviations, δp and δs , are called the ripples

Analog Filter Specifications
• The limits of the tolerances, δp and δs, i.e., the ripples 

can be defined in decibels
• The peak passband ripple αp and the minimum 

stopband attenuation αs, are defined as:

dB)1(log20 10 δα −−=
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dB  )(log20

dB  )1(log20

10

10

ss

pp

δα

δα

−=

• The specifications can be given also as  the loss or 
attenuation function a(jΩ) in dB which is defined as 
the negative of the gain in dB, i.e.,

dB  )(log20)( 10 Ω−=Ω jHj aa

Normalized Magnitude Specifications
• The maximum value of the magnitude is assumed to 

be unity
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Classical Filter Designs
• The classical filter designs

• Butterworth,
• Chebyshev, and 
• Elliptic
ti f th it d t i t f l filt

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 4

25

satisfy the magnitude constraints of analog filters 
• These approximation methods can be expressed 

using the closed form formulas
• Extensive tables are available for analog filter 

design
• The closed form formulas can be easily solved

Butterworth Approximation
• The magnitude response is required to be maximally 

flat in the passband
• For the lowpass filter, the first 2N-1 derivatives of 

|H(jΩ)|2 are specified to equal to zero at Ω=0
• The squared-magnitude response of an analog
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The squared magnitude response of an analog 
lowpass Butterworth filter is

N
c

a jH 2
2

)/(1
1)(
ΩΩ+

=Ω

• The gain is: dB  )(log10)( 2
10 Ω=Ω jHaG

Butterworth Approximation
• Note that

2
1)(and   ;1)0( =Ω= caa jHH

dB33 0103½)(log10)( ≅==ΩG

• At dc, i.e. at Ω=0, the gain in dB is equal to zero and 
at Ω=Ωc, the gain is 
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dB -3-3.0103 ½)(log10)( 10 ≅==ΩcG

• Therefore, Ωc is called the 3-dB cutoff frequency
• Since  the derivative of the squared-magnitude 

response is always negative for positive values of Ω, 
the magnitude response is monotonically decreasing 
with increasing Ω

Butterworth Approximation
• Magnitude response of the normalized Butterworth 

lowpass filter with Ωc=1
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Butterworth Approximation
• The system function of the Butterworth filter is 

N
c

aa js
sHsH 2)/(1

1)()(
Ω+

=−

and the poles of  Ha(s)Ha(-s) are
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p a( ) a( )

)()1( 2/1
c

N
k js Ω−=

• These 2N poles are uniformly distributed on circle of 
radius Ωc in the s-plane and are symmetrically located 
with respect to both the real and imaginary axes

Butterworth Approximation
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• The poles from left half s-plane are selected to the 
stable transfer function, an all-pole transfer function

)(
1)(

sB
sH

n

=
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Chebyshev Approximation
• More rapid rolloff rate near the cutoff frequency than 

that of the Butterworth design can be achieved at the 
expense of a loss of monotonicity in the passband 
and/or the stopband

• The Chebyshev designs maintain monotonicity in 
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one band but are equiripple in the other band
Chebyshev Type I (normal Chebyshev):
• All-pole transfer function, i.e., all zeros at infinity
Chebyshev Type II (inverse Chebyshev):
• Rational transfer function having zeros at finite 

frequencies

Chebyshev I Approximation
• The squared magnitude response for an analog 

Chebyshev I design is of the form

)/(1
1)( 22

2

pN
a T

jH
ΩΩ+

=Ω
ε

where TN(Ω) is the Nth order Chebyshev polynomial
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N( ) y p y

⎩
⎨
⎧

>ΩΩ
≤ΩΩ

=Ω
−

−

1||),coshcosh(
1||),coscos(

)( 1

1

N
N

TN

• The recurrence relation for Chebyshev polynomials
)()(2)( 21 Ω−ΩΩ=Ω −− rrr TTT

with T0(Ω)=1 and T1(Ω)= Ω

Chebyshev I Approximation

)/(1
1)( 22

2

pN
a T

jH
ΩΩ+

=Ω
ε

• In the passband, Ω < Ωp, TN(Ω)=cos(Ncos-1Ω) varies 
between -1 and 1 and its square between 0 and 1

• Thus |H (jΩ)|2 has equal ripple behaviour in the
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• Thus, |Ha(jΩ)|2 has equal ripple behaviour in the 
passband between 1 and (1-δ1)2

• The deviation is determined by the ripple factor ε

1
)1(

1
1

1)1( 2
1

2
2

2
1 −

−
=⇒

+
=−

δ
ε

ε
δ

• The transfer function is an all-pole function in the s-plane

Chebyshev I Approximation
• The squared magnitude 

response of a lowpass 
Chebyshev I filter for 
different values of N

• The behavior is deter-
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mined by the cutoff 
frequency Ωp, the pass-
band ripple factor ε, and 
the order N

• For the stopband specifi-
cations δ2 and Ωs the order 
N can be determined from: )/(cosh

)/1(cosh
1

2
1

ps

N
ΩΩ

≈ −

− εδ

Chebyshev I Approximation
• The poles of the 

Chebyshev I filter lie on 
an ellipse in the s-plane

• The equiripple behavior 
in the passband can be
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in the passband can be 
explained by considering 
the locations of the poles 
(and comparing them to 
those of the Butterworth 
filter)

Chebyshev II Approximation
• The squared magnitude response is of the form

2

2

2
2

2

)/(
)/(

1

1)(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ΩΩ
ΩΩ

+

=Ω

sN

psN

a

T
T

jH

ε
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• The transfer function 
has equal ripple 
behavior in the 
stopband due to zeros 
at finite frequencies, 
i.e., it is not an all-pole 
transfer function
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Elliptic Approximation
• The squared magnitude response is of the form

)/(1
1)( 22

2

pN
a R

jH
ΩΩ+

=Ω
ε

where RN(Ω) is a rational function with )(/1)/1( Ω=Ω NN RR
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• The transfer function has 
equal ripple behavior both 
in the passband and in 
the stopband 

• Elliptic approximation has 
the narrowest transition 
band

Anti-Aliasing Filter Design
• Ideally, the anti-aliasing filter Ha(s) should have a lowpass 

frequency response Ha(jΩ) given by

⎩
⎨
⎧

Ω≥Ω
Ω<Ω

=Ω
2/||,0
2/||,1

)(
T

T
a jH
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• In practice, it is 
necessary to filter 
out those 
frequencies that 
will be aliased to 
the band of 
interest 

Reconstruction Filter Design
• Reconstruction or smoothing filter is used to eliminate all 

the replicas of the spectrum outside the baseband
• If the cutoff frequency Ωc of the reconstruction filter is 

chosen as ΩT/2, where ΩT is the sampling frequency, the 
corresponding frequency response is given by

⎧ Ω≤Ω 2/||T
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⎩
⎨
⎧

Ω>Ω
Ω≤Ω

=Ω
2/||,0
2/||,

)(
T

T
r

T
jH

• The reconstruction filter is not causal!
• The reconstructed analog signal is

∑
∞

−∞= −
−

=
n

a TnTt
TnTtnyty

/)(
]/)(sin[][)(

π
π

Zero-Order Hold
• The analog signal is approximated by the staircase-like 

waveform

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 4

40

• The zero-order hold circuit has the impulse response hz(t)

Zero-Order Hold
• Fourier transform of the output of the zero-order hold is

where

)()()( ΩΩ=Ω jYjHjY pzz

⎤⎡ Ω

Ω
−

=
Ω

−==Ω

Ω

Ω−Ω−
Ω−∫

)2/sin(

1)(
0

0

T

j
e

j
edtejH

Tj

TjTtjT tj
z
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⎥⎦
⎤

⎢⎣
⎡

Ω
Ω

=
−

2/
)2/sin(2 Te

j

• The magnitude response of the zero-order hold has a 
lowpass characteristic with zeros at +ΩT, +2ΩT,..., where 
ΩT=1/T

• The zero-order hold somewhat attenuates the unwanted 
replicas of the periodic digital signal at multiples of ΩT

Zero-Order Hold

• The zero-order hold 
circuit also distorts the 
magnitude in the band 
of interest (close to Ωm)

a) Zero order hold
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a) Zero-order hold

b) Output of the ideal 
D/A converter

c) Output of the 
practical D/A 
converter
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Zero-Order Hold
• The distortion of the zero-order hold can be 

compensated, e.g., digitally prior to D/A converter

• FIR filter:

21

16
1

8
9

16
1)( −− −+−= zzzH FIR
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• IIR filter:

16816
)(FIR

18
9)( −+

=
z

zH IIR


