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Introduction

 Analog-to-Digital (A/D) Converter and
Digital-to Analog (D/A) Converter
needed to interface the system with
analog world

 Application examples:
— Speech
— Music
— Images
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Building Blocks

Pre- S/H AD DSP DIA Post-
filter filter

« Anti-aliasing filter (pre-filter)

« Sample-and-hold (S/H) circuit

« A/D converter (ADC)

« Digital signal processor (DSP)

« D/A converter (DAC)

« Reconstruction (smoothing) filter (post-filter)
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Ideal Interfaces

« Simplified block diagram with ideal
CT-DT and DT-CT converters:

x[n]| Discrete- | yn) Ideal
Ideall —— time —— inter- — v,
sampler processor polator

« Finite precision A/D and D/A conversion is
not considered here
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Sampling of CT Signals

* Let g,(t) be a continuous-time signal that is
uniformly sampled at t=nT

g[n]=9,(nT), —o<n<w

e Tisthe sampling period
* F=1Tis the sampling frequency

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 5
Mitra 3rd Edition: Chapter 4

Mitra 3rd Edition: Chapter 4;
© 2009 Olli Simula

Spectrum of CT and DT Signals
 Continuous-time Fourier transform of g,(t) is
G,(JQ) = [ g, (e ™dt
« Discrete-time Fourier transform of g[n] is

Ge™)= 3 glne ™

» What is the difference between the two
different types of Fourier spectra ?
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Impulse-Train Sampling

The periodic impulse train p(t) is the sampling function
Continuous-time signal g,(t) In time-domain:

()
is multiplied by an impulse o
gam‘é— 9O=60OPO  train 9,(0=0.®)p(t), where pt)= 3 (t-nT)
n=—x
/\EV—\ Continuous-time signal g,(t) Multiplying g,(t) by a unit impulse, samples the value of

9 t the signal at the point at which the impulse is located, i.e.,
=T p() t)o(t—tg) = x(t t—t
ot ottt x(t)o(t—tg) = x(to)S(t —to)
Thus, g,(t) is an impulse train with the amplitudes of the

0 t
W01 .M
/’/—‘\%‘r\'\ impulses equal to the samples of g,(t) at intervals spaced

Sampling Process

Impulse train p(t)
P =2,  St-nT)

n=-

Weighted impulse train

by T, ie.,
0 t 1)=ga(D)p(t N
9(0=ga(Hp(1) 9,(1)= Y g,(nT)s(t-nT)
n=-n
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Impulse-Train Sampling Spectrum of Sampled Signal with 2, > 2.2,
« Using the multiplication property of the convolution theorem )
g,0)=9.0)pt) < G,(j)=C,(j)*P(j)
« The Fourier transform of a periodic impulse train p(t) is also a, 0 Q Q
a periodic impulse train in the frequency domain, i.e., 1 P
13 N I I B
P(jQ) == ) 5(Q-kQ
(iQ) Tk; ( T) By —o 0 o 20 0
. 1 G,
H % " A
=
A N I A I | NN/ ,
30 20 -2 0 o 2% 3 Q 20 2 -0, 0 N @ 20, o
(27 -42,)
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Spectrum of Sampled Signal with 2, < 202, Sampling Process

649 pO= Sot-nT)
9O [
2, 0 o %0 _. %0
14 PG9
] ] [ [ ] « Sampling process is modeled by multiplying the
22 %0 o un 2 continuous-time signal g,(t) with a periodic impulse

1 AG(9 train p(t)
H

S
@)
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» The recovered signal g,(t) is obtained by lowpass
filtering the sampled signal g,(t)
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Ideal Sampling

G,(i9)
» Spectrum for g,(t) L -
« Corresponding H Gl
spectrum for g,(t)
o la, 0 a o o
H,

* |deal lowpass filter

H, (i) used to recover T

G,(j¢) from G,(j©9) -2, 0 2 o
1 X
G2
* Spectrum of g,(t)
-2, 0 2 0
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Sampling Theorem

« If the sampling frequency at least twice as
high as the highest frequency component of
the bandlimited signal, i.e., ;> 24, , then
the original signal can be recovered from its
samples

« If the above condition is not fulfilled, i.e., the
frequency components above £2;/2 will be
aliased into the band of interest | < Q,
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Sampling Theorem

 The highest frequency 2, contained in the
signal is called the Nyquist frequency since
it determines the minimum sampling frequency
£02,=20, , also called the Nyquist rate

» The frequency (2,/2 is referred to as the
folding frequency

* Critical sampling corresponds to 2, = 202,
» Undersampling corresponds to 2, < 20,
» Oversampling corresponds to 2 >> 20,
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Example: Sampling on a Pure Cosine Signal

» Consider the three continuous-time sinusoidal signals

GtR)
(a) Spectrum of
] cos(6mt)
x 0 6% o
GyliQ)
(b) Spectrum of
: i} . cos(14nt)
~l4n G}:]’D) l4n
. (c) Spectrum of
: [ . cos(26nt)
26 [} 26n
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Example: Sampling on a Pure Cosine Signal

« The spectra of the sampled versions of the original
cosine signals with the sampling frequency ;=207

Gy

(d) Spectrum of the
sampled version of
@ cos(6mnt)

(e) Spectrum of the
sampled version of
a cos(14nt)

(f) Spectrum of the
sampled version of
a cos(26mt)
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Recovery of the Analog Signal
* Ideal lowpass filter: Hr(jQ):{T’ |22,
0, |1QpQ,

17 Sy T ¢,
h.(t)=— | H,(jQ)e*"dQ =— [e!"dQ
(1) 2n£ (i) zfr,ic
_sin(Q.t)
Qt/2
* Impulse train gy(t) : g, = iga(nTM(tfnT)

, —o<t<w

« Output of the ideal lowpass filter is given by the
convolution
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Recovery of the Analog Signal lllustration of the Sampling Process
P B T * Three continuos-time
g.(1) = n;g[n]h, (t=nT) A [ﬂ . signals with band-
i limited spectra

* Substituting h,(t) and assuming that Q2= /2=#4T

sin[z(t—nT)/T]
zt-nT)/T

Each of these signals
is sampled at a
sampling frequency of
fo

The periodic frequency
spectra of the sampled
signals are identical

6.0= " oln]

* g,(t) is obtained by s
shifting in time and ¢
scaling h(t)

Figure S0 Funber illostration of th offct o samplin.
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Analog Filter Design Analog Filter Specifications
* Magnitude response specifications for approximation « Passband: 1—§p < ‘Ha(jQ)‘ <1+ 5p , | Q Qp

of the ideal response

- Magnitude approximates unity within +d,

@@\ . Stopband:  |H,(jQ)|<8,, Q,<Q|<w

1-&

Magnitude approximates zero within +d;
[ Passband —-: Stopband
 Finite transition band between passband and
5 N e stopband edge frequencies 2, and £
0 Q T -
0 & » o * The deviations, 6, and ¢, , are called the ripples
T
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Analog Filter Specifications Normalized Magnitude Specifications
* The limits of the tolerances, &, and &, i.e., the ripples + The maximum value of the magnitude is assumed to

can be defined in decibels be unity

* The peak passband ripple «, and the minimum
stopband attenuation «, are defined as:

a,=-20log,(1-5,) dB
a, =-20log,,(5,) dB

+ The specifications can be given also as the loss or s
attenuation function a(j<2) in dB which is defined as ° i A
the negative of the gain in dB, i.e., T
a‘/( JQ) =-20 IOglO H a ( JQ)‘ dB Figure 512 Normalized magnitude specifications for an analog lowpass filter.
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Classical Filter Designs

The classical filter designs

« Butterworth,

¢ Chebyshev, and

« Elliptic
satisfy the magnitude constraints of analog filters
These approximation methods can be expressed
using the closed form formulas

« Extensive tables are available for analog filter

design
¢ The closed form formulas can be easily solved
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Butterworth Approximation

* The magnitude response is required to be maximally
flat in the passband

» For the lowpass filter, the first 2N-1 derivatives of
[H(iQ)[? are specified to equal to zero at Q=0

» The squared-magnitude response of an analog
lowpass Butterworth filter is

. 1
H,(JQ) = ————
RGO = gram

. Thegainis: G(Q)=10log,|H,(jQ)* dB
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Butterworth Approximation

Note that  |H,(0)| =1 and |H,(jQ,)| =+
Atdc, i.e. at Q=0, the gain in dB is equal to zero and
at Q=Q, the gain is

G(Q,) =10log,, (%) = -3.0103 = -3dB

Therefore, Q. is called the 3-dB cutoff frequency

Since the derivative of the squared-magnitude
response is always negative for positive values of Q,
the magnitude response is monotonically decreasing
with increasing Q
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Butterworth Approximation

* Magnitude response of the normalized Butterworth
lowpass filter with Q=1

1 "\.‘\
<
hY
048 R
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& N
Zpa O WNE2
L} \\\ .
i Net T
02 N o]
N
Y S NeID
o 05 2 25 El

1 L5
Normalized frequency
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Butterworth Approximation

The system function of the Butterworth filter is
1

H,S)H,(-8)=——F——+

(S5 1+(s/ jo )™

and the poles of H,(s)H,(-s) are
s = (" (i)

These 2N poles are uniformly distributed on circle of
radius Q in the s-plane and are symmetrically located
with respect to both the real and imaginary axes
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Butterworth Approximation

e The poles from left half s-plane are selected to the
stable transfer function, an all-pole transfer function

1
H(s) =%—=
B, (s)
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Chebyshev Approximation

« More rapid rolloff rate near the cutoff frequency than
that of the Butterworth design can be achieved at the
expense of a loss of monotonicity in the passband
and/or the stopband

* The Chebyshev designs maintain monotonicity in
one band but are equiripple in the other band
Chebyshev Type | (normal Chebyshev):

« All-pole transfer function, i.e., all zeros at infinity

Chebyshev Type Il (inverse Chebyshev):

« Rational transfer function having zeros at finite
frequencies
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Chebyshev | Approximation
» The squared magnitude response for an analog
Chebyshev | design is of the form

. 1
H(JQ)f = ————
[H. (i) 1+£THQIQ,)
where Ty(Q) is the N order Chebyshev polynomial
cos(N cos™ Q), Q<1
T.(©) = ( 71) ||
cosh(N cosh™Q), |Q[>1
» The recurrence relation for Chebyshev polynomials
Tr (Q) = 2gz-l—r—l (Q) _Tr—z (Q)
with To(©Q)=1 and T,(Q)=Q
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Chebyshev | Approximation

. 1
H,(jQ)f = ———
[Ha () L eTAQIQ,)
* Inthe passband, Q < Q,, Ty(€2)=cos(Ncos?'Q) varies
between -1 and 1 and its square between 0 and 1

e Thus, |H,(Q)]? has equal ripple behaviour in the
passband between 1 and (1-6,)?

¢ The deviation is determined by the ripple factor ¢

1 1
1-8,)% = = g=—"-1
A=0) =1 & TSy

¢ The transfer function is an all-pole function in the s-plane
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Chebyshev | Approximation

¢ The squared magnitude
response of a lowpass
Chebyshev I filter for
different values of N

* The behavior is deter-
mined by the cutoff

frequency Q,, the pass- e 2 =
band ripple factor ¢, and Normakited frequericy
the order N

« For the stopband specifi- COSh’l(llﬁzg)

cations ¢, and € the order R
N can be determined from: cosh™(Q,/Q,)
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Chebyshev | Approximation

* The poles of the 2 ‘o
Chebyshev | filter lie on ' e

an ellipse in the s-plane ),:gf.?;yi
* The equiripple behavior AL LA N

. / X N \

in the passband can be / [/

explained by considering /

the locations of the poles

. / A\
(and comparing them to \\ \,:4 L /\:k/ Y,
those of the Butterworth . X L s
! AV AN
filter) TNEER
/ \
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Chebyshev Il Approximation

» The squared magnitude response is of the form
1

NN
LGNS
TI(Q,/Q)

H.(JQ) =

« The transfer function
has equal ripple
behavior in the
stopband due to zeros
at finite frequencies,
i.e., itis not an all-pole

s 3 transfer function

a 05

1 15 2
Normalized frequency:
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Elliptic Approximation Anti-Aliasing Filter Design
« The squared magnitude response is of the form « Ideally, the anti-aliasing filter H,(s) should have a lowpass
SN2 1 frequency response H,(jQ2) given by
‘Ha(JQ)‘ - 2p2
1+ &Ry (Q/Q)) H (ia 1L |1QkQ, /2
where R\(Q) is a rational function with Ry (1/Q) =1/R () (1) = 0, 100, /2
+ The transfer function has Jx, %) - Spectrum of aiased « In practice, it is
equal ripple behavior both LA component of input necessary to filter
in the passband and in ! : —— out those

the stopband
« Elliptic approximation has

frequencies that
will be aliased to

>

the narrowest transition a, 975,2 5, a2 the band of
(TN S C R band -0,-a, interest
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Reconstruction Filter Design Zero-Order Hold
» Reconstruction or smoothing filter is used to eliminate all « The analog signal is approximated by the staircase-like
the replicas of the spectrum outside the baseband waveform
« If the cutoff frequency Q, of the reconstruction filter is ’»‘T“ oY
chosen as Q4/2, where Q; is the sampling frequency, the [ [ ] 1 - |
corresponding frequency response is given by TTT I l l l I- T |_|_|_|_'_‘_
H (O T, |1QKKQ; /2 w ®
(JQ) = 0, |QpQ, /2 » The zero-order hold circuit has the impulse response h,(t)
« The reconstruction filter is not causal! k(0
* The reconstructed analog signal is 1 )
2 sin[z(t—nT)/T] ) (r:y,m _h_—
Ya) =D yInl——~——-— g °oT
oo ﬂ(t - nT) IT " L]
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Zero-Order Hold Zero-Order Hold
¢ Fourier transform of the output of the zero-order hold is o
Y,(JjQ) = H, (jQ)Y, (jQ) I\ . T_he ;ero—ord_er hold
. — T 1_g-T \ circuit also distorts the
where HZ(jQ):J e Mt =——— ="— R magnitude in the band
0 e i ' of interest (close to Q)
) - \ ™
:e—J%{sm(QTIZ)} {\ a) Zero-order hold
| 1 )
Q/2 i fo b) Output of the ideal
* The magnitude response of the zero-order hold has a ) :.-. L DJ/A converter
lowpass characteristic with zeros at +Q, +2Q;,..., where "
Q=1T \\ c) Output of the
* The zero-order hold somewhat attenuates the unwanted \ practical D/A
. . . . . . o TN e
replicas of the periodic digital signal at multiples of Q; e =" converter
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Zero-Order Hold

« The distortion of the zero-order hold can be
compensated, e.g., digitally prior to D/A converter

* FIR filter:
1 9., 1__
Hep()=-—+-21-—27
16 8 16
o [IR filter:
9 p
H“R(Z):8+Z'1 s
) 02x  04n  06x  O3n =
Normalized frequency
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