T-61.3010 Digital Signal Processing and 1.2.2008

Filtering

Discrete-Time
2 Signals and Systems

Time-Domain Representations of
Discrete-Time Signals and Systems

* Time-domain representation of a
discrete-time signal as a sequence of
numbers

» Basic sequences and operations on
sequences

» Discrete-time systems in processing of
discrete-time signals

Linear and time-invariant systems
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Discrete-Time Signals

» Sequence {x[n]} can be considered as a periodically
sampled continuous-time signal x,(7)

x[n]

xn]=x, ()

» Sampling interval: T
» Sampling frequency: F,=1/T
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o =x,(nT)  n=..-2,-1,0,1,2,..

Digital Signals

« Digital signal
Discrete-time and discrete-valued sequence
of numbers

 Digital signal processing
The sequence is transformed to another
sequence by means of arithmetic operations
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Types of Sequence

» Finite-duration or finite-length sequence:
Defined in the interval N,<n<N,, where N, and N, are
finite and N, >N,
Length (duration): N=N, -N;+1
* Infinite-duration or infinite-length sequence:
a) Right-sided sequence: x[n]=0, n<N,
b) Left-sided sequence: x[n]=0, n>N,
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Operations on Sequences:
Basic Operations
* Product (modulation) operation:
xln] —0— yln]
g YInl=xln]-win]

— Modulator

* An application is in forming a finite-length sequence
from an infinite-length sequence by multiplying the
latter with a finite-length sequence called an window
sequence

* Process called windowing
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Operations on Sequences:
Basic Operations

» Addition operation:
— Adder An] 4@_’ y[n]= x[n]+wln]
wn]

» Multiplication operation:

x[n] —-\>A—’ y[n]=A4-x[n]
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— Multiplier

Operations on Sequences:

Basic Operations
« Time-shifting operation: y[n]=x[n—N]
where N is an integer
* IfN>0,itis delaying operation

— Unitdelay  x[n] vl ylnl=x[n-1]

* IfN <0, itis an advance operation

— Unitadvance  x[7] —' y[n]

yn]=x{n+1]
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Operations on Sequences:
Basic Operations

» Time-reversal (folding) operation:
yin]=x[-n]

* Branching operation: Used to provide multiple
copies of a sequence

x[n] 4’—‘1—‘ x[n]

x[n]
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Combinations of Basic
Operations

» Example:
Averaging
fiiter

Nnl=ogxdn]+cox{n—1]+csx{n—2]+ayx{n—3)
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Sampling Rate Alteration:
Basic Operations

» Employed to generate a new sequence y[n]
with a sampling rate F’; higher or lower than
that of the sampling rate F; of a given
sequence x[n]

: . . F
« Sampling rate alteration ratio is: R="L
T

« If R > 1, the process called interpolation
» If R <1, the process called decimation
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Sampling Rate Alteration:
Basic Operations

* In up-sampling by an integer factor L > 1,
L - 1 equidistant zero-valued samples are
inserted by the up-sampler between each
two consecutive samples of the input
sequence x[n]:

x[nlL], n=0,+L,+2L,--
Xu [I’l] =

0, otherwise

x[n] x,[n]
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T-61.3010 Digital Signal Processing and
Sampling Rate Alteration: Sampling Rate Alteration:
Basic Operations Basic Operations
* An example of the up-sampling operation * In down-sampling by an integer factor
S e g M >1, every M-th samples of the input
" S 3 R e sequence are kept and M -1 in-between
M,T H T H T - o_gﬁ ]; - samples are removed:
EM?TTT“?TT“E 5 T I
< Lf) Lﬂl M Lf; Lﬂl ME 7 l r % l y[n]=x[nM]
-10 10 iﬂime indexS: 40 50 -10 10 ZT{:me indexi!ﬂﬂ 40 50 x[n] y[n]

Sampling Rate Alteration:
Basic Operations

» An example of the down-sampling operation

Input Sequence Output sequence down-sampled by 3
1

il ﬁ ﬁ% . EﬁuﬂuﬁﬁTﬁ Hw

1 1
0 10 20 30 4 50 0 10 20 30 40 50
Time index n Time index n

Amplitude

Amplitud
&
&
_—
———
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Periodic Sequences

e e 1L

R - I B 4 56 TR %10 111213 1405

» Periodicity: x,[n]=x,[n+kN], forall n
* The sequence x,[n] is periodic with period N where N is

a positive integer and £ is any integer

* The fundamental period N, is the smallest ~ for which the

above equation holds

* Notice! Sampling of a periodic continuous-time signal

does not guarantee the periodicity of the
sampled sequence
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Example: Slnusmdal Sequences

Al Al

x[n] =cos(22n/12)

“] “J « Periodic, N=12
N T
| P Y || x[n] = cos(8zm /31)
I]“[ l“ [‘] ]”[l « Periodic, N=31
it ] = cos(n/6)
‘ ”Humuuuﬂ

Classification of Sequences

* A sequence is bounded if \X["]‘ <B <

» Asequence is absolutely summable if

i‘x[n]‘ <

n=-w

* Asequence is square- summable if

i‘x[n]‘z <

« The energy of a sequenceis E = Z\x[n]\2
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Some Basic Sequences

* Unit sample sequence

é’[n]:{l' n=0 1{

0, n#0 o

» Unit step sequence

I

n

ﬂ[n]:{l' n>0

0, n<0 o
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Relations between Basic Sequences

» Unit sample and unit step sequences are
related as follows:

pln] = iatkl

oln]= pln] - uln-1]

* The above relations can be implemented with
simple computational structures consisting of
basic arithmetic operations
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unit step:
o[n]= pln]- pln-1]
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Relations between Basic Sequences

» The unit sample is the first difference of the

wuln] 1(NHH uln] _5[11]
S 111 |
o[n] ! (f 1 " =11
. Realization

21

Relations between Basic Sequences

* Unit step is the running sum of the unit sample:
n-1

wlnl= Y 80m] = 3 8lm]+8ln] = uln—11+5[n]

m=-o0 m=—wn

U i S[n] #n]

_.®_._.

‘T‘ ; un-1]
B R Realization
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« Addition:

* Multiplication:

* Unit delay:

©2008 Olli Simula

Basic Operations on Sequences
(]

iy O bl exl]
x[n] —-i>a—~ ax[n]

x[n] —-@—> x[n-1]

23

Exponential and Sinusoidal Sequences

» Complex exponential sequence x[n]=A4a”
where 4 and « are complex
x[n] = ‘ A\ 2% g0t iea)n _ ‘ A\ 00" o (@ +4)

=|4le”" [cos(wyn + @) + jsin(wen + )]

Real past | Imaginary part
f 1
03
3 o4
Lo~ o
o3 Jlrf Hmm‘“
a as o
0 o n 0 w o 0 3 0 0
Time inex 8 Time i
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Real Exponential Sequences

» With both 4 and «a real, the sequence reduces
to a real exponential sequence

Time e g .
)

A—v\ w

Figare 210 Examples of real exponential sequences: (a) x[n] = 0.2(1.2)", (%) s[a] = 20(0.9)".
» Areal sinusoidal sequence: x[n]=Acos(a, nt+d¢)
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A Family of Sinusoidal Sequences
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The Sampling Process

» Adiscrete-time sequence is developed by
uniformly sampling the continuous-time signal x,()

n]=x, )] r = x,(nT)

* The time variable -time ¢ is related to the discrete
time variable » only at discrete-time instants ¢,

t,=nT=2=2
F Q

with  F, =1/T (sampling frequency)
and Q, =2zF, (samplingangular frequency)
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The Sampling Process

+ Consider x,(t) = Acos(Qyt + @)

* Now x[n] = Acos(QunT + ¢)
=4 cos( 2782, n+ ¢\ = Acos(w,n + @)
L Q )
where W, = 2782, =Q,T

T

* o, is the normalized angular frequency
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Example: Three Sinusoidal Sequences

g,[n] = cos(0.67m)
g,[n] = cos(1.47m)
gs[n]=cos(2.62m)

g,[n]=cos((27 —0.67)n) = cos(0.6m) = g,[n]
gs[n]=cos((27 +0.67)n) = cos(0.6:m) = g,[n]
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The Aliasing Phenomenon

* In general, the family of continuous-time sinusoids
X, (t) = Acos((Q, +kQ,)t+¢) k=0+142,...

lead to identical sampled signals
x, . (nT) = Acos((Q, +kQ; )nT + )

= A4cos Mn+¢ = ACo0s %n+¢
Q Q,

= Acos(wyn + ¢) = x[n]

» The phenomenon is called aliasing
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Arbitrary Sequence Arbitrary Sequence
- izl
+1-3] [ 1] 43 [ "
76 54-3-2-10123 41 x5[4]6 7 n )}4]
« An arbitrary sequence x[n] can be expressed x[n] = [x[-3]6[n +3]| + |x{Uoln-1]| - [x[415[n - 4]|
as a superposition of scaled versions of
shifted unit impulses, d[n-k] 0
* Ingeneral:  x[n]= Zx[k]E[n —k]
k=—0
Discrete-Time Systems Linearity

* Alinear system is a system that possesses
the important property of superposition

xn] 1 PGEG ol

Input sequence Output sequence

Additivity:

Single-input single-output system )
The response to x,[n]+x;[n] is y,[n]+y,[n]

» Output sequence is generated sequentially,

beginning with a certain time index value n Scaling or homogeneity:
A certain class of discrete-time systems, The response to ax,[n] is ay,[n]
linear and time invariant (LTI) systems where a is any complex constant

will be discussed
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Linearity Linearity

» Combining the two properties of

superposition into a single statement ay,[n]+by,[n]

Discrete-time:

axy[n]+bx,[n] = ay,[n]+by,[n]

where a and b are any complex constants 5]
ay,[n]+by,[n]

The superposition property holds for x,[n]
linear systems

©2008 Olli Simula 35 ©2008 Olli Simula 36
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Time Invariance

» A system is time-invariant (or shift-invariant)
if a time shift in the input signal results in an
identical time shift in the output signal

y[n] =T (x[n])
yln—n,]= T(x[n —no])

» For time-invariant systems the system
properties do not change with time
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Time Invariance
« Atime invariant discrete-time system
n] =sin[x[n]]
« Atime variant discrete-time system

yln] = nx{n]

Coefficient n is changing with time
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Causality

* In a causal discrete-time system the output
sample y[n,] at time instant n, depends only on
the input samples x[n] for n<n, and does not
depend on input samples for n>n,

* If y,[n] and y,[n] are the responses of a causal
system to two inputs u,[n] and u,[n], respectively,
then

w[n]=u,[n], for n<N
implies that

wlnl=y,[n], for n<N
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Stability

» A discrete-time system is stable if and only if, for
every bounded input, the output is also bounded

« If the response to x[n] is the sequence y[n], and if
‘x[n]‘ <B,
for all values of n, then
)< B,

for all values of n, where B, and B, are finite
constants

Bounded-input bounded-output (BIBO) stability
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Impulse and Step Response

] — Al ]

* Unit sample response or impulse response is the
response of the system to a unit impulse

x[n]=06[nl;  yln]=hin]

* Unit step response or step response is the output
sequence when the input sequence is the unit step

xnl=pln];  yln]=sln]
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Convolution

* Linearity: The response of a linear
system to x[n] will be the superposition
of the scaled responses of the system
to each of these shifted impulses

» Time invariance: The responses of a
time-invariant system to time-shifted
unit impulses are the time-shifted
versions of one another

© 2008 Olli Simula 42
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Convolution

* The unit impulse response of a system
is h[n]

otal — T() Al

» The unit impulse response &[] is the
response of the system to a unit impulse
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Convolution

y[n]=T(x[n])= T[ ix[k]é[n - k]]

k=—0

Additivity :

=—o0

M= 3 T(IkI5T —K])

ynl= Y AKIT(5[n k1)

k=
=

Shift —invariance:  y[n]= D" x[k]h[n—k]

k=—o0

Homogeneity :
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Basic Properties of
LTI Systems

» The Commutative Property
» The Distributive Property
» The Associative Property
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The Commutative Property
x[n]* h[n] = h[n]* x[n]

* Let r=n-k or k=n-r; substituting to convolution
sum:

Al = kT K =

Sl =] =T ]
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The Commutative Property

x[n] — h[n] — y[n]

Wl —  xnl — y[n]

» The output of an LTI system with input x[#] and
unit impulse response A[x] is identical to the
output of an LTI system with input A[z] and unit
impulse response x[n]
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The Distributive Property

x[n]* (m[n]+ hy[n]) =
= x{n]* b [n] + x[n]* h,[n]

» The distributive property has a useful

interpretation in terms of system
interconnections

=> PARALLEL INTERCONNECTION

© 2008 Olli Simula 48
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The Distributive Property

x[n] hn]+h[n] —— ¥nl
)ﬁ[”]
h[n]
[n] { E’f} yln]
hz[”]
J’z[”]
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The Associative Property

x[n]* (m[n]* hy[n]) =
= (x[n]* m[n])* hy[n]

» As a consequence of associative property the

following expression is unambiguous

yIn] = x[n]* h[n]* hy[n]
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The Associative Property
yln] = x[n]* (m[n]* hy[n])

h[n]* hy[n]  —— y[n]

x[n]

yn] = (xn* m[n))* hyln] = yy[n]* byl

nln]
x[n] 4{ hy[n] h,[n] }—' y[n]
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The Associative Property

* The associative property can be

interpreted as

=> SERIES (OR CASCADE)
INTERCONNECTION OF SYSTEMS
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The Associative and
Commutative Property

yIn = x[n]* (m[n]* hy[n]) = x[n]* (h,[n]* hy[n])

x[n] ——

hy[n]* hy[n]

yln]

= (x[n]* hy[n])* m[n] = y,[n]* hy[n]

yln]
x[n] —| h,ln] mln] — y[n]
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The Properties of Cascade
Connection of Systems

» The order of the systems in cascade can be

interchanged

+ The intermediate signal values, w,[n], between

the systems are different

« Different structures have different properties

when implemented using finite precision
arithmetic

© 2008 Olli Simula 54
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The Cascade Connection of
Systems

x[n] % hy[n] }M'{ hy[n] }* yln]

x[n] hy[n]* hy[n] yInl
x[n] hy[n]* hy[n] y[n]

) — hl] }y—[]{ min) )
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The Cascade Connection of
Systems

» The properties of the cascade system depend
on the sequential order of cascaded blocks

» The behavior of discrete-time systems with
finite wordlength is sensitive to signal values,
w,[n], between the blocks

* What is the optimal sequential order of
cascaded blocks ?
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Stability for LTI Systems

» Consider an input x[] that is bounded in
magnitude

[x[1]| < B for all n

» The output is given by the convolution sum

BRI NIGHIETS
| 7In1I 3 1ALKT xDn - K1)
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Stability for LTI Systems
* For bounded input |x[r-k]| < B
| vOnlI< B S 1AL for all
* The ouipuiy[n]iiis bounded if the the impuise
response is absolutely summable

i |h[k]] < o

A SUFFICIENT CONDITION FOR STABILITY'!
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Causality Condition

 Letx,[n] and x,[x] be two input sequences with
x,[n] = x,[n] for n < n,

then the corresponding output sequence of
a causal system

v.[n]l=y,[n] for n<n,
* The system is causal if and only if

h[n]=0 for n <0
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Finite-Dimensional LTI
Discrete-Time Systems

* An important subclass of LTI discrete-time is
characterized by a linear constant coefficient
difference equation

> dofn-H=Y poln-A]

where x[n] and y[r] are, respectively, the input
and output of the system and {4,} and {p,} are
constants

» The order of the system is given by max{~N,M}
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Finite-Dimensional LTI
Discrete-Time Systems

» The output can be computed recursively by
solving y[n]

N

N S P
== =K+ Eadn =K

k=1 "0 k=0 %0

provided that d, # 0.
+ The output y[n] can be computed for all n >, ,

knowing the input x[»] and the initial conditions
Ing-11, ylng-21, ..., ylng-N]
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Classification of LTI
Discrete-Time Systems

LTI discrete-time are usually classified either
according to the length of the their impulse
responses or according to the method of
calculation employed to determine the output
samples

* Impulse response classification:

— Finite impulse response (FIR) systems

— Infinite impulse response (IIR) systems

©2008 Olli Simula

Classification Based on
Impulse Response

« If 4[n] is of finite length, i.e.,
h[n]=0, forn<N,andn>N,, with N; <N,
then it is known as a finite impulse response
(FIR) discrete-time system
» The convolution sum reduces to
Ny
ynl= Y hlk)x{n - k]

k=N,
* y[n] can be calculated directly from the finite sum
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Classification Based on
Impulse Response

« If 4i[n] is of infinite length then the system is
known as an infinite impulse response (lIR)
discrete-time system

» For a causal lIR discrete-time system with
causal input x[n], the convolution sum can be
expressed as

Minl= > Ak K]
k=0

y[n] can now be calculated sample by sample
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Classification Based on
Output Calculation Process

« If the output sample can be calculated
sequentially, knowing only the present and
past input samples, the filter is said to be
nonrecursive discrete-time system

« If, on the other hand, the computation of the
output involves past output samples in addition
to the present and past input samples, the filter
is known as recursive discrete-time system

:7Nﬂ B M& B
== 2=k k]

k=1 dO k=0 *0
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Classification Based on
Output Calculation Process

« A different terminology is used to classify
causal finite-dimensional LTI systems in
different applications, such as model-based
spectral analysis

* The classes assigned here are based on the
form of the linear constant coefficient difference
equation modeling the system
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Moving Average (MA) Model

» The simplest model is described by the input-
output relation

=Y ptn—4]

*« Amoving average (MA) model is an FIR
discrete-time system

« It can be considered as a generalization of the
M-point moving average filter with different
weights assigned to input samples
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Autoregressive Models

* The simplest IIR, called an autoregresive (AR)
model is characterized by the input-output
relation

b=t Y o4

» The second type of IIR system, called an
autoregresive moving average (ARMA) model
is described by the input-output relation

Wl= 3 podn—K1-Y dpln k]
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Correlation of Signals
and
Matched Filters

Correlation of Signals

* There are applications where it is
necessary to compare one reference
signal with one or more signals to
determine the similarity between the pair
and to determine additional information
based on the similarity

© 2008 Olli Simula 70

Example: Communications

* In digital communications, a set of data
symbols are represented by a set of unique
discrete-time sequences

« If one of these sequences has been
transmitted, the receiver has to determine
which particular sequence has been received

+ The received signal is compared with every
member of possible sequences from the set

:> Correlation
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Example: Radar Applications

« Similarly, in radar and sonar applications, the
received signal reflected from the target is a
delayed version of the transmitted signal

* By measuring the delay, one can determine
the location of the target

* The detection problem gets more complicated
in practice, as often the received signal is
corrupted by additive random noise
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Correlation of Signals

Definitions

» A measure of similarity between a pair of energy
signals, x[n] and y[n], is given by the cross-
correlation sequence r, [/] defined by

r,l1= ix[n]y[n—l], [=0,£1,%2,...

» The parameter / called lag, indicates the
time-shift between the pair of signals
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Correlation of Signals

» Sequence y[n] is said to be shifted by / samples
to the right with respect to the reference
sequence x[n] for positive values of /, and shifted
by I samples to the left for negative values of /

» The ordering of the subscripts xy in the definition
of r,[/] specifies that x[n] is the reference
sequence which remains fixed in time while y[x]
is being shifted with respect to x[n]
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Correlation of Signals
« If y[n] is made the reference signal and shift x[x]
with respect to y[n], then the corresponding
cross-correlation sequence is given by
R =3 ylnhln-1]
="+ lalm)=r,[-]

* Thus, r, [/] is obtained by time-reversing r, [/]
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Correlation of Signals
» The autocorrelation sequence of x[n] is
given by w
1= nlx{n-1]

obtained by setting y[n] = x[x] in the definition
of the cross-correlation sequence r,[/]

 Note: The energy of the signal x[#] is sl

rxx[o] = Zfz_wxz[n] :Ex

© 2008 Olli Simula 76

Correlation and Convolution

* From the relation r,.[/] = r, [-]] it follows that
ro [0 = r[-]] implying that _[/] is an even
function for real x[n]

* An examination of

r =37 Anlin-1]

reveals that the expression for the cross-
correlation looks quite similar to that of the
linear convolution

©2008 Olli Simula ”

Convolution Revisited

» The convolution of x[m] and 4[m] was defined as

0

yIml= Y x[klhlm — k]

k=—0

» Compare to correlation
ro 1= anlyln—1]

* Replacing now m by / and k by n, we obtain

P 1= sl -n)]
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Correlation and Convolution Matched Filter
* The expression for the cross-correlation is + The cross-correlation of x[1] with the reference
now similar to the convolution, i.e., signal y[n] can be computed by processing x[1]
® with an LTI discrete-time system of impulse
r 1= (- n)] = X1 -] response y[-1]
» The equations of correlation and convolution
are the same, except the minus sign inside A7l rolrl
the summation + The impulse response, /[n], of the matched filter
* In step-by-step calculation of the convolution, is the time-reversed version of the of reference
the other sequence is time-reversed; signal y[n] , i.e., h[n] = y[-n]
in correlation, it is not
© 2008 Olli Simula 79 © 2008 Olli Simula 80

Applications of Matched Filters Autocorrelation

» In matched filters, the impulse response of the

filter is “matched” to the signal, or signal pattern - Likewise, the autocorrelation of x[#] can be
of interest computed by processing x[1] with an LTI
» Applications: discrete-time system of impulse response x[-x]
— Radar, the impulse response of the filter is the time-
reversed version of the signal to be detected
— Pattern recognition Al Taln]

— Template matching in image analysis, i.e., sub-areas
of the image are correlated with the desired template
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