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Discrete-Time 
Signals and Systems2 Signals and Systems2

Time-Domain Representations of 
Discrete-Time Signals and Systems

• Time-domain representation of a 
discrete-time signal as a sequence of 
numbers
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• Basic sequences and operations on 
sequences

• Discrete-time systems in processing of 
discrete-time signals
Linear and time-invariant systems

Discrete-Time Signals
• Sequence {x[n]} can be considered as a periodically 

sampled continuous-time signal xa(t)
x[n]
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• Sampling interval: T
• Sampling frequency: FT=1/T

2,... 1, 0, 1, 2,...,n)()(][ −−=== = nTxtxnx anTta

Digital Signals
• Digital signal

Discrete-time and discrete-valued sequence 
of numbers

• Digital signal processing
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Digital signal processing
The sequence is transformed to another 
sequence by means of arithmetic operations

Types of Sequence
• Finite-duration or finite-length sequence:

Defined in the interval N1<n<N2, where N1 and N2 are 
finite and N2 >N1 
Length (duration): N= N2 -N1+1

• Infinite-duration or infinite-length sequence:
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a) Right-sided sequence: x[n]=0, n<N1

b) Left-sided sequence: x[n]=0, n>N2

Operations on Sequences: 
Basic Operations

• Product (modulation) operation:

– Modulator ×x[n] y[n]

][][][ nwnxny =
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• An application is in forming a finite-length sequence 
from an infinite-length sequence by multiplying the 
latter with a finite-length sequence called an window 
sequence

• Process called windowing

w[n] ][][][ nwnxny ⋅=
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Operations on Sequences: 
Basic Operations

• Addition operation:

– Adder ][][][ nwnxny +=x[n] +
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A
x[n] ][][ nxAny ⋅=

w[n]

• Multiplication operation:

– Multiplier

Operations on Sequences: 
Basic Operations

• Time-shifting operation:
where N is an integer

• If N > 0, it is delaying operation

][][ Nnxny −=

][][ 1
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– Unit delay

• If N < 0, it is an advance operation

– Unit advance

1−z y[n]x[n] ][][ 1−= nxny

y[n]x[n] z
][][ 1+= nxny

Operations on Sequences: 
Basic Operations

• Time-reversal (folding) operation:

][][ nxny −=
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• Branching operation:  Used to provide multiple 
copies of a sequence

x[n] x[n]

x[n]

Combinations of Basic 
Operations

• Example:
Averaging 
fil
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filter

]3[]2[]1[][][ 4321 −+−+−+= nxnxnxnxny αααα

Sampling Rate Alteration: 
Basic Operations

• Employed to generate a new sequence y[n]
with a sampling rate F’T higher or lower than 
that of the sampling rate FT of a given 
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sequence x[n]
• Sampling rate alteration ratio is:

• If R > 1, the process called interpolation
• If R < 1, the process called decimation

T

T
F
FR

'
=

Sampling Rate Alteration: 
Basic Operations

• In up-sampling by an integer factor L > 1,
L - 1 equidistant zero-valued samples are 
inserted by the up-sampler between each 
two consecutive samples of the input
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two consecutive samples of the input 
sequence x[n]:

⎩
⎨
⎧ ±±=

=
otherwise,0

,2,,0],/[
][

LLLnLnx
nxu

L][nx ][nxu
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Sampling Rate Alteration: 
Basic Operations

• An example of the up-sampling operation

1
Output sequence up-sampled by 3

1
Input Sequence
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Sampling Rate Alteration: 
Basic Operations

• In down-sampling by an integer factor
M >1, every M-th samples of the input 
sequence are kept and M -1 in-between 
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samples are removed:

][][ nMxny =

][nx ][nyM

Sampling Rate Alteration: 
Basic Operations

• An example of the down-sampling operation

1
Output sequence down-sampled by 3

1
Input Sequence
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Periodic Sequences

• Periodicity: xp[n]=xp[n+kN],  for all n
Th i i di ith i d h i
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• The sequence xp[n] is periodic with period N where N is 
a positive integer and k is any integer

• The fundamental period Nf is the smallest N for which the 
above equation holds

• Notice! Sampling of a periodic continuous-time signal
does not guarantee the periodicity of the
sampled sequence

)12/2cos(][ nnx π=

)31/8cos(][

• Periodic, N=12

Example: Sinusoidal Sequences

17

)31/8cos(][ nnx π=

)6/cos(][ nnx =

• Periodic, N=31

• Not periodic
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Classification of Sequences
• A sequence is bounded if ∞<≤ xBnx ][

• A sequence is absolutely summable if

∞<∑
∞

nx ][
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• A sequence is square- summable if
−∞=n

∞<∑
∞

−∞=n

nx 2][

• The energy of a sequence is ∑
∞

−∞=

=
n

nxE 2][
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Some Basic Sequences
• Unit sample sequence

⎩
⎨
⎧

≠
=

=
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n
n

nδ
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n0
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• Unit step sequence

⎩
⎨
⎧

<
≥

=
0,0
0,1

][
n
n

nμ
1

n0

. . .

Relations between Basic Sequences
• Unit sample and unit step sequences are 

related as follows:

∑
∞=

=
n

k
kn ][][ δμ
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−∞=k

]1[][][ −−= nnn μμδ

• The above relations can be implemented with 
simple computational structures consisting of 
basic arithmetic operations

Relations between Basic Sequences
• The unit sample is the first difference of the 

unit step:
]1[][][ −−= nnn μμδ

1 . . .][nμ +
][nμ ][nδ
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n0
1

n0  1

. . .]1[ −nμ

1

n0

][nδ

+

D
-

]1[ −nμ

Realization

Relations between Basic Sequences
• Unit step is the running sum of the unit sample:

∑
−∞=

=
n

m
mn ][][ δμ ][]1[][][

1

nnnm
n

m
δμδδ +−=+= ∑

−

−∞=

][nμ][nδ
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+

D

][nμ

]1[ −nμ

][nδ

Realization

Basic Operations on Sequences

• Addition:

a

++
][1 nx

][2 nx
][][ 21 nxnx +
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• Multiplication:

• Unit delay:

][nx ][nax

DD][nx ]1[ −nx

Exponential and Sinusoidal Sequences
• Complex exponential sequence nAnx α=][

where A and α are complex

[ ])i ()(

][ )()( 0000

φφσ

φωσωσφ == ++

A

eeAeeAnx
n

njnnjj
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[ ])sin()cos( 00
0 φωφωσ +++= njneA n
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Real Exponential Sequences
• With both A and α real, the sequence reduces 

to a real exponential sequence
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• A real sinusoidal sequence: x[n]=Acos(ω0 n+φ)

A Family of Sinusoidal Sequences
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The Sampling Process
• A discrete-time sequence is developed by 

uniformly sampling the continuous-time signal xa(t)

)()(][ nTxtxnx anTta == =

• The time variable time t is related to the discrete
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• The time variable -time t is related to the discrete 
time variable n only at discrete-time instants tn

frequency)angular  (sampling2and
frequency) (sampling/1with

2

TT

T

TT
n

F
TF

n
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nnTt

π

π
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Ω
===

The Sampling Process
• Consider )cos()( 0 φ+Ω= tAtxa

• Now

)cos(2cos

)cos(][

0
0

0

φωφπ

φ

+=⎟⎟
⎞

⎜⎜
⎛

+
Ω
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+Ω=

nAnA

nTAnx
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)( 0 φφ ⎟
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• ω 0 is the normalized angular frequency 

Example: Three Sinusoidal Sequences
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][)6.0cos())6.02cos((][ 12 ngnnng ==−= πππ

][)6.0cos())6.02cos((][ 13 ngnnng ==+= πππ

0 0.2 0.4 0.6 0.8 1
-1

time

The Aliasing Phenomenon
• In general, the family of continuous-time sinusoids 

,...2,1,0))cos(()( 0, ±±=+Ω+Ω= ktkAtx Tka φ

lead to identical sampled signals
))(()( TkAT +Ω+Ω φ
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• The phenomenon is called aliasing
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Arbitrary Sequence

-7   -6   -5  -4   -3   -2    -1    0    1    2    3   4     5     6    7

x[n]

n

x[1]x[-3]
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• An arbitrary sequence x[n] can be expressed  
as a superposition of scaled versions of 
shifted unit impulses, δ[n-k]

x[4]

Arbitrary Sequence

-7   -6   -5  -4   -3   -2    -1    0    1    2    3   4     5     6    7

x[n]

n

[4]

x[1]x[-3]
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]3[]3[ +− nx δ ]1[]1[ −nx δ ]4[]4[ −nx δ=][nx + -

∑
+∞

−∞=

−=
k

knkxnx ][][][ δ• In general:

x[4]

Discrete-Time Systems

Single-input single-output system

][nx ][nyDiscrete-time
system

Output sequenceInput sequence
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Single-input single-output system

• Output sequence is generated sequentially, 
beginning with a certain time index value n

A certain class of discrete-time systems, 
linear and time invariant (LTI) systems 
will be discussed  

Linearity
• A linear system is a system that possesses 

the important property of superposition

Additivity:
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The response to x1[n]+x2[n]  is  y1[n]+y2[n] 

Scaling or homogeneity:
The response to ax1[n] is ay1[n] 
where a is any complex constant

Linearity
• Combining the two properties of 

superposition into a single statement
Discrete-time:
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where a and b are any complex constants

][][][][ 2121 nbynaynbxnax +→+

The superposition property holds for 
linear systems

Linearity

][][ 21 nbynay ++
T[  ]

a][1 ny
][1 nx

][1 nay

T[  ]][2 nx
][2 ny

b

][2 nby
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a ][1 nax

+

][1 nx

][2 nx
][2 nbx

b ][][ 21 nbynay +
][][ 21 nbxnax +

T[  ]

2y 2y
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Time Invariance
• A system is time-invariant (or shift-invariant) 

if a time shift in the input signal results in an 
identical time shift in the output signal

( )][][ T
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( )][][ nxTny =

• For time-invariant systems the system 
properties do not change with time

( )][][ 00 nnxTnny −=−

Time Invariance
• A time invariant discrete-time system

[ ]][sin][ nxny =
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• A time variant discrete-time system

][][ nnxny =
Coefficient n is changing with time

Causality
• In a causal discrete-time system the output 

sample y[n0] at time instant n0 depends only on 
the input samples x[n] for n<n0 and does not 
depend on input samples for n>n0

• If y1[n] and y2[n] are the responses of a causal
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If y1[n] and y2[n] are the responses of a causal 
system to two inputs u1[n] and u2[n], respectively, 
then 

Nnnunu <= for,][][ 21

implies that
Nnnyny <= for,][][ 21

Stability
• A discrete-time system is stable if and only if, for 

every bounded input, the output is also bounded 
• If the response to x[n] is the sequence y[n], and if  

xBnx ≤][

f ll l f th
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for all values of n, then

yBny ≤][

for all values of n, where Bx and By are finite 
constants

Bounded-input bounded-output (BIBO) stability

Impulse and Step Response

][nx ][ny][nh

• Unit sample response or impulse response is the 
response of the system to a unit impulse
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][][];[][ nhnynnx == δ
response of the system to a unit impulse  

• Unit step response or step response is the output 
sequence when the input sequence is the unit step  

][][];[][ nsnynnx == μ

Convolution
• Linearity: The response of a linear 

system to x[n] will be the superposition 
of the scaled responses of the system 
to each of these shifted impulses
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to eac o t ese s ted pu ses
• Time invariance: The responses of a 

time-invariant system to time-shifted 
unit impulses are the time-shifted 
versions of one another
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Convolution

• The unit impulse response of a system 
is h[n]
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T(  )][nδ ][nh

• The unit impulse response h[n] is the 
response of the system to a unit impulse

Convolution

( )][][ nxTny = ⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

∞

−∞=k

knkxT ][][ δ
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( )∑
∞

−∞=

−=
k

knkxTny ][][][:Additivity δ

( )∑
∞

−∞=

−=
k

knTkxny ][][][:yHomogeneit δ

∑
∞

−∞=

−=−
k

knhkxny ][][][:invarianceShift

Basic Properties of 
LTI Systems

• The Commutative Property
• The Distributive Property
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• The Distributive Property
• The Associative Property

The Commutative Property

][*][][*][ nxnhnhnx =

• Let r=n-k or k=n-r; substituting to convolution 
sum:
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∑
∞

−∞=

=−
r

nxnhrhrnx ][*][][][

∑
∞

−∞=

=−=
k

knhkxnhnx ][][][*][

sum:

The Commutative Property

][nx ][ny][nh

][nx ][ny][nh
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• The output of an LTI system with input x[n] and 
unit impulse response h[n] is identical to the 
output of an LTI system with input h[n] and unit 
impulse response x[n] 

][y][

The Distributive Property

( ) =+ ][][*][ 21 nhnhnx

][*][][*][ 21 nhnxnhnx +=
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• The distributive property has a useful 
interpretation in terms of system 
interconnections

=> PARALLEL INTERCONNECTION
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The Distributive Property

][ny][nx ][][ 21 nhnh +

][ny
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][nx +

][2 nh

][1 nh
][1 ny

][2 ny

][ny

The Associative Property

( ) =][*][*][ 21 nhnhnx

( ) ][*][*][ 21 nhnhnx=
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• As a consequence of associative property the 
following expression is unambiguous

][*][*][][ 21 nhnhnxny =

The Associative Property

][ny][nx ][*][ 21 nhnh

( )][*][*][][ 21 nhnhnxny =
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][nx ][2 nh][1 nh
][1 ny

][ny

( ) ][*][][*][*][][ 2121 nhnynhnhnxny ==

The Associative Property

• The associative property can be 
interpreted as
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=> SERIES (OR CASCADE)
INTERCONNECTION OF SYSTEMS

The Associative and 
Commutative Property

][ny][nx ][*][ 12 nhnh

( ) ( )][*][*][][*][*][][ 1221 nhnhnxnhnhnxny ==
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][2 ny
][nx ][2 nh ][1 nh ][ny

( ) ][*][][*][*][][ 1212 nhnynhnhnxny ==

The Properties of Cascade 
Connection of Systems

• The order of the systems in cascade can be 
interchanged
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• The intermediate signal values, wi[n], between 
the systems are different

• Different structures have different properties 
when implemented using finite precision 
arithmetic



T-61.3010 Digital Signal Processing and 
Filtering

1.2.2008

Mitra 3rd Edition: Chapter 2;                          
© 2008 Olli Simula 10

The Cascade Connection of 
Systems

][ny][nx ][*][ 21 nhnh

][nx ][2 nh][1 nh
][1 ny

][ny
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][ny][nx ][*][ 12 nhnh

][2 ny
][nx ][2 nh ][1 nh ][ny

][ny][nx ][][ 21 nhnh

The Cascade Connection of 
Systems

• The properties of the cascade system depend 
on the sequential order of cascaded blocks

• The behavior of discrete-time systems with 
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finite wordlength is sensitive to signal values, 
wi[n], between the blocks

• What is the optimal sequential order of 
cascaded blocks ?

Stability for LTI Systems
• Consider an input x[n] that is bounded in 

magnitude

|x[n]| < B for all n

Th t t i i b th l ti
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• The output is given by the convolution sum

∑
∞

−∞=

−=
k

knxkhny ][][|][|

∑
∞

−∞=

−≤
k

knxkhny |][||][||][|

Stability for LTI Systems
• For bounded input |x[n-k]| < B

nallforkhBny
k
∑
∞

−∞=

≤ |][||][|

The output [ ] is bounded if the the impulse
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∞<∑
∞

−∞=k
kh ][

• The output y[n] is bounded if the the impulse 
response is absolutely summable

A SUFFICIENT CONDITION FOR STABILITY !

Causality Condition
• Let x1[n] and x2[n] be two input sequences with

021 for][][ nnnxnx ≤=

then the corresponding output sequence of 
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a causal system

021 for][][ nnnyny ≤=

• The system is causal if and only if

0for0][ <= nnh

Finite-Dimensional LTI 
Discrete-Time Systems

• An important subclass of LTI discrete-time is 
characterized by a linear constant coefficient 
difference equation

∑∑
MN

kkd ][][
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∑∑
==

−=−
k

k
k

k knxpknyd
00

][][

where x[n] and y[n] are, respectively, the input 
and output of the system and {dk} and {pk} are 
constants

• The order of the system is given by max{N,M}
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Finite-Dimensional LTI 
Discrete-Time Systems

• The output can be computed recursively by 
solving y[n]

[ ] ∑∑ −+−−=
M

k
N

k knx
d
pkny

d
dny ][][
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∑∑
== kk dd 0 01 0

provided that  d0 ≠ 0. 
• The output y[n] can be computed for all n ≥ n0 , 

knowing the input x[n] and the initial conditions 
y[n0-1], y[n0-2], ..., y[n0-N]

Classification of LTI 
Discrete-Time Systems

• LTI discrete-time are usually classified either 
according to the length of the their impulse 
responses or according to the method of 
calculation employed to determine the output 
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p y p
samples

• Impulse response classification:
– Finite impulse response (FIR) systems
– Infinite impulse response (IIR) systems

Classification Based on 
Impulse Response

• If h[n] is of finite length, i.e.,

h[n] = 0,   for n < N1 and n > N2 ,   with  N1 < N2

then it is known as a finite impulse response
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(FIR) discrete-time system
• The convolution sum reduces to 

• y[n] can be calculated directly from the finite sum

∑
=

−=
2

1

][][][
N

Nk

knxkhny

Classification Based on 
Impulse Response

• If h[n] is of infinite length then the system is 
known as an infinite impulse response (IIR) 
discrete-time system

• For a causal IIR discrete-time system with
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For a causal IIR discrete time system with 
causal input x[n], the convolution sum can be 
expressed as 

y[n] can now be calculated sample by sample

∑
=

−=
n

k

knxkhny
0

][][][

Classification Based on 
Output Calculation Process

• If the output sample can be calculated 
sequentially, knowing only the present and 
past input samples, the filter is said to be 
nonrecursive discrete-time system
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• If, on the other hand, the computation of the 
output involves past output samples in addition 
to the present and past input samples, the filter 
is known as recursive discrete-time system

[ ] ∑∑
==

−+−−=
M

k

k
N

k

k knx
d
pkny

d
dny

0 01 0
][][

Classification Based on 
Output Calculation Process

• A different terminology is used to classify 
causal finite-dimensional LTI systems in 
different applications, such as model-based 

t l l i
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spectral analysis
• The classes assigned here are based on the 

form of the linear constant coefficient difference 
equation modeling the system
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Moving Average (MA) Model

• The simplest model is described by the input-
output relation

[ ] ∑
=

−=
M

k
k knxpny

0

][
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• A moving average (MA) model is an FIR 
discrete-time system

• It can be considered as a generalization of the 
M-point moving average filter with different 
weights assigned to input samples

Autoregressive Models

• The simplest IIR, called an autoregresive (AR) 
model is characterized by the input-output 
relation

[ ] [ ] ∑
=

−−=
N

k
k knydnxny

0

][
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• The second type of IIR system, called an  
autoregresive moving average (ARMA) model 
is described by the input-output relation

=k 0

[ ] ∑∑
==

−−−=
N

k
k

M

k
k knydknxpny

00

][][

Correlation of Signals
and

Matched Filters

Correlation of Signals
• There are applications where it is 

necessary to compare one reference 
signal with one or more signals to 
determine the similarity between the pair
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determine the similarity between the pair 
and to determine additional information 
based on the similarity

Example: Communications
• In digital communications, a set of data 

symbols are represented by a set of unique 
discrete-time sequences

• If one of these sequences has been 
t itt d th i h t d t i
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transmitted, the receiver has to determine 
which particular sequence has been received

• The received signal is compared with every 
member of possible sequences from the set

Correlation

Example: Radar Applications
• Similarly, in radar and sonar applications, the 

received signal reflected from the target is a 
delayed version of the transmitted signal 

• By measuring the delay, one can determine 
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the location of the target
• The detection problem gets more complicated 

in practice, as often the received signal is 
corrupted by additive random noise
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Correlation of Signals
Definitions
• A measure of similarity between a pair of energy 

signals, x[n] and y[n], is given by the cross-
correlation sequence rxy[l] defined by 

© 2008 Olli Simula 73

• The parameter l called lag, indicates the 
time-shift between the pair of signals

...,2,1,0],[][][ ±±=−= ∑
∞

−∞=

llnynxlr
n

xy

Correlation of Signals
• Sequence y[n] is said to be shifted by l samples 

to the right with respect to the reference 
sequence x[n] for positive values of l, and shifted 
by l samples to the left for negative values of l
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• The ordering of the subscripts xy in the definition 
of rxy[l] specifies that x[n] is the reference 
sequence which remains fixed in time while y[n] 
is being shifted with respect to x[n]

Correlation of Signals
• If y[n] is made the reference signal and shift x[n] 

with respect to y[n], then the corresponding 
cross-correlation sequence is given by

∑∞
ll ][][][
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• Thus, ryx [l] is obtained by time-reversing rxy[l] 

∑ −∞=
−=

nyx lnxnylr ][][][

][][][ lrmxlmy xym
−=+=∑∞

−∞=

Correlation of Signals
• The autocorrelation sequence of x[n] is 

given by

obtained by setting y[n] = x[n] in the definition 

∑∞

−∞=
−=

nxx lnxnxlr ][][][
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y g y[ ] [ ]
of the cross-correlation sequence rxy[l]

• Note: The energy of the signal x[n] is ][lxyr

xnxx nxr E∑∞
−∞= == ][][ 20

Correlation and Convolution

• From the relation ryx[l] = rxy[-l] it follows that 
rxx[l] = rxx[-l] implying that rxx[l] is an even 
function for real x[n]
A i ti f
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• An examination of                               

reveals that the expression for the cross-
correlation looks quite similar to that of the 
linear convolution

∑∞

−∞=
−=

nxy lnynxlr ][][][

Convolution Revisited

∑
∞

−∞=

−=
k

kmhkxmy ][][][

• The convolution of x[m] and h[m] was defined as

• Compare to correlation
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• Compare to correlation 

• Replacing now  m by l and  k by n , we obtain

∑∞

−∞=
−=

nxy lnynxlr ][][][

∑∞

−∞=
−−=

nxy nlynxlr )]([][][
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Correlation and Convolution
• The expression for the cross-correlation is 

now similar to the convolution, i.e.,

][][)]([][][ lylxnlynxlr
nxy −∗=−−=∑∞

−∞=
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• The equations of correlation and convolution 
are the same, except the minus sign inside 
the summation

• In step-by-step calculation of the convolution, 
the other sequence is time-reversed;
in correlation, it is not 

Matched Filter
• The cross-correlation of x[n] with the reference 

signal y[n] can be computed by processing x[n] 
with an LTI discrete-time system of impulse 
response y[-n] 
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][ ny −][nx ][nrxy

• The impulse response, h[n], of the matched filter
is the time-reversed version of the of reference 
signal y[n] , i.e., h[n] = y[-n]

Applications of Matched Filters
• In matched filters, the impulse response of the 

filter is “matched” to the signal, or signal pattern 
of interest

• Applications: 
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– Radar, the impulse response of the filter is the time-
reversed version of the signal to be detected

– Pattern recognition
– Template matching in image analysis, i.e., sub-areas 

of the image are correlated with the desired template 

Autocorrelation

• Likewise, the autocorrelation of x[n] can be 
computed by processing x[n] with an LTI 
discrete-time system of impulse response x[-n] 
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